Safety
The NREL Sensor Laboratory: Hydrogen Leak Detection for Large Scale Deployments
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory was commissioned in 2010 as a resource for sensor developers end-users and regulatory agencies within the national and international hydrogen community. The Laboratory continues to provide as its core capability the unbiased verification of hydrogen sensor performance to assure sensor availability and their proper use. However the mission and strategy of the NREL Sensor Laboratory has evolved to meet the needs of the growing hydrogen market. The Sensor Laboratory program has expanded to support research in conventional and alternative detection methods as hydrogen use expands to large-scale markets as envisioned by the DOE National Clean Hydrogen Strategy and Roadmap. Current research encompasses advanced methods of hydrogen leak detection including stand-off and wide area monitoring approaches for large scale and distributed applications. In addition to safety applications low-level detection strategies to support the potential environmental impacts of hydrogen and hydrogen product losses along the value chain are being explored. Many of these applications utilize detection strategies that supplement and may supplant the use of traditional point sensors. The latest results of the hydrogen detection strategy research at NREL will be presented.
Safety of Cryogenic Liquid Hydrogen Bunkering Operations - The Gaps Between Existing Knowhow and Industry Needs
Sep 2023
Publication
Hydrogen plays an important role in the global transition towards Net-Zero emission. While pipelines are a viable option to transport large quantities of compressed hydrogen over long distances it is not always practical in many applications. In such situations a viable option is to transport and deliver large quantities of hydrogen as cryogenic liquid. The liquefaction process cools hydrogen to cryogenic temperatures below its boiling point of -259.2 0C. Such extreme low temperature implies specific hazards and risks which are different from those associated with the relatively well-known compressed gaseous hydrogen. Managing these specific issues brings new challenges for the stakeholders.<br/>Furthermore the transfer of liquid hydrogen (LH2) and its technical handling is relatively well known for industrial gas or space applications. Experience with LH2 in public and populated areas such as truck and aircraft refuelling stations or port bunkering stations for example is limited or non-existent. Safety requirements in these applications which involve or are in proximity of untrained public are different from rocket/aerospace industry.<br/>The manuscript reviews knowhow already gained by the international hydrogen safety community; and on such basis elucidate the gaps which are yet to be filled to meet industry needs to design and operate inherently safe LH2 operations including the implications for regulations codes and standards (RCS). Where relevant the associated gaps in some underpinning sciences will be mentioned; and the need to contextualise the information and safety practices from NASA1/ESA2/JAXA3 to inform risk adoption will be summarised.
Gas Leak Detection Using Acoustics and Artificial Intelligence
Sep 2023
Publication
Gas leak detection on a production site is a major challenge for the safety and health of workers for environmental considerations and from an economic point of view. In addition flammable gas leaks are a safety risk because if ignited they can cause serious fires or explosions. For these reasons Acoem Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four years a system called AGLED for the early detection localization and classification of such leaks exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build a robust learning database of leaks varying in flowrates exhaust diameters and also types (hole nozzle flange...). Moreover to limit the number of false alarms a relearning strategy has been implemented to handle unexpected disturbances (wildlife human activities meteorological events...). The presented paper describes the global architecture of the system from noise acquisition to the gas leak probability and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various environments. Finally thanks to a complementary collaboration with Air Liquide an example of test campaign in a real industrial environment is presented with an emphasis on the improvement obtained through relearning.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
GT Enclosure Dispersion Analysis with Different CFD Tools
Sep 2023
Publication
A gas turbine is usually installed inside an acoustic enclosure where the fuel gas supply system is also placed. It is common practice using CFD analysis to simulate the accidental fuel gas release inside the enclosure and the consequent dispersion. These numerical studies are used to properly design the gas detection system according to specific safety criteria which are well defined when the fuel gas is a conventional natural gas. Package design is done to prevent that any sparking items and hot surfaces higher than auto-ignition temperature could be a source of ignition in case of leak. Nevertheless it is not possible to exclude that a leakage from a theoretical point of view could be ignited and for this reason a robust design requires that the enclosure structure is able to withstand the overpressure generated by a gas cloud ignition. Moving to hydrogen as fuel gas makes this design constraint much more relevant for its known characteristics of reactiveness large range of flammability maximum burning velocity etc. In such context gas leak and dispersion analysis become even more crucial because a correct prediction of these scenarios can guide the design to a safe configuration. The present work shows a comparison of the dispersion of different leakages inside a gas turbine enclosure carried out with two different CFD tools Ansys CFX and FLACS. This verification is considered essential since dispersion analysis results are used as initial conditions for gas cloud ignition simulations strictly necessary to predict the consequence in term of overpressure without doing experimental tests.
