Production & Supply Chain
Artificial Intelligence-based Multi-objective Optimization of a Solar-driven System for Hydrogen Production with Integrated Oxygen and Power Co-generation Across Different Climates
Oct 2025
Publication
This study develops and optimizes a solar-powered system for hydrogen generation with oxygen and power coproducts addressing the need for efficient scalable carbon-free energy solutions. The system combines a linear parabolic collector a Steam Rankine cycle and a Proton Exchange Membrane Electrolyzer (PEME) to produce electricity for electrolysis. Thermodynamic modeling was accomplished in Engineering Equation Solver while a hybrid Artificial Intelligence (AI) framework combining Artificial Neural Networks and Genetic Algorithms in Statistica coupled with Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) decision support optimized technical and economic performance. Optimization considered seven key decision variables covering collector design thermodynamic inputs and component efficiencies. The optimization achieved energy and exergy efficiencies of 30.83 % and 26.32 % costing 47.02 USD/h and avoiding CO2 emissions equivalent to 190 USD/ton. Economic and exergy analyses showed the solar and hydrogen units had the highest costs (38.17 USD/h and 9.61 USD/h) with 4503 kWh of exergy destruction to generate 575 kWh of electricity. A case study across six cities suggested that Perth Bunbury and Adelaide with higher solar irradiance delivered the highest annual power and hydrogen outputs consistent with irradiance–electrolyzer correlation. Unlike conventional single-site studies this work delivers a climate-responsive multi-city analysis integrating solar thermal and PEME within an AI-driven framework. By linking techno-economic performance with quantified environmental value and co-production synergies of hydrogen oxygen and electricity the study highlights a novel pathway for scalable clean hydrogen measurable CO2 reductions and global decarbonization with future work focused on digital twins and dynamic uncertainty-aware optimization.
Harnessing Wind for Hydrogen: Comparative MCDM-GIS Assessment of Optimal Plant Locations
Jul 2025
Publication
This research aimed to perform an in-depth comparative analysis of MCDM methods utilizing ArcGIS Pro 3.0.2 to identify the most suitable sites for wind-powered hydrogen production plants in Erbil Governorate Iraq. VIKOR TOPSIS SAW and Weighted Overlay techniques were implemented and applied to evaluate various criteria. A comparative analysis determined that VIKOR had the highest consistency and robustness making it the most suitable approach for selecting a site for windpowered hydrogen facilities. Spatial analysis showed that the southern and southwestern regions of Erbil Governorate were the most favourable areas for hydrogen generation. Wind turbine technical feasibility assessments identified the E112/4500 and V126e3.45 turbine models as the most efficient for these regions with high annual hydrogen production. The spatial configuration including the optimal turbine spacing had a significant effect on the capacity and production potential. ArcPro integration with MCDM significantly enhanced spatial analysis providing high-resolution data processing and advanced visualization capabilities.
Case Study of a Greenfield Blue Hydrogen Plant: A Comparative Analysis of Production Methods
Jun 2025
Publication
Blue hydrogen is a key pathway for reducing greenhouse gas emissions while utilizing natural gas with carbon capture and storage (CCS). This study conducts a techno-economic and environmental analysis of a greenfield blue hydrogen plant in Saskatchewan Canada integrating both SMR and ATR technologies. Unlike previous studies that focus mainly on production units this research includes all process and utility systems such as H2 and CO2 compression air separation refrigeration co-generation and gas dehydration. Aspen HYSYS simulations revealed ATR’s energy demand is 10% lower than that of SMR. The hydrogen production cost was USD 3.28/kg for ATR and USD 3.33/kg for SMR while a separate study estimated a USD 2.2/kg cost for design without utilities highlighting the impact of indirect costs. Environmental analysis showed ATR’s lower Global Warming Potential (GWP) compared to SMR reducing its carbon footprint. The results signified the role of utility integration site conditions and process selection in optimizing energy efficiency costs and sustainability.
Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials
Oct 2017
Publication
Photocatalytic water splitting and organic reforming based on nano-sized composites are gaining increasing interest due to the possibility of generating hydrogen by employing solar energy with low environmental impact. Although great efforts in developing materials ensuring high specific photoactivity have been recently recorded in the literature survey the solar-to-hydrogen energy conversion efficiencies are currently still far from meeting the minimum requirements for real solar applications. This review aims at reporting the most significant results recently collected in the field of hydrogen generation through photocatalytic water splitting and organic reforming with specific focus on metal-based semiconductor nanomaterials (e.g. metal oxides metal (oxy)nitrides and metal (oxy)sulfides) used as photocatalysts under UVA or visible light irradiation. Recent developments for improving the photoefficiency for hydrogen generation of most used metal-based composites are pointed out. The main synthesis and operating variables affecting photocatalytic water splitting and organic reforming over metal-based nanocomposites are critically evaluated.
Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study
Jun 2025
Publication
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges including high material costs limited performance and durability and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design improving material performance and reducing overall costs thereby accelerating the commercial rollout of PEMWE technology. Despite this conventional models often oversimplify key components such as porous transport and catalyst layers by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant linearly graded and stepwise profiles—and derives analytical expressions for permeability effective diffusivity and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages they significantly influence internal pressure species distribution and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and systemlevel electrochemical analysis offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems.
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
Mar 2025
Publication
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g. water electrolysis). Unfortunately the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency expensive electrode materials etc. A novel concept based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper we conducted a study to evaluate the economic and environmental sustainability of this technology using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost.
Assessment of Carbon-abatement Pricing to Maximize the Value of Electrolytic Hydrogen in Emissions-intensive Power Sectors
Aug 2025
Publication
Electrolytic hydrogen can support the decarbonization of the power sector. Achieving cost-effective power-to-gas-to-power (PGP) integration through targeted emissions pricing can accelerate the adoption of electrolytic hydrogen in greenhouse gas-intensive power sectors. This study develops a framework for assessing the economic viability of electrolytic hydrogen-based PGP systems in fossil fuel-dependent grids while considering the competing objectives of the electricity system operator a risk-averse investor and the government. Here we show that given the risk-averse investor’s inherent pursuit of profit maximization a break-even carbon abatement cost of at least 57 Canadian Dollars per tonne of CO₂ by 2030 from the government with a shift in electricity market dispatch rules from sole system marginal pricereduction to system-wide emissions reduction is essential to stimulate price discovery for low-cost hydrogen production and contingency reserve provision by the PGP system. This work can help policymakers capture and incentivize the role of electrolytic hydrogen in low-carbon power sector planning.
Retrofitted Production of Bio-hydrogen. Large-scale Biowaste Valorization via Solar-based Gasification
Aug 2025
Publication
Hydrogen production from gasification of biowaste generates large volumes of CO2 due to endothermic biowaste decomposition. Alternatively the Sun can provide that energy. To evaluate the yield and performance of solarbased gasifiers at country scale a multi-scale approach is required. First the operation of a solar gasifier is analyzed by developing a two-phase model validated and scaled to industrial level. Next the performance and yield of such technology as a function of the radiation received is studied taking Spain as a case study. The results were promising obtaining a syngas rich in H2. However tar and char were not reduced due to insufficient temperature. Scale-up studies revealed energy losses to the environment in the industrial-scale gasifier which suggested the use of segmented heating. In turn diameters no larger than 0.8 m and biomass feeding rates below 0.85 kg/s highlight the deployment of a modular design due to particle size limitations. Finally the large-scale waste valorization showed that the gasifier can only operate in Spain in the summer months. It can run over 180 h/month and more than 250 days/year only in C´ adiz and Santa Cruz de Tenerife which also showed the highest yearly production capacities.
