Transmission, Distribution & Storage
Towards a Resilience Evaluation Framework for Hydrogen Supply Chains: A Systematic Literature Review and Future Research Agenda
Dec 2024
Publication
Hydrogen energy is crucial for achieving net zero targets making the resilience of hydrogen supply chains (HSCs) increasingly important. Understanding current research on HSC resilience is key to enhancing it. Few studies summarise HSC resilience evaluation methods and link them to the general supply chain resilience and complex adaptive system (CAS) evaluation approaches. This study addresses this gap by systematically reviewing the literature on HSC resilience evaluations defining HSC resilience and conducting content analysis. It proposes a conceptual framework integrating technical operational and organisational perspectives. Each perspective is further subdivided based on the course of events resulting in a system-based HSC resilience evaluation frame work with three layers of analysis. By linking HSC indicators with CAS theory and supply chain performance metrics the study offers novel insights into HSC resilience evaluations identifies research gaps provides prac tical guidance for practitioners and outlines future research directions for advancing HSC resilience understanding.
The Integration of Thermal Energy Storage Within Metal Hydride Systems: A Comprehensive Review
Dec 2024
Publication
Hydrogen storage technologies are key enablers for the development of low-emission sustainable energy supply chains primarily due to the versatility of hydrogen as a clean energy carrier. Hydrogen can be utilized in both stationary and mobile power applications and as a lowenvironmental-impact energy source for various industrial sectors provided it is produced from renewable resources. However efficient hydrogen storage remains a significant technical challenge. Conventional storage methods such as compressed and liquefied hydrogen suffer from energy losses and limited gravimetric and volumetric energy densities highlighting the need for innovative storage solutions. One promising approach is hydrogen storage in metal hydrides which offers advantages such as high storage capacities and flexibility in the temperature and pressure conditions required for hydrogen uptake and release depending on the chosen material. However these systems necessitate the careful management of the heat generated and absorbed during hydrogen absorption and desorption processes. Thermal energy storage (TES) systems provide a means to enhance the energy efficiency and cost-effectiveness of metal hydride-based storage by effectively coupling thermal management with hydrogen storage processes. This review introduces metal hydride materials for hydrogen storage focusing on their thermophysical thermodynamic and kinetic properties. Additionally it explores TES materials including sensible latent and thermochemical energy storage options with emphasis on those that operate at temperatures compatible with widely studied hydride systems. A detailed analysis of notable metal hydride–TES coupled systems from the literature is provided. Finally the review assesses potential future developments in the field offering guidance for researchers and engineers in advancing innovative and efficient hydrogen energy systems.
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs: A Review
Mar 2024
Publication
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources. Underground hydrogen storage (UHS) in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources due to its capacity to address challenges associated with the intermittent nature of renewable energy sources ensuring a steady and reliable energy supply. Leveraging the existing infrastructure and well-characterized geological formations depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation. However significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation. Hydrogen deliverability hydrogen trapping and the equation of state are key areas with limited understanding. This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs; it then provides a high-level risk assessment and an overview of the techno-economics of UHS. The significance of this review lies in its consolidation of current knowledge highlighting unresolved issues and proposing areas for future research. Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape. Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier. In addition this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
Hydrogen Embrittlement Behaviors During SSRT Tests in Gaseous Hydrogen for Cold-word Type 316 Austenitic Stainless Steel and Iron-based Supperalloy A286 Used in Hydrogen Refueling Station
Feb 2024
Publication
To consider an appropriate evaluation method for hydrogen compatibility slow strain rate tensile (SSRT) tests were conducted on high strength piping materials cold-worked type 316 austenitic stainless steel (SUS316CW) and iron-based superalloy A286 used in hydrogen stations for two years.<br/>SUS316CW used at room temperature in 82 MPa gaseous hydrogen contained 7.8 mass ppm hydrogen. The SSRT test of SUS316CW was conducted in nitrogen at -40 °C. The fracture surface showed dimples and no hydrogen embrittlement behavior was observed. While the SSRT test of SUS316CW in 70 MPa gaseous hydrogen at -40 °C showed a slight decrease in reduction area and a brittle fracture morphology in the outer layer. This was considered to be the effect of high-pressure gaseous hydrogen during the SSRT test in addition to the pre-contained hydrogen.<br/>A286 used at -40 °C in 82 MPa gaseous hydrogen contained negligible hydrogen (0.14 mass ppm). SSRT tests were conducted at 150 °C in 70 MPa gaseous hydrogen and in air and showed a low relative reduction in area (RRA) value. To investigate the decrease in the RRA we switched the gas from hydrogen to air in the middle of the SSRT test and closely examined the RRA values and fracture morphology including side cracks. The hydrogen embrittlement was found to originate from the elastic deformation region. Stress cycling in the elastic deformation region also accelerated the effect of hydrogen. These were attributed to an increase in the lattice hydrogen content. While in the plastic deformation region hydrogen trapped in the defects and hydrogen through the generated surface cracks increased the hydrogen content at the crack tips reducing the RRA value. And there was a good correlation between the crack lengths and RRA values.<br/>Then hydrogen embrittlement mechanism depends on the operating conditions (stress and temperature) of the material and evaluating the hydrogen compatibility of materials by controlling their hydrogen content and strain according to the service environment is desirable.
Hydrogen-induced Calcite Dissolution in Amaltheenton Formation Claystones: Implications for Underground Hydrogen Storage Caprock Integrity
Aug 2022
Publication
With the rising potential of underground hydrogen storage (UHS) in depleted oil and gas reservoirs or deep saline aquifers questions remain regarding changes to geological units due to interaction with injected hydrogen. Of particular importance is the integrity of potential caprocks/seals with respect to UHS. The results of this study show significant dissolution of calcite fossil fragments in claystone caprock proxies that were treated with a combination of hydrogen and 10 wt% NaCl brine. This is the first time it has been experimentally observed in claystones. The purpose of this short communication is to document the initial results that indicate the potential alteration of caprocks with injected hydrogen and to further highlight the need for hydrogen-specific studies of caprocks in areas proposed for UHS.