Hydrogen Leakage Location Prediction in a Fuel Cell System of Skid-Mounted Hydrogen Refueling Stations
Jan 2025
Publication
Hydrogen safety is a critical issue during the construction and development of the hydrogen energy industry. Hydrogen refueling stations play a pivotal role in the hydrogen energy chain. In the event of an accidental hydrogen leak at a hydrogen refueling station the ability to quickly predict the leakage location is crucial for taking immediate and effective measures to prevent disastrous consequences. Therefore the development of precise and efficient technologies to predict leakage locations is vital for the safe and stable operation of hydrogen refueling stations. This paper studied the localization technology of high-risk leakage locations in the fuel cell system of a skid-mounted hydrogen refueling station. The hydrogen leakage and diffusion processes in the fuel cell system were predicted using CFD simulations and the hydrogen concentration data at various monitoring points were obtained. Then a multilayer feedforward neural network was developed to predict leakage locations using simulated concentration data as training samples. After multiple adjustments to the network structure and hyperparameters a final model with two hidden layers was selected. Each hidden layer consisted of 10 neurons. The hyperparameters included a learning rate of 0.0001 a batch size of 32 and 10-fold cross-validation. The Softmax classifier and Adam optimizer were used with a training set for 1500 epochs. The results show that the algorithm can predict leakage locations not included in the training set. The accuracy achieved by the model was 95%. This approach addresses the limitations of sensor detection in accurately locating leaks and mitigates the risks associated with manual inspections. This paper provides a feasible method for locating hydrogen leakage in hydrogen energy application scenarios.
Eye-readable Sensors for Intuitive Hydrogen Monitoring
Apr 2024
Publication
Hydrogen energy is a cornerstone of the future climate-neutral economy. Yet as undetected leaks easily generate dangerous atmospheres sensing systems must timely detect accumulated hydrogen to prevent ignitions and explosions. Eye-readable sensors (ERSs) displaying intuitive readouts promise to guarantee safe use and universal access to hydrogen-based technology. This review highlights the impact of reversible ERSs in hydrogen moni toring to contextualize their current and potential applicability. First sensing mechanisms for gasochromic tungsten oxide films and switchable metal hydrides are critically overviewed. Then pivotal strategies targeting real-time monitorization indoors and permanent leak recording outdoors are presented along with standard hydrogen leakage scenarios elucidating opportunities for ERSs. Finally important challenges and desirable userfriendly concepts are discussed with the purpose of narrowing the gap between this class of sensors and the forthcoming hydrogen society.
Computational Fluid Dynamics Simulations of Hydrogen Releases and Vented Deflagrations in Large Enclosures
Nov 2019
Publication
This paper presents model predictions obtained with the CFD tool FLACS for hydrogen releases and vented deflagrations in containers and larger enclosures. The paper consists of two parts. The first part compares experimental results and model predictions for two test cases: experiments performed by Gexcon in 20-foot ISO containers (volume 33 m3 ) as part of the HySEA project and experiments conducted by SRI International and Sandia National Laboratories in a scaled warehouse geometry (volume 45.4 m3 ). The second part explores the use of the model system validated in the first part to accidental releases of hydrogen from forklift trucks inside a full-scale warehouse geometry (32 400 m3 ). The results demonstrate the importance of using realistic and reasonably accurate geometry models of the systems under consideration when performing CFD-based risk assessment studies. The discussion highlights the significant inherent uncertainty associated with quantitative risk assessments for vented hydrogen deflagrations in complex geometries. The suggestions for further work include a pragmatic approach for developing empirical correlations for pressure loads from vented hydrogen deflagrations in industrial warehouses with hydrogen-powered forklift trucks.
Odorisation of Natural Gas/Hydrogen Mixure and Pure Hydrogen
Dec 2023
Publication
MARCOGAZ has prepared this document to provide comprehensive information on the odorisation of hydrogen and natural gas (H2-NG) mixtures as well as pure hydrogen. The primary goal is to assist in determining the crucial data to be taken into account when odorising gases containing hydrogen.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
The document is structured into two main sections with the initial part focusing on the theoretical interactions between hydrogen and odorants. Subsequent sections delve into the existing data related to this subject. The conclusions section offers additional considerations on the topic.
