Safety
Pressure Limit of Hydrogen Spontaneous Ignition in a T-shaped Channel
Sep 2011
Publication
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena i.e. the initiation of chemical reactions followed by the extinction and the progressive development of combustion in the T-shape channel and outside have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition.
Catalysts for Hydrogen Removal: Kinetic Paradox and Functioning at High Concentration of Hydrogen
Sep 2009
Publication
Platinum metals dispersed on a porous carrier e.g. -Al2O3 are used as catalysts for removal of small amounts of hydrogen from the air where the excess of oxygen is significant.<br/>The recombination reaction of H2 and O2 on smooth platinum proceeds at a high rate only in gas mixes with an excess of hydrogen. When the concentration of oxygen exceeds that of hydrogen in terms of stoichiometric ratio the process slows down sharply and eventually stops completely. In research undertaken at the Karpov Institute of Physical Chemistry (Moscow) forty years ago the electrochemical mechanism of red-ox reactions was proposed as an explanation for this inhibition by excess oxygen. The results of ellipsometric analysis pointed to the formation of a protective monolayer of PtO molecules on the Pt surface in an oxygen-rich atmosphere. It was observed that the recombination reaction proceeds at a high rate with the use of a porous catalyst at any concentrations of reactant gases. The reason for that lies in the mechanism of the catalysis: the reaction proceeds at a certain depth in the porous body of the catalyst. Hydrogen which has higher mobility penetrates in larger quantity than oxygen thus creating there the stoichiometric excess. To test the proposed mechanism of recombination the catalytic reaction was studied ) with porous carriers of various thicknesses and b) with metal grids of various porosities covering the catalyst. The data obtained have confirmed unequivocally the earlier hypothesis of hydrogenation of a porous catalyst.<br/>Such insight has allowed the authors to develop more effective prototypes of catalyst for removal of hydrogen. In particular by using a porous grid cover to remove excess heat in the reaction zone of the catalyst plate we achieved a considerable expansion of the region of hydrogen concentrations where the catalyst is both effective and reliable.
Numerical Simulation of Hydrogen Release From High-Pressure Storage Vessel
Sep 2009
Publication
In this paper the deflagration region and characteristics of the hydrogen flow which was generated by high-pressure hydrogen discharge from storage vessels were studied. A 3-D analytic model is established based on the species transfer model and the SST k −ω turbulence model. The established model is applied to the research of the flow characteristics of the hydrogen under-expanded jet under different filling pressures of 30 MPa 35 MPa and 40 MPa respectively. The evolution process of hydrogen combustible cloud is analyzed under the filling pressure of 30 MPa. It is revealed that a supersonic jet is formed after the high-pressure hydrogen discharge outlet In the vicinity of the Mach disk the hydrogen jet velocity and temperature reach the maximum values and the variation of filling pressure has little effect on the peak values of the hydrogen jet flow velocity and temperature during the considered pressure range. In the rear of the Mach disk the variation rates of the hydrogen flow velocity and temperature are in inversely proportional to the hydrogen filling pressure. At the preliminary stage the discharged hydrogen is apple-shaped which expands along the radial and then the axial growth rate of the hydrogen cloud increases with the passage of time.
Performance-Based Requirements for Hydrogen Detection Allocation and Actuation
Sep 2009
Publication
The hydrogen detection system is a key component of the hydrogen safety systems (HSS). Any HSS forms a second layer of protection for the assets under accidental conditions when a first layer of protection - passive protection systems (separation at “safe” distance natural ventilation) are inoperable or failed. In this report a performance-based risk-informed methodology for establishing of the explicit quantitative requirements for hydrogen detectors allocation and actuation is proposed. The main steps of the proposed methodology are described. It is suggested (as a first approximation) to use in a process of quantification of a hydrogen detection system performance (from safety viewpoint) a five-tiered hierarchy namely 1) safety goals 2) risk-informed safety objectives 3) performance goal and metrics 4) rational safety criteria 5) safety factors. Unresolved issues of the proposed methodology of Safety Performance Analysis for development of the risk-informed and performance based standards on the hydrogen detection systems are synopsized.<br/><br/>
Improvements in Two-Step Model of Hydrogen Detonative Combustion: Model Description and Sensitivity to its Parameters
Sep 2009
Publication
In the present paper the two-stage model of detonative combustion of hydrogen is presented. The following improvements are described: accurate description of the heat release stage of combustion; the clear physics-based procedure for calculation of the parameters of the proposed model; sample calculations of the detonation wave in hydrogen/air mixtures in wide range of conditions showing that the proposed model performs well in a wide range of conditions (pressures temperatures mixture compositions). The results of the 2D simulations of the detonation cell are presented for the hydrogen/oxygen/argon mixture as example to show the performance and accuracy of the model presented in this paper.