Optimization of Injection Molding Process Parameters for the Lining of IV Hydrogen Storage Cylinder
Jan 2023
Publication
The hydrogen storage cylinder lining was taken as the research object. The injection model of the cylinder liner was developed employing 3D software a two-cavity injection molding system was built and Moldfow was utilized for analysis to determine the best combination of injection molding process parameters. The efects of injection process parameters (melt temperature mold temperature holding pressure holding time and cooling time) on the evaluation index were analyzed by orthogonal experiment L16(45 ). The prediction data of IV hydrogen storage cylinder lining under diferent parameters were obtained by the range analysis method. The multi-objective optimization problem of injection molding process was transformed into a single-objective optimization problem by using the grey correlation analysis method. The optimal parameters such as melt temperature 270 °C mold temperature 80 °C packing pressure 55 MPa packing time 20 s and cooling time 13 s were obtained. Taguchi method was adopted to obtain SNR (signal-to-noise ratio) while range and variance methods were used for analysis. The results showed that warpage was 0.4892 mm the volume shrinkage was 12.31% the residual stress in the frst direction was 98.13 MPa and the residual stress in the second direction was 108.1 MPa. The comprehensive index was simultaneously most impacted by the melt temperature.
A Review of the Mechanics of Lined Engineered Cavities and their Implications on Hydrogen Storage
Jan 2025
Publication
Large-scale hydrogen storage at scales ranging from gigawatt-hours (GWh) to terawatt-hours (TWh) is currently projected to be an important component of the lowest cost options for a 100% variable renewable energy system driven partly by benefits to the grid from converting variable renewable electricity into hydrogen and partly by the anticipated growing role of hydrogen in a future net-zero energy system. Lined engineered cavities (LEC)s are among the prospective types of underground storage technology because they enable hydrogen storage at highpressure in the gaseous form and are expected to not rely on specific types of rock mass. They fill a niche in moderate storage capacity and cost because of their complementary advantages. An overview of various possible configurations and materials suitable for LECs for storing hydrogen is first reviewed to identify potential cost savings and performance improvements. Amongst the various LEC configurations lined engineered shafts (LES) are identified as having the greatest potential for cost reduction in softer rock masses such as sedimentary formations due to reduced excavation and construction complexity. Despite these advantages significant gaps remain in understanding the long-term behaviour of LES under cyclical loading as revealed through a review of the theoretical and experimental techniques used to study similar LEC configurations. This review paper con cludes with several recommendations for future research in numerical model formulation and material advancement with strong potential to increase the feasibility of LESs for hydrogen storage.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
A Study on Hydrogen Embrittlement of a High-strength Pipeline Steel Weldment after Microstructure Manipulation by Targeted Heat Treatments
Dec 2024
Publication
Hydrogen embrittlement (HE) is a major concern when steel pipelines are used for hydrogen transportation and storage. The weldments of steel pipelines are of particular concern because they are reported to have higher HE susceptibility compare to the base metal. In this work targeted heat treatments were used to manipulate the microstructure in a pipeline steel weldment to examine the effects of different microstructural features on HE susceptibility. Complementary analyses of the microstructure mechanical testing and fracture surface identified inclusions and ferrite morphology as the most dominant microstructural features that affect the susceptibility to HE. Specimens with different microstructures but sharing similar Ti-rich inclusions exhibited significant re ductions in elongation to failure after hydrogen charging and showed brittle fracture surfaces decorated with multiple ‘fish-eye’ features. In addition co-existence of bainitic microstructure with Ti-rich inclusions resulted in the highest susceptibility to HE.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Advances in Hydrogen Storage Technologies
Jan 2025
Publication
Gaseous hydrogen storage is the most mature technology for fuel cell vehicles. The main safety concern is the catastrophic consequences of tank rupture in a fire i.e. blast waves fireballs and projectiles. This paper sum marises research on the development and validation of the breakthrough microleaks-no-burst (μLNB) safety technology of explosion-free in any fire self-venting Type IV tanks that do not require a thermally-activate pressure relief device (TPRD). The invention implies the melting of the hydrogen-tight liner of the Type IV tank before the hydrogen-leaky double-composite wall loses load-bearing ability. Hydrogen then flows through the natural microchannels in the composites and burns in microflames or together with resin. The unattainable to competitive products feature of the technology is the ability to withstand any fire from smouldering to extreme impinging hydrogen jet fires. Innovative 70 MPa tanks made of carbon-carbon carbon-glass and carbon-basalt composites were tested in characteristic for gasoline/diesel spill fires with a specific heat release rate of HRR/A = 1 MW/m2 . Standard unprotected Type III and IV tanks will explode in such intensity fire. The technology excludes hydrogen accumulation in naturally ventilated enclosures. It reduces the risk of hydrogen vehicles to an acceptable level below that of fossil fuel cars including underground parking tunnels etc. The performance of self-venting tanks is studied for fire intervention scenarios: removal from fire and fire extinction by water. It is concluded that novel tanks allow standard fire intervention strategies and tactics. Self-venting operation of the 70 MPa tank is demonstrated in extreme jet fire conditions under impinging hydrogen jet fire (70 MPa) with huge HRR/A = 19.5 MW/m2 . This technology excludes tank rupture in fires onboard trains ships and planes where hazard distances cannot be implemented i.e. provides an unprecedented level of life safety and property protection.
Optimization of the Design of Underground Hydrogen Storage in Salt Caverns in Southern Ontario, Canada
Jan 2025
Publication
With the issue of energy shortages becoming increasingly serious the need to shift to sustainable and clean energy sources has become urgent. However due to the intermittent nature of most renewable energy sources developing underground hydrogen storage (UHS) systems as backup energy solutions offers a promising solution. The thick and regionally extensive salt deposits in Unit B of Southern Ontario Canada have demonstrated significant potential for supporting such storage systems. Based on the stratigraphy statistics of unit B this study investigates the feasibility and stability of underground hydrogen storage (UHS) in salt caverns focusing on the effects of cavern shape geometric parameters and operating pressures. Three cavern shapes—cylindrical cone-shaped and ellipsoid-shaped—were analyzed using numerical simulations. Results indicate that cylindrical caverns with a diameter-to-height ratio of 1.5 provide the best balance between storage capacity and structural stability while ellipsoid-shaped caverns offer reduced stress concentration but have less storage space posing practical challenges during leaching. The results also indicate that the optimal pressure range for maintaining stability and minimizing leakage lies between 0.4 and 0.7 times the vertical in situ stress. Higher pressures increase storage capacity but lead to greater stress displacements and potential leakage risks while lower pressure leads to internal extrusion tendency for cavern walls. Additionally hydrogen leakage rate drops with the maximum working pressure yet total leakage mass keeps a growing trend.