Wetting of the Microporous Layer at the Cathode of an Anion Exchange Membrane Water Electrolyzer
Aug 2025
Publication
Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs) to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static quasi-static and dynamic conditions to assess the effect of water and electrolytes (NaOH KOH K2CO3) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of ∼120° however with receding contact angle ∼0°) whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis) maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data in a specific condition suggested the presence of the MPL within the PTL enhance AEM-WE performance.
Stimulating Efficiency for Proton Exchange Membrane Water Splitting Electrolyzers: From Material Design to Electrode Engineering
Jun 2025
Publication
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for large-scale hydrogen production yet their industrial deployment is hindered by the harsh acidic conditions and sluggish oxygen evolution reaction (OER) kinetics. This review provides a comprehensive analysis of recent advances in iridium-based electrocatalysts (IBEs) emphasizing novel optimization strategies to enhance both catalytic activity and durability. Specifically we critically examine the mechanistic insights into OER under acidic conditions revealing key degradation pathways of Ir species. We further highlight innovative approaches for IBE design including (i) morphology and support engineering to improve stability (ii) structure and phase modulation to enhance catalytic efficiency and (iii) electronic structure tuning for optimizing interactions with reaction intermediates. Additionally we assess emerging electrode engineering strategies and explore the potential of non-precious metal-based alternatives. Finally we propose future research directions focusing on rational catalyst design mechanistic clarity and scalable fabrication for industrial applications. By integrating these insights this review provides a strategic framework for advancing PEMWE technology through highly efficient and durable OER catalysts.
Can Hydrogen Be Produced Cost-Effectively from Heavy Oil Reservoirs?
Oct 2025
Publication
The potential for hydrogen production from heavy oil reservoirs has gained significant attention as a dual-benefit process for both enhanced oil recovery and low-carbon energy generation. This study investigates the technical and economic feasibility of producing hydrogen from heavy oil reservoirs using two primary in situ combustion gasification strategies: cyclic steam/air and CO2 + O2 injection. Through a comprehensive analysis of technical barriers economic drivers and market conditions we assess the hydrogen production potential of each method. While both strategies show promise they face considerable challenges: the high energy demands associated with steam generation in the steam/air strategy and the complexities of CO2 procurement capture and storage in the CO2 + O2 method. The novelty of this work lies in combining CMG-STARS reservoir simulations with GoldSim techno-economic modeling to quantify hydrogen yields production costs and oil–hydrogen revenue trade-offs under realistic field conditions. The analysis reveals that under current technological and market conditions the cost of hydrogen production significantly exceeds the market price rendering the process economically uncompetitive. Furthermore the dominance of oil production as the primary revenue source in both methods limits the economic viability of hydrogen production. Unless substantial advancements are made in technology or a more cost-efficient production strategy is developed hydrogen production from heavy oil reservoirs is unlikely to become commercially viable in the near term. This study provides crucial insights into the challenges that must be addressed for hydrogen production from heavy oil reservoirs to be considered a competitive energy source.