The report can be found on their website.
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
Risk Assessment of Explosion Accidents in Hydrogen Fuel-Cell Rooms Using Experimental Investigations and Computational Fluid Dynamics Simulations
Oct 2023
Publication
For the safe utilization and management of hydrogen energy within a fuel-cell room in a hydrogen-fueled house an explosion test was conducted to evaluate the potential hazards associated with hydrogen accident scenarios. The overpressure and heat radiation were measured for an explosion accident at distances of 1 2 3 5 and 10 m for hydrogen–air mixing ratios of 10% 25% 40% and 60%. When the hydrogen–air mixture ratio was 40% the greatest overpressure was 24.35 kPa at a distance of 1 m from the fuel-cell room. Additionally the thermal radiation was more than 1.5 kW/m2 which could cause burns at a distance of 5 m from the hydrogen fuel-cell room. Moreover a thermal radiation in excess of 1.5 kW/m2 was computed at a distance of 3 m from the hydrogen fuel-cell room when the hydrogen–air mixing ratio was 25% and 60%. Consequently an explosion in the hydrogen fuel-cell room did not considerably affect fatality levels but could affect the injury levels and temporary threshold shifts. Furthermore the degree of physical damage did not reach major structural damage levels causing only minor structural damage.
A Priority-based Failure Mode and Effects Analysis (FMEA) Method for Risk Assessment of Hydrogen Applications Onboard Maritime Vessels
Sep 2023
Publication
The maritime industry is gaining momentum towards a more decarbonized and sustainable path. However most of the worldwide fleet still relies on fossil fuels for power producing harmful environmental emissions. Hydrogen as a clean fuel is a promising alternative but its unique properties pose significant safety challenges. For instance hydrogen has a wide flammability range inherently increasing the risk of ignition. Moreover its comparatively low volumetric energy density necessitates faster filling rates and larger volumes for bunkering and onboard storage leading to higher risk rates. Therefore the use of hydrogen for maritime applications requires the development of specialized riskbased approaches according to safety engineering principles and techniques. The key safety implications are discussed and reviewed with focus on onboard hydrogen storage handling and refueling while a priority-based Failure Mode and Effects Analysis (FMEA) method for risk assessment is proposed based on the revised guidelines of Automotive Industry Action Group (AIAG) and German Association of the Automotive Industry (VDA). The revised AIAG-VDA FMEA method replaces the conventional Risk Priority Number (RPN) with a new Action Priority (AP) rating enabling the prioritization of recommended actions for risk reduction. The paper aims to a more profound understanding of the safety risks associated with hydrogen as a maritime fuel and to provide an effective risk assessment method for hydrogen applications onboard maritime vessels.
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
CFD Dispersion Simulations of Compressed Hydrogen Releases through TPRD Inside Scaled Tunnel
Sep 2023
Publication
To achieve the net zero carbon emissions goals by 2050 the transition to cleaner forms and carriers of energy should be accelerated without though jeopardizing the public safety. Although hydrogen has been deemed to play significant role in the energy transition for years now there are still concerns for its risks that hamper its widespread implementation in several applications like for instance automobile applications. Hydrogen-powered vehicles raise concerns about their safety especially inside confined spaces like tunnels and thus research on that topic has been intensified during the last years. In this context experiments have been conducted by UK HSE within the EU-funded project HyTunnel-CS to examine hydrogen dispersion and deflagration inside a scaled tunnel resulting from fuel cell car bus and train release.<br/>In this work that was also carried out within the HyTunnel-CS we present the Computational Fluid Dynamics (CFD) simulations of the HSE unignited experiments. Blowdown tests related to high-pressure hydrogen releases through Thermal Pressure Relief Device (TPRD) installed in car and in train were modeled using the ADREA-HF code. The scope of these simulations was two-fold: a) contribute to the design of the experiments (e.g. indicate sensor positioning ignition point etc.) and the interpretation of hydrogen behavior and b) validate the CFD code. For the former pre-test simulations preceded the experiments to provide design recommendations. When the experiments were conducted the measurements were used for the code validation. Overall the CFD results are in satisfactory agreement with the experiments. Finally simulations with different ventilation rates and with model vehicles inside the tunnel were conducted to examine their effect on mixture dispersion and tunnel safety.