Numerical Study of the Filling Process of a Liquid Hydrogen Storage Tank under Different Sloshing Conditions
Aug 2020
Publication
Cryogenic vessels are widely used in many areas such as liquefied natural gas (LNG) aerospace and medical fields. A suitable filling method is one of the prerequisites for the effective use of cryogenic containers. In this study the filling process for the sloshing condition of a liquid hydrogen storage tank is numerically simulated and analyzed by coupling the sloshing model and the phase-change model. The effects of different sloshing conditions during the filling process are investigated by changing the amplitude and frequency of the sloshing. Within the scope of this study there is a critical value for the effect of sloshing conditions on the pressure curve during the filling process. The critical value corresponds to a frequency f equal to 3 Hz and an amplitude A equal to 0.03 m. According to the simulation results when the sloshing exceeds the critical value the internal pressure curve of the storage tank increases significantly. Under microgravity conditions within the scope of this study the pressure curve changes less than the normal gravity even if the amplitude and frequency increase. The sloshing makes it easier for the liquid to spread along the wall during the filling process. This also further weakens the temperature stratification in the storage tank.
Influence of Capillary Threshold Pressure and Injection Well Location on the Dynamic CO2 and H2 Storage Capacity for the Deep Geological Structure
Jul 2021
Publication
The subject of this study is the analysis of influence of capillary threshold pressure and injection well location on the dynamic CO2 and H2 storage capacity for the Lower Jurassic reservoir of the Sierpc structure from central Poland. The results of injection modeling allowed us to compare the amount of CO2 and H2 that the considered structure can store safely over a given time interval. The modeling was performed using a single well for 30 different locations considering that the minimum capillary pressure of the cap rock and the fracturing pressure should not be exceeded for each gas separately. Other values of capillary threshold pressure for CO2 and H2 significantly affect the amount of a given gas that can be injected into the reservoir. The structure under consideration can store approximately 1 Mt CO2 in 31 years while in the case of H2 it is slightly above 4000 tons. The determined CO2 storage capacity is limited; the structure seems to be more prospective for underground H2 storage. The CO2 and H2 dynamic storage capacity maps are an important element of the analysis of the use of gas storage structures. A much higher fingering effect was observed for H2 than for CO2 which may affect the withdrawal of hydrogen. It is recommended to determine the optimum storage depth particularly for hydrogen. The presented results important for the assessment of the capacity of geological structures also relate to the safety of use of CO2 and H2 underground storage space.
Subsurface Renewable Energy Storage Capcity for Hydrogen, Methane and Compress Air - A Performance Assessment Study from the North German Basin
Jul 2021
Publication
The transition to renewable energy sources to mitigate climate change will require large-scale energy storage to dampen the fluctuating availability of renewable sources and to ensure a stable energy supply. Energy storage in the geological subsurface can provide capacity and support the cycle times required. This study investigates hydrogen storage methane storage and compressed air energy storage in subsurface porous formations and quantifies potential storage capacities as well as storage rates on a site-specific basis. For part of the North German Basin used as the study area potential storage sites are identified employing a newly developed structural geological model. Energy storage capacities estimated from a volume-based approach are 6510 TWh and 24544 TWh for hydrogen and methane respectively. For a consistent comparison of storage capacities including compressed air energy storage the stored exergy is calculated as 6735 TWh 25795 TWh and 358 TWh for hydrogen methane and compressed air energy storage respectively. Evaluation of storage deliverability indicates that high deliverability rates are found mainly in two of the three storage formations considered. Even accounting for the uncertainty in geological parameters the storage potential for the three considered storage technologies is significantly larger than the predicted demand and suitable storage rates are achievable in all storage formations.
Hydrogen Quality in Used Natual Gas Pipelines: An Experimental Investigation of Contaminants According to ISO 14687:2019 Standard
Sep 2023
Publication
The transport of hydrogen in used natural gas pipelines is a strategic key element of a pan-European hydrogen infrastructure. At the same time accurate knowledge of the hydrogen quality is essential in order to be able to address a wide application range. Therefore an experimental investigation was carried out to find out which contaminants enter into the hydrogen from the used natural gas pipelines. Pipeline elements from the high pressure gas grid of Austria were exposed to hydrogen. Steel pipelines built between 1960 and 2018 which were operated with odorised and pure natural gas were examined. The hydrogen was analysed according to requirements of ISO14687: 2019 Grade D measurement standard. The results show that based on age odorization and sediments different contimenants are introduced. Odorants hydrocarbons but also sulphur compounds ammonia and halogenated hydrogen compounds were identified. Sediments are identified as the main source of impurities. However the concentrations of the introduced contaminants were low (6 nmol/mol to 10 μmol/mol). Quality monitoring with a wide range of detection options for different components (sulphur halogenated compounds hydrocarbons ammonia and atmospheric components) is crucial for real operation. The authors deduce that a Grade A hydrogen quality can be safely achieved in real operation.
Technical and Economic Viability of Underground Hydrogen Storage
Nov 2023
Publication
Considering the mismatch between the renewable source availability and energy demand energy storage is increasingly vital for achieving a net-zero future. The daily/seasonal disparities produce a surplus of energy at specific moments. The question is how can this “excess” energy be stored? One promising solution is hydrogen. Conventional hydrogen storage relies on manufactured vessels. However scaling the technology requires larger volumes to satisfy peak demands enhance the reliability of renewable energies and increase hydrogen reserves for future technology and infrastructure development. The optimal solution may involve leveraging the large volumes of underground reservoirs like salt caverns and aquifers while minimizing the surface area usage and avoiding the manufacturing and safety issues inherent to traditional methods. There is a clear literature gap regarding the critical aspects of underground hydrogen storage (UHS) technology. Thus a comprehensive review of the latest developments is needed to identify these gaps and guide further R&D on the topic. This work provides a better understanding of the current situation of UHS and its future challenges. It reviews the literature published on UHS evaluates the progress in the last decades and discusses ongoing and carried-out projects suggesting that the technology is technically and economically ready for today’s needs.