Hydrogen Production Power Supply with Low Current Ripple Based on Virtual Impedance Technology Suitable for Offshore Wind–Solar–Storage System
Oct 2025
Publication
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions but also has abundant raw materials which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new energy electrolytic water hydrogen production device and its characteristics have a significant impact on the efficiency and purity of hydrogen production and the service life of the electrolytic cell. In essence the DC/DC converter provides the large current required for hydrogen production. For the converter its input still needs the support of a DC power supply. Given the maturity and technical characteristics of new energy power generation integrating energy storage into offshore energy systems enables stable power supply. This configuration not only mitigates energy fluctuations from renewable sources but also further reduces electrolysis costs providing a feasible pathway for large-scale commercialization of green hydrogen production. First this paper performs a simulation analysis on the wind–solar hybrid energy storage power generation system to demonstrate that the wind–solar–storage system can provide stable power support. It places particular emphasis on the significance of hydrogen production power supply design—this focus stems primarily from the fact that electrolyzers impose specific requirements on high operating current levels and low current ripple which exert a direct impact on the electrolyzer’s service life hydrogen production efficiency and operational safety. To suppress the current ripple induced by high switching frequency and high output current traditional approaches typically involve increasing the output inductor. However this method substantially increases the volume and weight of the device reduces the rate of current change and ultimately results in a degradation of the system’s dynamic response performance. To this end this paper focuses on developing a virtual impedance control technology aiming to reduce the ripple amplitude while avoiding an increase in the filter inductor. Owing to constraints in current experimental conditions this research temporarily relies on simulation data. Specifically a programmable power supply is employed to simulate the voltage output of the wind–solar–storage hybrid system thereby bringing the simulation as close as possible to the actual operating conditions of the wind–solar–storage hydrogen production system. The experimental results demonstrate that the proposed method can effectively suppress the ripple amplitude maintain high operating efficiency and ultimately meet the expected research objectives. That makes it particularly suitable as a high-quality power supply for offshore hydrogen production systems that have strict requirements on volume and weight.
e-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process
Aug 2025
Publication
Electrifying heat supply in chemical processes offers a strategic pathway to reduce CO2 emissions associated with fossil fuel combustion. This study investigates the retrofit of an existing terrace-wall Steam Methane Reformer (SMR) in an ammonia plant by replacing fuel-fired burners with electric resistance heaters in the radiant section. The proposed e-REFORMER concept is applied to a real-world case producing hydrogen-rich syngas at 29000 Nm3 /h with simulation and energy analysis performed using Aspen HYSYS®. The results show that electric heating reduces total thermal input by 3.78 % lowers direct flue gas CO2 emissions by 91.56 % and improves furnace thermal efficiency from 85.6 % to 88.9 % (+3.3 %). The existing furnace design and convection heat recovery system are largely preserved maintaining process integration and plant operability. While the case study reflects a medium-scale plant the methodology applies to larger facilities and supports integration with decarbonised power grids and Carbon Capture Utilisation and Storage (CCUS) technologies. This work advances current literature by addressing full-system integration of electrification within hydrogen and ammonia production chains offering a viable pathway to improve energy efficiency and reduce industrial emissions.
Analysis of the Main Hydrogen Production Technologies
Sep 2025
Publication
Hydrogen as a clean energy source has enormous potential in addressing global climate change and energy security challenges. This paper discusses different hydrogen production methodologies (steam methane reforming and water electrolysis) focusing on the electrolysis process as the most promising method for industrial-scale hydrogen generation. The review delved into three main electrolysis methods including alkaline water electrolysis proton exchange membrane electrolysis and anion exchange membrane electrolysis cells. Also the production of hydrogen as a by-product by means of membrane cells and mercury cells. The process of reforming natural gas (mainly methane) using steam is currently the predominant technique comprising approximately 96% of the world’s hydrogen synthesis. However it is carbon intensive and therefore not sustainable over time. Water as a renewable resource carbon-free and rich in hydrogen (11.11%) offers one of the best solutions to replace hydrogen production from fossil fuels by decomposing water. This article highlights the fundamental principles of electrolysis recent membrane studies and operating parameters for hydrogen production. The study also shows the amount of pollutant emissions (g of CO2/g of H2) associated with a hydrogen color attribute. The integration of water electrolysis with renewable energy sources constitutes an efficient and sustainable strategy in the production of green hydrogen minimizing environmental impact and optimizing the use of clean energy resources.
