Safety
Potential Models For Stand-Alone And Multi-Fuel Gaseous Hydrogen Refuelling Stations- Assessment Of Associated Risk
Sep 2005
Publication
Air pollution and traffic congestion are two of the major issues affecting public authorities policy makers and citizens not only in Italy and European Union but worldwide; this is nowadays witnessed by always more frequent limitations to the traffic in most of Italian cities for instance. Hydrogen use in automotive appears to offer a viable solution in medium-long term; this new perspective involves the need to carry out adequate infrastructures for distribution and refuelling and consequently the need to improve knowledge on hydrogen technologies from a safety point of view. In the present work possible different configurations for gaseous hydrogen refuelling station has been compared: “stand-alone” and “multi-fuel”. These two alternative scenarios has been taken into consideration each of one with specific hypotheses: “stand-alone” configuration based on the hypothesis of a potential model consisting of a hydrogen refuelling station composed by on-site hydrogen production via electrolysis a trailer of compressed gas for back-up compressor unit intermediate storage unit and dispenser. In this model it is assumed that no other refuelling equipment and/or dispenser of traditional fuel is present in the same site. “multi-fuel” configuration where it is assumed that the same components for hydrogen refuelling station are placed in the same site beside one or more refuelling equipment and/or dispenser of traditional fuel. Comparisons have been carried out from the point of view of specific risk assessment which have been conducted on both the two alternative scenarios.
Quantitative Risk Analysis Of Gaseous Hydrogen Storage Unit
Sep 2005
Publication
A quantitative risk analysis to a central pressurized storage tank for gaseous hydrogen has been performed to attend requirements of licensing procedures established by the State Environment Agency of São Paulo State Brazil. Gaseous hydrogen is used to feed the reactor to promote hydrogenation at the surfactant unit. HAZOP was the hazard identification technique selected. System components failures were defined by event and fault tree analysis. Quantitative risk analysis was complied to define the acceptability concepts on societal and individual risks required by the State Environmental Agency to approve the installation operation license. Acceptable levels to public society from the analysis were reached. Safety recommendations to the gaseous hydrogen central were proposed to assure minimization of risk to the near-by community operators environment and property.
Experimental Study of Jet-formed Hydrogen-air Mixtures and Pressure Loads from their Deflagrations in Low Confined Surroundings
Sep 2007
Publication
To provide more practical data for safety assessments a systematic study of explosion and combustion processes which can take place in mixtures produced by jet releases in realistic environmental conditions is required. The presented work is aimed to make step forward in this direction binding three inter-connected tasks: (i) study of horizontal and vertical jets (ii) study of the burnable clouds formed by jets in different geometry configurations and (iii) examination of combustion and explosion processes initiated in such mixtures. Test matrix for the jet experiments included variation of the release pressure and nozzle diameter with the aim to study details of the resulting hydrogen concentration and velocity profiles depending on the release conditions. In this study the following parameters were varied: mass flow rate jet nozzle diameter (to alter gas speed) and geometry of the hood located on top of the jet. The carried out experiments provided data on detailed structure for under-expanded horizontal and buoyant vertical jets and data on pressure loads resulted from deflagration of various mixtures formed by jet releases. The data on pressures waves generated in the conditions under consideration provides conservative estimation of pressure loads for realistic leaks.
Analysis of Buoyancy-driven Ventilation of Hydrogen from Buildings
Sep 2007
Publication
When hydrogen gas is used or stored within a building as with a hydrogen-powered vehicle parked in a residential garage any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven passive ventilation of H2 from the building through vents to the outside. To discover relationships between design variables we combine two types of analysis: (1) a simplified 1-D steady-state analysis of buoyancy-driven ventilation and (2) CFD modelling using FLUENT 6.3. The simplified model yields a closed-form expression relating the H2 concentration to vent area height and discharge coefficient; leakage rate; and a stratification factor. The CFD modelling includes 3-D geometry; H2 cloud formation; diffusion momentum convection and thermal effects; and transient response. We modelled a typical residential two-car garage with 5 kg of H2 stored in a fuel tank; leakage rates of 5.9 to 82 L/min (tank discharge times of 12 hours to 1 week); a variety of vent sizes and heights; and both isothermal and nonisothermal conditions. This modelling indicates a range of the stratification factor needed to apply the simplified model for vent sizing as well as a more complete understanding of the dynamics of H2 movement within the building. A significant thermal effect occurs when outdoor temperature is higher than indoor temperature so that thermocirculation opposes the buoyancy-driven ventilation of H2. This circumstance leads to higher concentrations of H2 in the building relative to an isothermal case. In an unconditioned space such as a residential garage this effect depends on the thermal coupling of indoor air to outdoor air the ground (under a concrete slab floor) and an adjacent conditioned space in addition to temperatures. We use CFD modelling to explore the magnitude of this effect under rather extreme conditions.