Key Technologies of Pure Hydrogen and Hydrogen-mixed Natural Gas Pipeline Transportation
May 2023
Publication
Thanks to the advantages of cleanliness high efficiency extensive sources and renewable energy hydrogen energy has gradually become the focus of energy development in the world’s major economies. At present the natural gas transportation pipeline network is relatively complete while hydrogen transportation technology faces many challenges such as the lack of technical specifications high safety risks and high investment costs which are the key factors that hinder the development of hydrogen pipeline transportation. This paper provides a comprehensive overview and summary of the current status and development prospects of pure hydrogen and hydrogen-mixed natural gas pipeline transportation. Analysts believe that basic studies and case studies for hydrogen infrastructure transformation and system optimization have received extensive attention and related technical studies are mainly focused on pipeline transportation processes pipe evaluation and safe operation guarantees. There are still technical challenges in hydrogen-mixed natural gas pipelines in terms of the doping ratio and hydrogen separation and purification. To promote the industrial application of hydrogen energy it is necessary to develop more efficient low-cost and low-energy-consumption hydrogen storage materials.
Comprehensive Review of Geomechanics of Underground Hydrogen Storage in Depleted Reservoirs and Salt Caverns
Sep 2023
Publication
Hydrogen is a promising energy carrier for a low-carbon future energy system as it can be stored on a megaton scale (equivalent to TWh of energy) in subsurface reservoirs. However safe and efficient underground hydrogen storage requires a thorough understanding of the geomechanics of the host rock under fluid pressure fluctuations. In this context we summarize the current state of knowledge regarding geomechanics relevant to carbon dioxide and natural gas storage in salt caverns and depleted reservoirs. We further elaborate on how this knowledge can be applied to underground hydrogen storage. The primary focus lies on the mechanical response of rocks under cyclic hydrogen injection and production fault reactivation the impact of hydrogen on rock properties and other associated risks and challenges. In addition we discuss wellbore integrity from the perspective of underground hydrogen storage. The paper provides insights into the history of energy storage laboratory scale experiments and analytical and simulation studies at the field scale. We also emphasize the current knowledge gaps and the necessity to enhance our understanding of the geomechanical aspects of hydrogen storage. This involves developing predictive models coupled with laboratory scale and field-scale testing along with benchmarking methodologies.
A COMSOL Framework for Predicting Hydrogen Embrittlement - Part 1: Coupled Hydrogen Transport
Mar 2025
Publication
Hydrogen threatens the structural integrity of metals and thus predicting hydrogen-material interactions is key to unlocking the role of hydrogen in the energy transition. Quantifying the interplay between material deformation and hydrogen diffusion ahead of cracks and other stress concentrators is key to the prediction and prevention of hydrogen-assisted failures. In this work a generalised theoretical and computational framework is presented that for the first time encompasses: (i) stress-assisted diffusion (ii) hydrogen trapping due to multiple trap types rigorously accounting for the rate of creation of dislocation trap sites (iii) hydrogen transport through dislocations (iv) equilibrium (Oriani) and non-equilibrium (McNabb-Foster) trapping kinetics (v) hydrogen-induced softening and (vi) hydrogen uptake considering the role of hydrostatic stresses and local electrochemistry. Particular emphasis is placed on the numerical implementation in COMSOL Multiphysics releasing the relevant models and discussing stability discretisation and solver details. Each of the elements of the framework is independently benchmarked against results from the literature and implications for the prediction of hydrogen-assisted fractures are discussed. The second part of this work (Part II) shows how these crack tip predictions can be combined with crack growth simulations.
Optimal Design of Hydrogen Delivery Infrastructure for Multi-sector End Uses at Regional Scale
Jul 2024
Publication
Hydrogen is a promising solution for the decarbonisation of several hard-to-abate end uses which are mainly in the industrial and transport sectors. The development of an extensive hydrogen delivery infrastructure is essential to effectively activate and deploy a hydrogen economy connecting production storage and demand. This work adopts a mixed-integer linear programming model to study the cost-optimal design of a future hydrogen infrastructure in presence of cross-sectoral hydrogen uses taking into account spatial and temporal variations multiple production technologies and optimised multi-mode transport and storage. The model is applied to a case study in the region of Sicily in Italy aiming to assess the infrastructural needs to supply the regional demand from transport and industrial sectors and to transfer hydrogen imported from North Africa towards Europe thus accounting for the region’s role as transit point. The analysis integrates multiple production technologies (electrolysis supplied by wind and solar energy steam reforming with carbon capture) and transport options (compressed hydrogen trucks liquid hydrogen trucks pipelines). Results show that the average cost of hydrogen delivered to demand points decreases from 3.75 €/kgH2 to 3.49 €/kgH2 when shifting from mobilityonly to cross-sectoral end uses indicating that the integrated supply chain exploits more efficiently the infrastructural investments. Although pipeline transport emerges as the dominant modality delivery via compressed hydrogen trucks and liquid hydrogen trucks remains relevant even in scenarios characterised by large hydrogen flows as resulting from cross-sectoral demand demonstrating that the system competitiveness is maximised through multi-mode integration.
Optimizing Underground Hydrogen Storage in Aquifers: The Impact of Cushion Gas Type
Aug 2023
Publication
This study investigated the impact of cushion gas type and presence on the performance of underground hydrogen storage (UHS) in an offshore North Sea aquifer. Using numerical simulation the relationship between cushion gas type and UHS performance was comprehensively evaluated providing valuable insights for designing an efficient UHS project delivery. Results indicated that cushion gas type can significantly impact the process's recovery efficiency and hydrogen purity. CO2 was found to have the highest storage capacity while lighter gases like N2 and CH4 exhibited better recovery efficiency. Utilising CH4 as a cushion gas can lead to a higher recovery efficiency of 80%. It was also determined that utilising either of these cushion gases was always more beneficial than hydrogen storage alone leading to an incremental hydrogen recovery up to 7%. Additionally hydrogen purity degraded as each cycle progressed but improved over time. This study contributes to a better understanding of factors affecting UHS performance and can inform the selection of cushion gas type and optimal operational strategies.
Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models
Nov 2023
Publication
Natural gas is the most growing fossil fuel due to its environmental advantages. For the economical transportation of natural gas to distant markets physical (i.e. liquefaction and compression) or chemical (i.e. direct and indirect) monetisation options must be considered to reduce volume and meet the demand of different markets. Planning natural gas supply chains is a complex problem in today’s turbulent markets especially considering the uncertainties associated with final market demand and competition with emerging renewable and hydrogen energies. This review study evaluates the latest research on mathematical programming (i.e. MILP and MINLP) as a decisionmaking tool for designing and planning natural gas supply chains under different planning horizons. The first part of this study assesses the status of existing natural gas infrastructures by addressing readily available natural monetisation options quantitative tools for selecting monetisation options and single-state and multistate natural gas supply chain optimisation models. The second part investigates hydrogen as a potential energy carrier for integration with natural gas supply chains carbon capture utilisation and storage technologies. This integration is foreseen to decarbonise systems diversify the product portfolio and fill the gap between current supply chains and the future market need of cleaner energy commodities. Since natural gas markets are turbulent and hydrogen energy has the potential to replace fossil fuels in the future addressing stochastic conditions and demand uncertainty is vital to hedge against risks through designing a responsive supply chain in the project’s early design stages. Hence hydrogen supply chain optimisation studies and the latest works on hydrogen–natural gas supply chain optimisation were reviewed under deterministic and stochastic conditions. Only quantitative mathematical models for supply chain optimisation including linear and nonlinear programming models were considered in this study to evaluate the effectiveness of each proposed approach.
Optimizing the Operational Efficiency of the Underground Hydrogen Storage Scheme in a Deep North Sea Aquifer through Compositional Simulations
Aug 2023
Publication
In this study we evaluate the technical viability of storing hydrogen in a deep UKCS aquifer formation through a series of numerical simulations utilising the compositional simulator CMG-GEM. Effects of various operational parameters such as injection and production rates number and length of storage cycles and shut-in periods on the performance of the underground hydrogen storage (UHS) process are investigated in this study. Results indicate that higher H2 operational rates degrade both the aquifer's working capacity and H2 recovery during the withdrawal phase. This can be attributed to the dominant viscous forces at higher rates which lead to H2 viscous fingering and gas gravity override of the native aquifer water resulting in an unstable displacement of water by the H2 gas. Furthermore analysis of simulation results shows that longer and less frequent storage cycles lead to higher storage capacity and decreased H2 retrieval. We conclude that UHS in the studied aquifer is technically feasible however a thorough evaluation of the operational parameters is necessary to optimise both storage capacity and H2 recovery efficiency.
The Potential of Hydrogen-battery Storage Systems for a Sustainable Renewable-based Electrification of Remote Islands in Norway
Oct 2023
Publication
Remote locations and off-grid regions still rely mainly on diesel generators despite the high operating costs and greenhouse gas emissions. The exploitation of local renewable energy sources (RES) in combination with energy storage technologies can be a promising solution for the sustainable electrification of these areas. The aim of this work is to investigate the potential for decarbonizing remote islands in Norway by installing RES-based energy systems with hydrogen-battery storage. A national scale assessment is presented: first Norwegian islands are characterized and classified according to geographical location number of inhabitants key services and current electrification system. Then 138 suitable installation sites are pinpointed through a multiple-step sorting procedure and finally 10 reference islands are identified as representative case studies. A site-specific methodology is applied to estimate the electrical load profiles of all the selected reference islands. An optimization framework is then developed to determine the optimal system configuration that minimizes the levelized cost of electricity (LCOE) while ensuring a reliable 100% renewable power supply. The LCOE of the RES-based energy systems range from 0.21 to 0.63 €/kWh and a clear linear correlation with the wind farm capacity factor is observed (R2 equal to 0.87). Hydrogen is found to be crucial to prevent the oversizing of the RES generators and batteries and ensure long-term storage capacity. The techno-economic feasibility of alternative electrification strategies is also investigated: the use of diesel generators is not economically viable (0.87–1.04 €/kWh) while the profitability of submarine cable connections is highly dependent on the cable length and the annual electricity consumption (0.14–1.47 €/kWh). Overall the cost-effectiveness of RES-based energy systems for off-grid locations in Northern Europe can be easily assessed using the correlations derived in this analysis.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
The Role of Underground Salt Caverns in Renewable Energy Peaking: A Review
Nov 2024
Publication
To address the inherent intermittency and instability of renewable energy the construction of large-scale energy storage facilities is imperative. Salt caverns are internationally recognized as excellent sites for large-scale energy storage. They have been widely used to store substances such as natural gas oil air and hydrogen. With the global transition in energy structures and the increasing demand for renewable energy load balancing there is broad market potential for the development of salt cavern energy storage technologies. There are three types of energy storage in salt caverns that can be coupled with renewable energy sources namely salt cavern compressed air energy storage (SCCAES) salt cavern hydrogen storage (SCHS) and salt cavern flow battery (SCFB). The innovation of this paper is to comprehensively review the current status and future development trends of these three energy storage methods. Firstly the development status of these three energy storage methods both domestically and internationally is reviewed. Secondly according to the characteristics of these three types of energy storage methods some key technical challenges are proposed to be focused on. The key technical challenge for SCCAES is the need to further reduce the cost of the ground equipment; the key technical challenge for SCHS is to prevent the risk of hydrogen leakage; and the key technical challenge for SCFB is the need to further increase the concentration of the active substance in the huge salt cavern. Finally some potential solutions are proposed based on these key technical challenges. This work is of great significance in accelerating the development of salt cavern energy storage technologies in coupled renewable energy.
A Review of Gas Phase Inhibition of Gaseous Hydrogen Embrittlement in Pipeline Steels
Feb 2024
Publication
The addition of small amounts of certain gases such as O2 CO and SO2 may mitigate hydrogen embrittlement in high-pressure gas transmission pipelines that transport hydrogen. To practically implement such inhibition in gas transmission pipelines a comprehensive understanding and quantification of this effect are essential. This review examines the impact of various added gases to hydrogen including typical odorants on gaseous hydrogen embrittlement of steels and evaluates their inhibition effectiveness. O2 CO and SO2 were found to be effective inhibitors of hydrogen embrittlement. Yet the results in the literature have not always been consistent partly because of the diverse range of mechanical tests and their parameters. The absence of systematic studies hinders the evaluation of the feasibility of using gas phase inhibitors for controlling gaseous hydrogen embrittlement. A method to quantify the effectiveness of gas phase inhibition is proposed using gas phase permeation studies.