Simulation of Hydrogen Drying via Adsorption in Offshore Hydrogen Production
Sep 2025
Publication
According to the international standard ISO 14687:2019 for hydrogen fuel quality the maximum allowable concentration of water in hydrogen for use in refueling stations and storage systems must not exceed 5 µmol/mol. Therefore an adsorption purification process following the electrolyzer is necessary. This study numerically investigates the adsorption of water and the corresponding water loading on zeolite 13X BFK based on the mass flows entering the adsorption column from three 5 MW electrolyzers coupled to a 15 MW offshore wind turbine. As the mass flow is influenced by wind speed a direct comparison between realistic wind speeds and adsorption loading is presented. The presented numerical discretization of the model also accounts for perturbations in wind speed and consequently mass flows. In addition adsorption isobars were measured for water on zeolite 13X BFK within the required pressure and temperature range. The measured data was utilized to fit parameters to the Langmuir–Freundlich isotherm.
Dynamic Life cycle Assessment of Climate Change Impacts of Hydrogen Production from Energy Crops
Oct 2025
Publication
Life Cycle Assessments (LCAs) are predominantly conducted using a static approach which aggregates emissions over time without considering emissions timing. Additionally LCAs often assume biogenic carbon neutrality neglecting site-specific forest carbon fluxes and temporal trade-offs. This study applies both static and dynamic LCA and incorporates biogenic carbon to evaluate the climate change impact of hydrogen production. It focuses on gasification of eucalyptus woodchips cultivated on former marginal grasslands (BIO system) which avoids competition with land used for food production. A case study is presented in western Andalusia (Spain) with the aim to replace hydrogen produced via the conventional steam methane reforming (SMR) pathway (BAU system) at La Rabida ´ refinery. The CO2FIX model was used to simulate biogenic carbon fluxes providing insights into carbon sequestration dynamics and it was found that the inclusion of biogenic carbon flows from eucalyptus plantations dramatically reduced CO₂ equivalent emissions (176 % in the static approach and 369 % in the dynamic approach) primarily due to soil and belowground biomass carbon sequestration. The dynamic LCA showed significantly lower CO₂ emissions than the static LCA (106 % reduction) shifting emissions from − 1.79 kg CO₂/kg H₂ in the static approach to − 3.69 kg CO₂/kg H₂ in the dynamic approach. These findings highlight the need to integrate emission dynamics and biogenic carbon flows into LCA methodologies to support informed decision-making and the development of more effective environmental policies.
Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System
Jun 2025
Publication
Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen production and analysed the pros and cons of each technique for different applications. This study focuses on techno-economic analysis of onsite hydrogen production through ammonia decomposition by utilising the heat from exhaust gas generated by hydrogen-fuelled gas turbines. Aspen Plus simulation software and its economic evaluation system are used. The Siemens Energy SGT-400 gas turbine’s parameters are used as the baseline for the hydrogen gas turbine in this study together with the economic parameters of the capital expenditure (CAPEX) and operating expenditure (OPEX) are considered. The levelised cost of hydrogen (LCOH) is found to be 5.64 USD/kg of hydrogen which is 10.6% lower than that of the conventional method where a furnace is used to increase the temperature of ammonia. A major contribution of the LCOH comes from the ammonia feed cost up to 99%. The price of ammonia is found to be the most sensitive parameter of the contribution to LCOH. The findings of this study show that the use of ammonia decomposition via heat recovery for onsite hydrogen production with ammonic recycling is economically viable and highlight the critical need to further reduce the prices of green ammonia and blue ammonia in the future.