Design of Catalytic Recombiners for Safe Removal of Hydrogen from Flammable Gas Mixtures
Sep 2007
Publication
Several today’s and future applications in energy technology bear the risk of the formation of flammable hydrogen/air mixtures either due to the direct use of hydrogen or due to hydrogen appearing as a by-product. If there’s the possibility of hydrogen being released accidentally into closed areas countermeasures have to be implemented in order to mitigate the threat of an explosion. In the field of nuclear safety passive auto-catalytic recombiners (PAR) are well-known devices for reducing the risk of a hydrogen detonation in a nuclear power plant in the course of a severe accident. Hydrogen and oxygen react on catalyst materials like platinum or palladium already far below conventional flammability limits. The most important concern with regard to the utilization of hydrogen recombiners is the adequate removal of the reaction heat. Already low hydrogen concentrations may increase the system temperature beyond the self-ignition limit of hydrogen/air mixtures and may lead to an unintended ignition on hot parts of the PAR.<br/>Starting from the nuclear application since several years IEF-6 and LRST perform joint research in the field of passive auto-catalytic recombiners including experimental studies modelling and development of new design concepts. Recently approaches on specifically designed catalysts and on passive cooling devices have been successfully tested. In a design study both approaches are combined in order to provide means for efficient and safe removal of hydrogen. The paper summarizes results achieved so far and possible designs for future applications.
Stress Corrosion Cracking Of Stainless Steels In High Pressure Alkaline Electrolysers
Sep 2005
Publication
Hydrogen-producing high-pressure electrolysers operating with 40% potassium hydroxide solution and an applied oxygen pressure up to 30 barg have been developed. Austenitic stainless steels of type AISI316L are deemed resistant to stress corrosion cracking (SCC) in concentrated KOH solutions. However SCC has on some occasions been observed on the oxygen side of the high-pressure electrolysers thereby representing a safety risk in the operation. Several materials have been tested for resistance to SCC using C-ring specimens in autoclaves under conditions similar to the high-pressure electrolysers and at temperatures up to 120°C. The tests confirmed the observed susceptibility of austenitic stainless steels to SCC in concentrated KOH solutions. Higher alloyed austenitic stainless steels also showed SCC. Duplex stainless steel and nickel based Alloy 28 showed good resistance to SCC in the given environment. Further tests are needed to define the optimum weld procedure.
Phenomena of Dispersion and Explosion of High Pressurized Hydrogen
Sep 2005
Publication
To make “Hydrogen vehicles and refuelling station systems” fit for public use research on hydrogen safety and designing mitigative measures are significant. For compact storage it is planned to store under high pressure (40MPa) at the refuelling stations so that the safety for the handling of high-pressurized hydrogen is essential. This paper describes the experimental investigation on the hypothetical dispersion and explosion of high-pressurized hydrogen gas which leaks through a large scale break in piping and blows down to atmosphere. At first we investigated time history of distribution of gas concentration in order to comprehend the behaviour of the dispersion of high-pressurized hydrogen gas before explosion experiments. The explosion experiments were carried out with changing the time of ignition after the start of dispersion. Hydrogen gas with the initial pressure of 40MPa was released through a nozzle of 10mm diameter. Through these experiments it was clarified that the explosion power depends not only on the concentration and volume of hydrogen/air pre-mixture but also on the turbulence characteristics before ignition. To clarify the explosion mechanism the numerical computer simulation about the same experimental conditions was performed. The initial conditions such as hydrogen distribution and turbulent characteristics were given by the results of the atmospheric diffusion simulation. By the verification of these experiments the results of CFD were fully improved.
Analysis of Jet Flames and Unignited Jets from Unintended Releases of Hydrogen
Sep 2007
Publication
A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure free jet flames can be extensive in length and pose significant radiation and impingement hazard resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. Detailed Navier-Stokes calculations of jet flames and unignited jets are used to understand how hydrogen leaks and jet-flames interact with barriers. The effort is complemented by an experimental program that considers the interaction of jet flames and unignited jets with barriers.