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
Mar 2024
Publication
As one core component in hydrogen fuel cells and water electrolysis cells bipolar plates (BPs) perform multiple important functions such as separating the fuel and oxidant flow providing mechanical support conducting electricity and heat connecting the cell units into a stack etc. On the path toward commercialization the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g. stainless steel aluminum or copper). However these materials are susceptible to electrochemical corrosion under harsh operating conditions resulting in long-term performance degradation. By means of advanced thermal spraying technologies protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies including atmospheric plasma spraying (APS) vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore precise control over these factors is demanded.
Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-capture CO2
Jun 2023
Publication
Hydrogen is deemed as a crucial component in the transition to a carbon-free energy system and researchers are actively working to realize the hydrogen economy. While hydrogen derived from renewable energy sources is a promising means of providing clean energy to households and industries its practical usage is currently hindered by difficulties in transportation and storage. Due to the extreme operating conditions required for liquefying hydrogen various hydrogen carriers are being considered which can be transported and stored at mild operating conditions and provide hydrogen at the site of usage. Among various candidates green hydrogen carriers obtained via carbon dioxide utilization have been proposed as an economically and environmentally feasible option. Herein the potential of using methanol and formic acid as green hydrogen carriers are evaluated regarding various production and dehydrogenation pathways within a hydrogen distribution system including the recycle of carbon dioxide. Recent progress in carbon dioxide utilization processes especially conversion of carbon dioxide captured in amine solutions have demonstrated promising results for methanol and formic acid production. This study analyzes seven scenarios that consider carbon dioxide utilization-based thermocatalytic and electrochemical methanol and formic acid production as well as different dehydrogenation pathways and compares them to the scenario of delivering liquefied hydrogen. The scenarios are thoroughly analyzed via techno-economic analysis and life cycle assessment methods. The results of the study indicate that methanol-based options are economically viable reducing the cost up to 43% compared to liquefied hydrogen delivery. As for formic acid only the electrochemical production method is profitable retaining 10% less cost compared to liquefied hydrogen delivery. In terms of environmental impact all of the scenarios show higher global warming impact values than liquefied hydrogen distribution. However results show that in an optimistic case where wind electricity is widely used electrochemical formic acid production is competitive with liquefied hydrogen distribution retaining 39% less global warming impact values. This is because high conversion can be achieved at mild operating conditions for the production and dehydrogenation reactions of formic acid reducing the input of utilities other than electricity. This study suggests that while methanol can be a shortterm solution for hydrogen distribution electrochemical formic acid production may be a viable long-term option.
Operational Implications of Transporting Hydrogen via a High Pressure Gas Network
Feb 2025
Publication
Transporting hydrogen gas has long been identified as one of the key issues to scaling up the hydrogen economy. Among various means of transportation many countries are considering using the existing natural gas pipeline networks for hydrogen transmission. This paper examines the implications of transporting hydrogen on the operational metrics of the high-pressure natural gas networks. A model of the GB high-pressure gas network was developed which has a high granularity with 294 nodes 356 pipes and 24 compressor stations. The model was developed using Synergi Gas a hydraulic pipeline network simulation software. By performing unsteady-state analysis pressure levels linepack levels and compressor energy consumption were simulated with 10-minute time steps. Additionally component tracing analysis was utilised to examine the variations in gas composition when hydrogen is injected into the gas network. Five scenarios were developed: one benchmark scenario representing the network transporting natural gas in 2018; one scenario where demand and supply levels are projected for 2035 but no hydrogen was transported by the network; two hydrogen injection scenarios in 2035 considering different geographical locations for hydrogen injection into the gas network; and lastly one pure hydrogen transmission scenario for 2050. The studies found that the GB’s high-pressure gas network could accept 20% volumetric hydrogen injection without significantly impacting network operation. Pressure levels and compressor energy consumption remain within the operational range. The geographical distribution of hydrogen injection points would highly affect the percentage of hydrogen across the network. Pure hydrogen transportation will cause significant variations in network linepack and increase compressor energy consumption significantly compared to other case studies. The findings signal that operating a network with pure hydrogen is possible only when it is prepared for these changes.
Hydrogen Storage Solutions for Residential Heating: A Thermodynamic and Economic Analysis with Scale-up Potential
Jul 2024
Publication
The study presents a thermodynamic and economic assessment of different hydrogen storage solutions for heating purposes powered by PV panels of a 10-apartment residential building in Milan and it focuses on compressed hydrogen liquid hydrogen and metal hydride. The technical assessment involves using Python to code thermodynamic models to address technical and thermodynamic performances. The economic analysis evaluates the CAPEX the ROI and the cost per unit of stored hydrogen and energy. The study aims to provide an accurate assessment of the thermodynamic and economic indicators of three of the storage methods introduced in the literature review pointing out the one with the best techno-economic performance for further development and research. The performed analysis shows that compressed hydrogen represents the best alternative but its cost is still too high for small residential applications. Applying the technology to a big system case would enable the solution making it economically feasible.
Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale
Sep 2023
Publication
Hydrogen has been studied extensively as a potential enabler of the energy transition from fossil fuels to renewable sources. It promises a feasible decarbonisation route because it can act as an energy carrier a heat source or a chemical reactant in industrial processes. Hydrogen can be produced via renewable energy sources such as solar hydro or geothermic routes and is a more stable energy carrier than intermittent renewable sources. If hydrogen can be stored efficiently it could play a crucial role in decarbonising industries. For hydrogen to be successfully implemented in industrial systems its impact on infrastructure needs to be understood quantified and controlled. If hydrogen technology is to be economically feasible we need to investigate and understand the retrofitting of current industrial infrastructure. Currently there is a lack of comprehensive knowledge regarding alloys and components performance in long-term hydrogen-containing environments at industrial conditions associated with high-temperature hydrogen processing/production. This review summarises insights into the gaps in hydrogen embrittlement (HE) research that apply to high-temperature high-pressure systems in industrial processes and applications. It illustrates why it is still important to develop characterisation techniques and methods for hydrogen interaction with metals and surfaces under these conditions. The review also describes the implications of using hydrogen in large-scale industrial processes.
Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport
Jan 2024
Publication
The storage and transfer of energy require a safe technology to mitigate the global environmental issues resulting from the massive application of fossil fuels. Fuel cells have used hydrogen as a clean and efficient energy source. Nevertheless the storage and transport of hydrogen have presented longstanding problems. Recently liquid organic hydrogen carriers (LOHCs) have emerged as a solution to these issues. The hydrogen storage technique in LOHCs is more attractive than those of conventional energy storage systems like liquefaction compression at high pressure and methods of adsorption and absorption. The release and acceptance of hydrogen should be reversible by LOHC molecules following favourable reaction kinetics. LOHCs comprise liquid and semi-liquid organic compounds that are hydrogenated to store hydrogen. These hydrogenated molecules are stored and transported and finally dehydrogenated to release the required hydrogen for supplying energy. Hydrogenation and dehydrogenation are conducted catalytically for multiple cycles. This review elaborates on the characteristics of different LOHC molecules based on their efficacy as energy generators. Additionally different catalysts used for both hydrogenation and dehydrogenation are discussed.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Use of Existing Gas Infrastructure in European Hydrogen Economy
Apr 2023
Publication
The rapidly increasing production volume of clean hydrogen creates challenges for transport infrastructure. This study improves understanding of hydrogen transport options in Europe and provides more detailed analysis on the prospects for hydrogen transport in Finland. Previous studies and ongoing pipeline projects were reviewed to identify potential and barriers to hydrogen transport. A fatigue life assessment tool was built because material challenges have been one of the main concerns of hydrogen transportation. Many European countries aim at utilizing existing gas infrastructure for hydrogen. Conducted studies and pilot facilities have provided promising results. Hydrogen reduces the fatigue life of the pipeline but existing pipelines can be used for hydrogen if pressure variation is maintained at a reasonable level and the maximum operation pressure is limited. Moreover the use of existing pipelines can reduce hydrogen transport costs but the suitability of every pipeline for hydrogen must be analyzed and several issues such as leakage leakage detection effects of hydrogen on pipeline assets and end users corrosion maintenance and metering of gas flow must be considered. The development of hydrogen transport will vary within countries depending on the structure of the existing gas infrastructure and on the future hydrogen use profile.
Hydrogen Pipelines vs. HVDC Lines: Should We Transfer Green Molecules or Electrons?
Nov 2023
Publication
As the world races to decarbonize its energy systems the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the technoeconomic characteristics of these two transmission technologies. Hydrogen pipelines offer the advantage of transporting larger energy volumes but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However hydrogen’s unique characteristics such as its small molecular size and compression requirements present construction challenges. On the other hand HVDC lines while less voluminous excel in efficiently transmitting green electrons over long distances. They already form an extensive global network and their efficiency makes them suitable for various applications. Yet intermittent renewable energy sources pose challenges for both hydrogen and electricity systems necessitating solutions like storage and blending. Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure adaptability risk assessment and social acceptance. Furthermore while both HVDC lines and hydrogen pipelines are expected to proliferate other factors such as market maturity of the relevant energy vector government policies and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
Roles of Bioenergy and Green Hydrogen in Large Scale Energy Storage for Carbon Neutrality
Aug 2023
Publication
A new technical route to incorporate excess electricity (via green hydrogen generation by electrolysis) into a biorefinery to produce modern bioenergy (advanced biofuels) is proposed as a promising alternative. This new route involves storing hydrogen for mobile and stationary applications and can be a three-bird-one-stone solution for the storage of excess electrical energy storage of green hydrogen and high-value utilization of biomass.
Benchmark of J55 and X56 Steels on Cracking and Corrosion Effects Under Hydrogen Salt Cavern Boundary Conditions
Feb 2024
Publication
Salt caverns have great potential to store relevant amounts of hydrogen as part of the energy transition. However the durability and suitability of commonly used steels for piping in hydrogen salt caverns is still under research. In this work aging effects focusing on corrosion and cracking patterns of casing steel API 5CT J55 and “H2ready” pipeline steel API 5L X56 were investigated with scanning electron microscopy and energy dispersive X-ray spectroscopy after accelerated stress tests with pressure/temperature cycling under hydrogen salt cavern-like conditions. Compared to dry conditions significant more corrosion by presence of salt ions was detected. However compared to X56 only for J55 an intensification of corrosion and cracking at the surface due to hydrogen atmosphere was revealed. Pronounced surface cracks were observed for J55 over the entire samples. Overall the results strongly suggest that X56 is more resistant than J55 under the conditions of a hydrogen salt cavern.
Hydrogen Storage in Unlined Rock Caverns: An Insight on Opportunities and Challenges
Jun 2024
Publication
Transitioning to a sustainable energy future necessitates innovative storage solutions for renewable energies where hydrogen (H₂) emerges as a pivotal energy carrier for its low emission potential. This paper explores unlined rock caverns (URCs) as a promising alternative for underground hydrogen storage (UHS) overcoming the geographical and technical limitations of UHS methods like salt rock caverns and porous media. Drawing from the experiences of natural gas (NG) and compressed air energy storage (CAES) in URCs we explore the viability of URCs for storing hydrogen at gigawatt-hour scales (>100 GWh). Despite challenges such as potential uplift failures (at a depth of approximately less than 1000 m) and hydrogen reactivity with storage materials at typical conditions (below temperatures of 100◦C and pressures of 15 MPa) URCs present a flexible scalable option closely allied with green hydrogen production from renewable sources. Our comprehensive review identifies critical design considerations including hydraulic containment and the integrity of fracture sealing materials under UHS conditions. Addressing identified knowledge gaps particularly around the design of hydraulic containment systems and the interaction of hydrogen with cavern materials will be crucial for advancing URC technology. The paper underscores the need for further experimental and numerical studies to refine URC suitability for hydrogen storage highlighting the role of URCs in enhancing the compatibility of renewable energy sources with the grid.