Green Hydrogen Production and Deployment: Opportunities and Challenges
Aug 2025
Publication
Green hydrogen is emerging as a pivotal energy carrier in the global transition toward decarbonization offering a sustainable alternative to fossil fuels in sectors such as heavy industry transportation power generation and long-duration energy storage. Despite its potential large-scale deployment remains hindered by significant economic technological and infrastructure challenges. Current production costs for green hydrogen range from USD 3.8 to 11.9/kg H2 significantly higher than gray hydrogen at USD 1.5–6.4/kg H2 due to high electricity prices and electrolyzer capital costs exceeding USD 2000 per kW. This review critically examines the key bottlenecks in green hydrogen production focusing on water electrolysis technologies electrocatalyst limitations and integration with renewable energy sources. The economic viability of green hydrogen is constrained by high electricity consumption capital-intensive electrolyzer costs and operational inefficiencies making it uncompetitive with fossil fuel-based hydrogen. Infrastructure and supply chain challenges including limited hydrogen storage transport complexities and critical material dependencies further restrict market scalability. Additionally policy and regulatory gaps disparities in financial incentives and the absence of a standardized certification framework hinder international trade and investment in green hydrogen projects. This review also highlights market trends and global initiatives assessing the role of government incentives and cross-border collaborations in accelerating hydrogen adoption. While technological advancements and cost reductions are progressing overcoming these challenges requires sustained innovation stronger policy interventions and coordinated efforts to develop a resilient scalable and cost-competitive green hydrogen sector.
Aluminium-based Electrode Materials for Green Hydrogen Production through Electrolysis and Hydrolysis: A Review
Sep 2025
Publication
In recent years the utilization of aluminium (Al) Al alloys and their composite powder and anode encourages the generation of green hydrogen through hydrolysis and water splitting electrolysis with zero emissions. As such in this study the development and characterization of Al Al alloys and Al-based composite powder and compacted Al composites for clean hydrogen production using hydrolysis and water splitting processes were reviewed. Herein based on the available literature it is worth mentioning that the incorporation of active additives such as h-BN Bi@C g-C3N4 MoS2 Ni In Fe and BiOCl@CNTs in the Al-based composites using ball milling melting smelting casting and spark plasma sintering technique remarkably improved the rate of hydrogen evolution and hydrogen gas conversion yield particularly during hydrolysis of Al-water reaction. Again Al-based electrodes with improved electrical conductivity notably results in better water splitting electrolysis as well as fast chemical reaction in achieving hydrogen gas production at low energy consumption with efficiency. Though notwithstanding the significance of Al Al alloy and Al-based composite hydrogen generation performances there are still some challenges associated with the Al-based materials for hydrogen production via hydrolysis and water electrolysis. For example the low current density and poor electrochemical properties of Al which on the other hand results in long induction time high overpotential and cost remains a gap to bridge. Hence the authors concluded the review study with recommendations for future improvement of Al-based composite electrodes on hydrogen production and sustainability via hydrolysis and water electrolysis. Thus the study will pave the way for further research on clean hydrogen energy generation.
Decoupled Hydrogen Production through Hybrid Water Electrolysis Utilizing Ruthenium-tin Oxide Electrocatalyst
Oct 2025
Publication
Hybrid water electrolysis system was designed by using Ruthenium-Tin Oxide (RuSn12.4O2) electrocatalyst as anode material for efficient hydrogen production enhancing energy conversion efficiency. The RuSn12.4O2 Electrocatalyst was synthesized by hydrothermal method and exhibited exceptional activity making it an optimal choice for Iodide oxidation reaction (IOR) and enabling energy-saving hydrogen production. The two-electrode acidic electrolyzer reduced voltage consumption by 0.51 V at 10 mA cm-2 compared to oxygen evolution reaction (OER) at the same current density. This hybrid electrolysis system achieved a remarkable reduction in energy consumption of over 40 % compared to OER process. The Chrono-potentiometric test demonstrated that the RuSn12.4O2 electro-catalyst’s superior stability and low overpotential increase of 70 mV at 10 mAcm-2 . The RuSn12.4O2 electro-catalyst Tafel slope is also a crucial metric for understanding kinetic characteristics in both IOR and OER processes. Thus RuSn12.4O2 electro-catalyst in IOR has a lower Tafel slope (61 mV dec-1) than that in OER according to the Tafel slopes determined from linear sweep voltammetry (LSV) curves. Additionally at various potentials the electro-catalyst's activity toward IOR to produce hydrogen demonstrated exceptional performance in this electrolysis system without causing any catalyst degradation.
No more items...