Massive H2 Production With Nuclear Heating, Safety Approach For Coupling A VHTR With An Iodine Sulfur Process Cycle
Sep 2005
Publication
In the frame of a sustainable development investigations dealing with massive Hydrogen production by means of nuclear heating are carried out at CEA. For nuclear safety thermodynamic efficiency and waste minimization purposes the technological solution privileged is the coupling of a gas cooled Very High Temperature Reactor (VHTR) with a plant producing Hydrogen from an Iodine/Sulfur (I/S) thermochemical cycle. Each of the aforementioned facilities presents different risks resulting from the operation of a nuclear reactor (VHTR) and from a chemical plant including Hydrogen other flammable and/or explosible substances as well as toxic ones. Due to these various risks the safety approach is an important concern. Therefore this paper deals with the preliminary CEA investigations on the safety issues devoted to the whole plant focusing on the safety questions related to the coupling between the nuclear reactor and the Hydrogen production facility. Actually the H2 production process and the energy distribution network between the plants are currently at a preliminary design stage. A general safety approach is proposed based on a Defence In Depth (DID) principle permitting to analyze all the system configurations successively in normal incidental and accidental expected operating conditions. More precisely the dynamic answer of an installation to a perturbation affecting the other one during the previous conditions as well as the potential aggressions of the chemical plant towards the nuclear reactor have to be considered. The methodology presented in this paper is intended to help the designer to take into account the coupling safety constraints and to provide some recommendations on the global architecture of both plants especially on their coupling system. As a result the design of a VHTR combined to a H2 production process will require an iterative process between design and safety requirements.
A Reappraisal of Containment Safety Under Hydrogen Detonation
Sep 2005
Publication
The response of a typical steel-lined reinforced concrete nuclear reactor containment to postulated internal hydrogen detonations is investigated by detailed axisymetric non-linear dynamic finite element analysis. The wall pressure histories are calculated for hydrogen detonations using a technique that reproduces the sharp discontinuity at the shock front. The pressure results can be applied to geometrically similar vessels. The analysis indicates that the response is more sensitive to the point of initiation than to the strength of the detonation. Approximate solutions based on a pure impulse assumption where the containment is modelled as a single-degree-of freedom (SDOF) system may be seriously unconservative. This work becomes relevant because new nuclear reactors are foreseen as a primary of source of hydrogen supply.<br/><br/>
Development of Hydrogen Sensors and Recombiners
Sep 2005
Publication
Hydrogen energy is very promising as it ensures a high efficiency and ecological cleanliness of energy conversion. The goal of the present work is to provide the analysis of hydrogen safety aspects and to prescribe methods of safety operation with hydrogen. The authors conducted a hazard analysis of hydrogen operation and storage in comparison with other fuels. Good ventilation is the main hydrogen operation requirement. Besides an effective way of protection against propagation of hazards (for instance leaks) is neutralization of dangerous hydrogen-air mixtures by a method of controlled catalytic combustion inside special devices so-called recombiners [1-3]. The basis of these devices is a high porosity cell material (HPCM) activated by platinum deposition. Apart from recombiners HPCM was also applied for development of hydrogen detectors intended for measurement and analysis of hydrogen concentration for hydrogen-driven transport and objects of hydrogen infrastructure (including vapor-air media at high pressure and temperatures). A system of hydrogen safety based on hydrogen detectors and hydrogen catalytic recombiners was developed. Experimental and theoretical studies of hydrogen combustion processes heat- and mass transfer and also gas flows in catalytic-activated HPCM allowed for a design optimization of recombiners and their location. Pilot hydrogen detectors and hydrogen catalytic recombiners were fabricated and their laboratory tests were successfully performed. Thus it was indicated that on condition of following the appropriate passive and active safety measures hydrogen is just as safe as the other fuels. This conclusion represents another incentive for a transition to the hydrogen energy.
Consequence Assessment of the BBC Hydrogen Refuelling Station, Using The Adrea-Hf Code
Sep 2009
Publication
Within the framework of the internal project HyQRA of the HYSAFE Network of Excellence (NoE) funded by the European Commission (EC) the participating partners were requested to apply their Quantitative Risk Assessment (QRA) methodologies on a predefined hypothetical gaseous H2 refuelling station named BBC (Benchmark Base Case). The overall aim of the HyQRA project was to perform an inter-comparison of the various QRA approaches and to identify the knowledge gaps on data and information needed in the QRA steps specifically related to H2. Partners NCSRD and UNIPI collaborated on a common QRA. UNIPI identified the hazards on site selected the most critical ones defined the events that could be the primary cause of an accident and provided to NCSRD the scenarios listed in risk order for the evaluation of the consequences. NCSRD performed the quantitative analysis using the ADREA-HF CFD code. The predicted risk assessment parameters (flammable H2 mass and volume time histories and maximum horizontal and vertical distances of the LFL from the source) were provided to UNIPI to analyze the consequences and to evaluate the risk and distances of damage. In total 15 scenarios were simulated. Five of them were H2 releases in confined ventilated spaces (inside the compression and the purification/drying buildings). The remaining 10 scenarios were releases in open/semi-confined spaces (in the storage cabinet storage bank and refuelling hose of one dispenser). This paper presents the CFD methodology applied for the quantitative analysis of the common UNIPI/NCSRD QRA and discusses the results obtained from the performed calculations.