Numerical Simulation and Experiments of Hydrogen Diffusion Behaviour for Fuel Cell Electric Vehicle
Sep 2011
Publication
Research was conducted on hydrogen diffusion behaviour to construct a simulation method for hydrogen leaks into complexly shaped spaces such as around the hydrogen tank of a fuel cell electric vehicle (FCEV). To accurately calculate the hydrogen concentration distribution in the vehicle underfloor space it is necessary to take into account the effects of hydrogen mixing and diffusion due to turbulence. The turbulence phenomena that occur in the event that hydrogen leaks into the vehicle underfloor space were classified into the three elements of jet flow wake flow and wall turbulence. Experiments were conducted for each turbulence element to visualize the flows and the hydrogen concentration distributions were measured. These experimental values were then compared with calculated values to determine the calculation method for each turbulence phenomenon. Accurate calculations could be performed by using the k-ω Shear Stress Transport (SST) model for the turbulence model in the jet flow calculations and the Reynolds Stress Model (RSM) in the wall turbulence calculations. In addition it was found that the large fluctuations produced by wake flow can be expressed by unsteady state calculations with the steady state calculation solutions as the initial values. Based on the above information simulations of hydrogen spouting were conducted for the space around the hydrogen tank of an FCEV. The hydrogen concentration calculation results matched closely with the experimental values which verified that accurate calculations can be performed even for the complex shapes of an FCEV.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Hydrogen Fuel-Cell Forklift Vehicle Releases In Enclosed Spaces
Sep 2011
Publication
Sandia National Laboratories has worked with stakeholders and original equipment manufacturers (OEMs) to develop scientific data that can be used to create risk-informed hydrogen codes and standards for the safe operation of indoor hydrogen fuel-cell forklifts. An important issue is the possibility of an accident inside a warehouse or other enclosed space where a release of hydrogen from the high-pressure gaseous storage tank could occur. For such scenarios computational fluid dynamics (CFD) simulations have been used to model the release and dispersion of gaseous hydrogen from the vehicle and to study the behavior of the ignitable hydrogen cloud inside the warehouse or enclosure. The overpressure arising as a result of ignition and subsequent deflagration of the hydrogen cloud within the warehouse has been studied for different ignition delay times and ignition locations. Both ventilated and unventilated warehouses have been considered in the analysis. Experiments have been performed in a scaled warehouse test facility and compared with simulations to validate the results of the computational analysis.
Evaluation of an Improved Vented Deflagration CFD Model Against Nine Experimental Cases
Sep 2019
Publication
In the present work a newly developed CFD deflagration model incorporated into the ADREA-HF code is evaluated against hydrogen vented deflagrations experiments carried out by KIT and FM-Global in a medium (1 m3) and a real (63.7 m3) scale enclosure respectively. A square vent of 0.5 m2 and 5.4 m2 respectively is located in the center of one of side walls. In the case of the medium scale enclosure the 18% v/v homogeneous hydrogen-air mixture and back-wall ignition case is examined. In the case of the real scale enclosure the examined cases cover different homogeneous mixture concentrations (15% and 18% v/v) different ignition locations (back-wall and center) and different levels of initial turbulence. The CFD model accounts for flame instabilities that develop as the flame propagates inside the chamber and turbulence that mainly develops outside the vent. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model for the back-wall ignition cases. For the center ignition cases the model overestimates the maximum overpressure. The opening of the vent cover is identified as a possible reason for the overprediction. The analysis indicates that turbulence is the main factor which enhances external explosion strength causing the sudden pressure increase confirming previous findings.
Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station
Sep 2011
Publication
The project “Towards a Hydrogen Refuelling Infrastructure for Vehicles” (THRIVE) aimed at the determination of conditions to stimulate the building of a sustainable infrastructure for hydrogen as a car fuel in The Netherlands. Economic scenarios were constructed for the development of such an infrastructure for the next one to four decades. The eventual horizon will require the erection of a few hundred to more than a thousand hydrogen refuelling stations (HRS) in The Netherlands. The risk acceptability policy in The Netherlands implemented in the External Safety Establishments decree requires the assessment and management of safety risks imposed on the public by car fuelling stations. In the past a risk-informed policy has been developed for the large scale introduction of liquefied petroleum gas (LPG) as a car fuel and a similar policy will also be required if hydrogen is introduced in the public domain. A risk assessment methodology dedicated to cope with accident scenarios relevant for hydrogen applications is to be developed. Within the THRIVE project a demo risk assessment was conducted for the possible implementation of an HRS within an existing station for conventional fuels. The studied station is located in an urban area occupied with housing and commercial activities. The HRS is based on delivery and on-site storage of liquid hydrogen and dispensing of high pressure gaseous hydrogen into vehicles. The main challenges in the risk assessment were in the modelling of release and dispersion of liquid hydrogen. Definition of initial conditions for computational fluid dynamics (CFD) modelling to evaluate dispersion of a cold hydrogen air mixture appears rather complex and is not always fully understood. The modelling assumptions in the initial conditions determine to a large extent the likelihood and severity of potential explosion effects. The paper shows the results of the investigation and the sensitivity to the basic assumptions in the model input.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
Helium Release in A Closed Enclosure- Comparisons Between Simple Models, CFD Calculations And Experimental Results
Sep 2011
Publication
In the prospect of a safe use of hydrogen in our society one important task is to evaluate under which conditions the storage of hydrogen systems can reach a sufficient level of safety. One of the most important issues is the use of such system in closed area for example a private garage or an industrial facility. In the scope of this paper we are mainly interested in the following scenario: a relatively slow release of hydrogen (around 5Nl/min) in a closed and almost cubic box representing either a fuel cell at normal scale or a private garage at a smaller scale. For practical reasons helium was used instead of hydrogen in the experiments on which are based our comparisons. This kind of situation leads to the fundamental problem of the dispersion of hydrogen due to a simple vertical source in an enclosure. Many numerical and experimental studies have already been conducted on this problem showing the formation of either a stably stratified distribution of concentration or the formation of a homogeneous layer due to high enough convective flows at the top of the enclosure. Nevertheless most of them consider the cases of accidental situation in which the flow rate is relatively important (higher than 10Nl/min). Numerical simulations carried out with the CEA code Cast3M and a LES turbulence model confirm the differences of results already observed in experimental helium concentration measurements for a same injection flow rate and two different injection nozzle diameters contradicting simple physical models used in safety calculations.
HIAD – Hydrogen Incident and Accident Database
Sep 2011
Publication
The Hydrogen Incident and Accident Database (HIAD) is being developed as a repository of systematic data describing in detail hydrogen-related undesired events (incidents or accidents). It is an open web-based information system serving various purposes such as a data source for lessons learnt risk communication and partly risk assessment. The paper describes the features of the three HIAD modules – the Data Entry Module (DEM) the Data Retrieval Module (DRM) and the Data Analysis Module (DAM) – and the potential impact the database may have on hydrogen safety. The importance of data quality assurance process is also addressed.
Experimental Investigation of Hydrogen Release and Ignition from Fuel Cell Powered Forklifts in Enclosed Spaces
Sep 2011
Publication
Due to rapid growth in the use of hydrogen powered fuel cell forklifts within warehouse enclosures Sandia National Laboratories has worked to develop scientific methods that support the creation of new hydrogen safety codes and standards for indoor refuelling operations. Based on industry stakeholder input conducted experiments were devised to assess the utility of modelling approaches used to analyze potential consequences from ignited hydrogen leaks in facilities certified according to existing code language. Release dispersion and combustion characteristics were measured within a scaled test facility located at SRI International's Corral Hollow Test Site. Moreover the impact of mitigation measures such as active/passive ventilation and pressure relief panels was investigated. Since it is impractical to experimentally evaluate all possible facility configurations and accident scenarios careful characterization of the experimental boundary conditions has been performed so that collected datasets can be used to validate computational modelling approaches.
Experimental Results and Comparison with Simulated Data of a Low Pressure Hydrogen Jet
Sep 2011
Publication
Experiments with a hydrogen jet were performed at two different pressures 96 psig (6.6 bars) and 237 psig (16.3 bars). The hydrogen leak was generated at two different hole sizes 1/16 inch (1.6 mm) and 1/32 inch (0.79 mm). The flammable shape of the plume was characterised by numerous measurements of the hydrogen concentration inside of the jet. The effect of the nearby horizontal surface on the shape of the plume was measured and compared with results of CFD numerical simulations. The paper will present results and an interpretation on the nature of the plume shape.