Lessons Learned from Large Scale Hydrogen Production Project
Sep 2023
Publication
In August 2022 Shell started construction of Holland Hydrogen I (HH I) a 200 MW electrolyser plant in the port of Rotterdam’s industrial zone on Maasvlakte II in the Netherlands. HH I will produce up to 60000 kg of renewable hydrogen per day. The development and demonstration of a safe layout and plant design had been challenging due to ambitious HH I project premises many technical novelties common uncertainties in hydrogen leak effect prediction a lack of large-scale water electrolyzer operating history and limited standardization in this industry sector. This paper provides an industry perspective of the major challenges in commercial electrolyzer plant HSSE risk assessment and risk mitigation work processes required to develop and demonstrate a safe design and it describes lessons learned in this area during the HH I project. Furthermore the paper lists major common gaps in relevant knowledge engineering tools standards and OEM deliverables that need closure to enable future commercial electrolyzer plant projects to develop an economically viable and plant design and layout more efficiently and cost-effectively.
Hydrogen Related Accidents and Lesson Learned from Events Reported in the East Continental Asia
Sep 2023
Publication
Hydrogen as an energy carrier plays an important role in carbon neutrality and energy transition. Hydrogen is the lightest element with a density of only 0.08375 kg/m3 in gaseous form at standard temperature and pressure (STP); as a result hydrogen is usually stored and transported in a highly compressed form. It is prone to leakage and has a very low ignition energy of 0.017 mJ. Safety remains a challenge in the use of hydrogen as an energy source. This paper examines approximately 20 hydrogen-related accidents in China over a 20-year period focusing on the root causes consequences of the accidents and responses to them. These accidents occurred in the production storage transport and application of hydrogen with different causes in different locations and resulting in losses at different scales. Some statistical evaluations were conducted to learn lessons from the accidents. The main objective of this paper is (i) to retrieve a set of hydrogen related incidents from a region which is under-represented in incident repositories (ii) to contribute to a generalised lesson learned from them and (iii) to assist the definition of realistic scenarios for commonly occurring hydrogen accidents.
Dispersion, Ignition and Combustion Characteristics of Low-pressure Hydrogen-Methane Blends
Sep 2023
Publication
In this paper we study the dispersion ignition and flame characteristics of blended jets of hydrogen and methane (as a proxy for natural gas) at near-atmospheric pressure for a fixed volumetric flow rate which mimics the scenario of a small-scale unintended leak. A reduction in flame height is observed with increasing hydrogen concentration. A laser is tightly focused to generate a spark with sufficient energy to ignite the fuel. The light-up boundary defined as the delineating location at which a spark ignites into a jet flame or extinguishes is determined as a contour. The light-up boundary increases in both width and length as the hydrogen content increases up to 75% hydrogen at which point the axial ignition boundary decreases slightly for pure hydrogen relative to 75% hydrogen. Ignition probability a key parameter regarding safety is computed at various axial locations and is also shown to be higher near the nozzle as well as non-zero at further downstream locations as the hydrogen content in the blend increases. Planar laser Raman scattering is used in separate experiments to determine the concentration of both fuel species. Mean fuel concentrations well below the lower flammability limit are both within the light-up boundary and have non-zero ignition probabilities.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Risk Assessment of a Hydrogen Refueling Station in an Urban Area
May 2023
Publication
After the Paris Agreement was signed in 2015 many countries worldwide focused on the hydrogen economy aiming for eco-friendly and renewable energy by moving away from the existing carbon economy which has been the primary source of global warming. Hydrogen is the most common element on Earth. As a light substance hydrogen can diffuse quickly; however it also has a small risk of explosion. Representative explosion accidents have included the Muskingum River Power Plant Vapor Cloud Explosion accident in 2007 and the Silver Eagle Refinery Vapor Cloud Explosion accident in 2009. In addition there was an explosion in a hydrogen tank in Gangneung Korea in May 2019 and a hydrogen refueling station (HRS) in Norway exploded in 2018. Despite this risk Korea is promoting the establishment of HRSs in major urban centers including downtown areas and public buildings by using the Regulatory Sandbox to install HRSs. This paper employed the Hydrogen Risk Assessment Model (HyRAM) of Sandia National Laboratories (SNL) a quantitative risk assessment (QRA) program specialized in hydrogen energy for HRSs installed in major urban hubs. A feasibility evaluation of the site conditions of an HRS was conducted using the French land use planning method based on the results obtained through evaluation using the HyRAM and the overpressure results of PHAST 8.0. After a risk assessment we confirmed that an HRS would be considered safe even if it was installed in the city center within a radius of influence of jet fires and overpressure.
No more items...