Development of Tools for Risk Assessment and Risk Communication for Hydrogen Applications
Sep 2005
Publication
For decades risk assessment has been an important tool in risk management of activities in several industries world wide. It provides among others authorities and stakeholders with a sound basis for creating awareness about existing and potential hazards and risks and making decisions related to how they can prioritise and plan expenditures on risk reduction. The overall goal of the ongoing HySafe project is to contribute to the safe transition to a more sustainable development in Europe by facilitating the safe introduction of hydrogen technologies and applications. An essential element in this is the demonstration of safety: that all safety aspects related to production transportation and public use are controlled to avoid that introducing hydrogen as energy carrier should pose unacceptable risk to the society.<br/>History has proven that introducing risk analysis to new industries is beneficial e.g. in transportation and power production and distribution. However this will require existing methods and standards to be adapted to the specific applications. Furthermore when trying to quantify risk it is of utmost importance to have access to relevant accident and incident information. Such data may in many cases not be readily available and the utilisation of them will then require specific and long lasting data collection initiatives.<br/>In this paper we will present the work that has been undertaken in the HySafe project in developing methodologies and collecting data for risk management of hydrogen infrastructure. Focus is laid on the development of risk acceptance criteria and on the demonstration of safety and benefits to the public. A trustworthy demonstration of safety will have to be based on facts especially on facts widely known and emphasis will thus be put on the efforts taken to establish and operate a database containing hydrogen accident and incident information which can be utilised in risk assessment of hydrogen applications. A demonstration of safety will also have to include a demonstration of risk control measures and the paper will also present work carried out on safety distances and ignition source control.
A Survey Among Experts of Safety Related to the Use of Hydrogen as an Energy Carrier
Sep 2005
Publication
Based on the increasing need of energy for the future and the related risks to the environments due to burning of fossils fuels hydrogen is seen as an efficient and application related clean energy carrier that may be derived from renewable energy sources. A variety of applications connected with production and use of hydrogen and the related risks have been identified and a survey has been conducted among a number of experts as an internet exercise for unveiling the potential lack of necessary knowledge in order to handle hydrogen in a safe way concerning the various applications. The main results concern hazardous situations related to release and explosions of hydrogen in confined and semi-confined areas tunnels and garages and mitigation of hazardous situations i.e. preventions of accidents and reduction of consequences from accidents happening anyway.
CFD Modeling of Hydrogen Dispersion Experiments for SAE J2578 Test Methods Development
Sep 2007
Publication
This paper discusses the results of validation of Computational Fluid Dynamics (CFD) modelling of hydrogen releases and dispersion inside a metal container imitating a single car garage based on experimental results. The said experiments and modelling were conducted as part of activities to predict fuel cell vehicles discharge flammability and potential build-up of hydrogen for the development of test procedures for the Recommended Practice for General Fuel Cell Vehicle Safety SAE J2578. The experimental setup included 9 hydrogen detectors located in each corner and in the middle of the roof of the container and a fan to ensure uniform mixing of the released hydrogen. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy effect and turbulence models. Obtained modelling results matched experimental data of a high-rate injection of hydrogen with fan-forced dispersion used to create near-uniform mixtures with a high degree of accuracy. This supports the conclusion that CFD modelling will be able to predict potential accumulation of hydrogen beyond the experimental conditions. CFD modelling of hydrogen concentrations has proven to be reliable effective and relatively inexpensive tool to evaluate the effects of hydrogen discharge from hydrogen powered vehicles or other hydrogen containing equipment.