Safety of Hydrogen and Natural Gas Mixtures by Pipelines- ANR French Project Hydromel
Sep 2011
Publication
In order to gain a better understanding of hazards linked with Hydrogen/Natural gas mixtures transport by pipeline the National Institute of Industrial Environment and Risks (INERIS) alongside with the Atomic Energy Commission (CEA) the industrial companies Air Liquide and GDF SUEZ and the French Research Institutes ICARE and PPRIME (CNRS) have been involved in a project called HYDROMEL. This project was partially funded by the French National Research Agency (ANR) in the framework of its PAN-H program aimed at promoting the R&D activities related to the hydrogen deployment. Firstly the project partners investigated how a NG/H2 mixture may influence the modelling of a hazard scenario i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential of danger. Therefore it was necessary to build an experimental database of physics properties for mixtures. Secondly effect distances in accidental scenarios that could happen on pipelines have been calculated with existing models adapted to the mixtures. This part was preceded by a benchmark exercise between all partners models and experimental results found in the literature. Finally the consortium wrote a good practice guideline for modelling the effects related to the release of natural gas /hydrogen mixture?. The selected models and their comparison with data collected in the literature as well as the experimental results of this project and the main conclusions of the guidelines are presented in this paper.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
Single Step Compact Steam Methane Reforming Process for Hydrogen-Cng (H-Cng) Production from Natural Gas
Sep 2011
Publication
Compressed natural gas (CNG) is being increasingly used as a clean transportation fuel. However for further reduction in emissions particularly NOx H-CNG mixture with ~ 20 % hydrogen is recommended. Presently most of the H-CNG mixture is produced by blending hydrogen with CNG. For hydrogen production Steam Methane Reforming (SMR) is a major process accounting for more than 90% of hydrogen production by various industries. In this process natural gas is first reformed to syn gas under severe operating conditions (Pressure 20-30 bar temperature 850-950 deg C) followed by conversion of CO to hydrogen in the shift reactor. Other method of hydrogen production such as electrolysis of water is more expensive. Further there are issues of safety with handling of hydrogen its storage and transportation for blending. In order to overcome these problems a single step compact process for the production of H-CNG gaseous mixture through low severity steam methane reforming of natural gas has been developed. It employs a catalyst containing nickel nickel oxide magnesium oxide and silica and has the capability of producing H-CNG mixture in the desired proportion containing 15-20 vol % hydrogen with nil CO production. The process is flexible and rugged allowing H-CNG production as per the demand. The gaseous H-CNG product mixture can directly be used as automobile fuel after compression. The process can help as important step in safe transition towards hydrogen economy. A demonstration unit is being set up at IOC R&D Centre.
On The Kinetics of Alh3 Decomposition and the Subsequent Al Oxidation
Sep 2011
Publication
Metal hydrides are used for hydrogen storage. AlH3 shows a capacity to store about 10 wt% hydrogen. Its hydrogen is split-off in the temperature interval of 400–500 K. On dehydrogenation a nano-structured Al material emerges with specific surfaces up to 15–20 m2/g. The surface areas depend on the heating rate because of a temperature dependent crystallite growth. The resulting Al oxidizes up to 20–25% weight on air access forming an alumina passivation layer of 3–4 nm thickness on all exposed surfaces. The heat released from this Al oxidation induces a high risk to this type of hydrogen storage if the containment might be destroyed accidentally. The kinetics of the dehydrogenation and the subsequent oxidation is investigated by methods of thermal analysis. A reaction scheme is confirmed which consists of a starting Avrami-Erofeev mechanism followed by formal 1st order oxidation on unlimited air access. The kinetic parameters activation energies and pre-exponentials are evaluated and can be used to calculate the reaction progress. Together with the heat of the Al oxidation the overall heat release and the related rate can be estimated.
Measurements of Effective Diffusion Coefficient of Helium and Hydrogen Through Gypsum
Sep 2011
Publication
An experimental apparatus which was based on the ¼-scale garage previously used for studying helium release and dispersion in our laboratory was used to obtain effective diffusion coefficients of helium and hydrogen (released as forming gas for safety reasons) through gypsum panel. Two types of gypsum panel were used in the experiments. Helium or forming gas was released into the enclosure from a Fischer burner1 located near the enclosure floor for a fixed duration and then terminated. Eight thermal-conductivity sensors mounted at different vertical locations above the enclosure floor were used to monitor the temporal and spatial gas concentrations. An electric fan was used inside the enclosure to mix the released gas to ensure a spatially uniform gas concentration to minimize stratification. The temporal variations of the pressure difference between the enclosure interior and the ambience were also measured. An analytical model was developed to extract the effective diffusion coefficients from the experimental data.
No more items...