CFD Simulation Study to Investigate the Risk from Hydrogen Vehicles in Tunnels
Sep 2007
Publication
When introducing hydrogen-fuelled vehicles an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly and not lead to any significant explosion hazard. The situation may be different for more confined situations such as parking garages workshops or tunnels. Experiments and computer modelling are both important for understanding the situation better. This paper reports a simulation study to examine what if any is the explosion risk associated with hydrogen vehicles in tunnels. Its aim was to further our understanding of the phenomena surrounding hydrogen releases and combustion inside road tunnels and furthermore to demonstrate how a risk assessment methodology developed for the offshore industry could be applied to the current task. This work is contributing to the EU Sixth Framework (Network of Excellence) project HySafe aiding the overall understanding that is also being collected from previous studies new experiments and other modelling activities. Releases from hydrogen cars (containing 700 bar gas tanks releasing either upwards or downwards or liquid hydrogen tanks releasing only upwards) and buses (containing 350 bar gas tanks releasing upwards) for two different tunnel layouts and a range of longitudinal ventilation conditions have been studied. The largest release modelled was 20 kg H2 from four cylinders in a bus (via one vent) in 50 seconds with an initial release rate around 1000 g/s. Comparisons with natural gas (CNG) fuelled vehicles have also been performed. The study suggests that for hydrogen vehicles a typical worst-case risk assessment approach assuming the full gas inventory being mixed homogeneously at stoichiometry could lead to severe explosion loads. However a more extensive study with more realistic release scenarios reduced the predicted hazard significantly. The flammable gas cloud sizes were still large for some of the scenarios but if the actual reactivity of the predicted clouds is taken into account very moderate worst-case explosion pressures are predicted. As a final step of the risk assessment approach a probabilistic QRA study is performed in which probabilities are assigned to different scenarios time dependent ignition modelling is applied and equivalent stoichiometric gas clouds are used to translate reactivity of dispersed nonhomogeneous clouds. The probabilistic risk assessment study is based on over 200 dispersion and explosion CFD calculations using the commercially available tool FLACS. The risk assessment suggested a maximum likely pressure level of 0.1-0.3 barg at the pressure sensors that were used in the study. Somewhat higher pressures are seen elsewhere due to reflections (e.g. under the vehicles). Several other interesting observations were found in the study. For example the study suggests that for hydrogen releases the level of longitudinal tunnel ventilation has only a marginal impact on the predicted risk since the momentum of the releases and buoyancy of hydrogen dominates the mixing and dilution processes.
Collaborative Activities On Hydrogen Safety under the International Energy Agency’s Hydrogen Implementing
Sep 2005
Publication
In October 2004 the International Energy Agency Hydrogen Implementing Agreement (www.ieahia.org) approved the initiation of a collaborative task on hydrogen safety. During the past twelve months a work plan has been established and several member countries have committed to participate. Because of the nature of the International Energy Agency which is an international agreement between governments it is hoped that such collaboration will complement other cooperative efforts to help build the technology base around which codes and standards can be developed. In this way the new task on hydrogen safety will further the IEA Hydrogen Agreement in fulfilling its mission to accelerate the commercial introduction of hydrogen energy. This paper describes the specific scope and work plan for the collaboration that has been developed to date.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
Hydrogen Detection- Visualisation of Hydrogen Using Non Invasive Optical Schlieren Technique BOS
Sep 2005
Publication
The detection of hydrogen after its accidental release is not only important for research purposes but will be much more important under safety aspects for future applications when hydrogen should be a standard energy resource. At Fraunhofer ICT two principally different approaches were made: first the new optical background-oriented schlieren method (BOS) is used for the visualization of hydrogen distribution and mixing processes at a rate of up to 1000 frames per second. The results from experiments with small scale injection of hydrogen/air–mixtures into air flows and free jets of hydrogen and hydrogen/air–mixtures emerging from 1” hoses simulating exhaust pipes will be discussed and interpreted with support from selected high speed videos. Finally mixing zones and safety distances can be determined by this powerful method.
Safety Study of Hydrogen Supply Stations for the Review of High Pressure Gas Safety Law in Japan
Sep 2005
Publication
A safety study of gaseous hydrogen supply stations with 40MPa storage system is undertaken through a risk based approach. Accident scenarios are identified based on a generic model of hydrogen station. And risks of identified accident scenarios are estimated and evaluated comparing with risk acceptance criteria. Also safety measures for risk reduction are discussed. Especially for clearance distance it is proposed that the distance from high-pressurized equipment to site borders should be at least 6 meters. As a result of the study it is concluded that risks of accidental scenarios can be mitigated to acceptable level under the proposed safety measures with several exceptions. These exceptional scenarios are very unlikely to occur but expected to have extremely severe consequence once occurred.
No more items...