Hydrogen Embrittlement Susceptibility of Additively Manufactured High-strength Low-alloy AISI 4340 Steel
Jul 2025
Publication
Hydrogen embrittlement (HE) poses a significant challenge for high-strength steels. Although HE of wrought steels has been extensively studied it remains limited in steels processed by additive manufacturing (AM). The present work (i) compares the HE susceptibility of AISI 4340 ultra-high-strength steel fabricated by selective laser melting (SLM) with its wrought counterpart; (ii) investigates the predominant factors and possible HE mechanisms in the AM-fabricated material; and (iii) correlates microstructures produced with different SLM processing parameters to HE susceptibility of the steel. Generally conventionally processed AISI 4340 steel is used with a tempered martensitic structure to ensure the ultrahigh strength and therefore is susceptible to HE. In contrast SLM-fabricated 4340 exhibits a uniform refined bainitic microstructure. How this change of microstructure influences the HE susceptibility of the steel is unknown and needs investigation. Our results demonstrate that at the same level of strength the SLM-fabricated 4340 steel exhibits significantly lower HE susceptibility than its wrought counterpart. The SLM-fabricated steel showed a higher hydrogen diffusion rate. Furthermore the refined microstructure of the SLM-fabricated steel contributes to enhanced ductility even with hydrogen. These findings indicate that AM of high-strength steels has strong potential to improve HE resistance providing a pathway to solve this long-term problem. This study highlights the critical role of microstructure in influencing HE and offers valuable insights for developing steels for hydrogen applications.
Hydrogen Embrittlement of Low Carbon Structural Steel
Jun 2014
Publication
Hydrogen embrittlement (HE) of steels is extremely interesting topic in many industrial applications while a predictive physical model still does not exist. A number of studies carried out in the world are unambiguous confirmation of that statement. Bearing in mind multiple effects of hydrogen in certain metals the specific mechanism of hydrogen embrittlement is manifested depending on the experimental conditions. In this paper structural low carbon steel for pressure purposes grade 20 - St.20 (GOST 1050-88) was investigated. Numerous tested samples were cut out from the boiler tubes of fossil fuel power plant damaged due to high temperature hydrogen attack and HE during service as a result of the development of hydrogen-induced corrosion process. Samples were prepared for the chemical composition analysis hardness measurement impact strength testing (on instrumented Charpy machine) and microstructural characterization by optical and scanning electron microscopy - SEM/EDX. Based on multi-scale special approach applied in experimental investigations the results presented in this paper indicate the simultaneous action of the hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) mechanisms of HE depending on the local concentration of hydrogen in investigated steel. These results are consistent with some models proposed in literature about a possible simultaneous action of the HELP and HEDE mechanisms in metallic materials.
Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands
Jan 2024
Publication
In the future the development of a zero-carbon economy will require large-scale hydrogen storage. This article addresses hydrogen storage capacities a critical issue for large-scale hydrogen storage in geological structures. The aim of this paper is to present a methodology to evaluate the potential for hydrogen storage in depleted natural gas reservoirs and estimate the capacity and energy of stored hydrogen. The estimates took into account the recoverable reserves of the reservoirs hydrogen parameters under reservoir conditions and reservoir parameters of selected natural gas reservoirs. The theoretical and practical storage capacities were assessed in the depleted natural gas fields of N and NW Poland. Estimates based on the proposed methodology indicate that the average hydrogen storage potential for the studied natural gas fields ranges from 0.01 to 42.4 TWh of the hydrogen energy equivalent. Four groups of reservoirs were distinguished which differed in recovery factor and technical hydrogen storage capacity. The issues presented in the article are of interest to countries considering large-scale hydrogen storage geological research organizations and companies generating electricity from renewable energy sources.
A Review on Applicability, Limitations, and Improvements of Polymeric Materials in High-Pressure Hydrogen Gas Atmospheres
Feb 2021
Publication
Typically polymeric materials experience material degradation anddamage over time in harsh environments. Improved understandingof the physical and chemical processes associated with possibledamage modes intended in high-pressure hydrogen gas exposedatmospheres will help to select and develop materials well suited forapplications fulfilling future energy demands in hydrogen as anenergy carrier. In high-pressure hydrogen gas exposure conditionsdamage from rapid gas decompression (RGD) and from aging inelastomeric as well as thermoplastic material components is unavoid-able. This review discusses the applications of polymeric materials ina multi-material approach in the realization of the “Hydrogen econo-my”. It covers the limitations of existing polymeric components thecurrent knowledge on polymeric material testing and characteriza-tion and the latest developments. Some improvements are sug-gested in terms of material development and testing procedures tofill in the gaps in existing knowledge in the literature.
Safety Margin on the Ductile to Brittle Transition Temperature after Hydrogen Embrittlement on X65 Steel
Jan 2022
Publication
Hydrogen embrittlement is a phenomenon that affects the mechanical properties of steels intended for hydrogen transportation. One affected by this embrittlement is the Ductile to Brittle Transition Temperature (DBTT) which characterizes the change in the failure mode of the steel from ductile to brittle. This temperature is conventionally defined and compared to the operating temperature as an acceptability criterion for codes. Transition temperature does not depend only on the material but also on specimen geometry particularly the thickness. Generally the transition temperature is defined for the conservative reason by Charpy impact test. Standard Charpy specimens are straight beams with a thickness of 10 mm. For thin pipes it is impossible to extract these standard specimens. One uses in this case Mini-Charpy specimens with a reduced thickness due to pipe curvature. This paper aims to quantify the effect of hydrogen embrittlement on the transition temperature of pipe steel (API 5L X65) using two types of Charpy specimens.
Techno-economic Assessment of a Solar-powered Green Hydrogen Storage Concept Based on Reversible Solid Oxide Cells for Residential Micro-grid: A Case Study in Calgary
Feb 2025
Publication
Solar photovoltaic (PV)-based electricity production has gained significant attention for residential applications in recent years. However the sustainability and economic feasibility of PV systems are highly dependent on their grid-connected opportunities which may diminish with the increasing penetration of renewable energy sources into the grid. Therefore securing reliable energy storage is crucial for both grid-connected and off-grid PV-based residential facilities. Given the high capital costs and environmental issues associated with batteries hydrogen energy emerges as a superior option for medium to large residential applications. This paper proposes an innovative concept for PV-based green hydrogen production storage and utilization using solid oxide cells within residential micro-grids. It includes comprehensive techno-economic and environmental analyses of the proposed system utilizing dynamic solar data with a case study focusing on Calgary. The results indicate that seasonal hydrogen storage significantly enhances the feasibility of meeting the electricity demand of an off-grid residential community consisting of 525 households connected to a 4.6 MW solar farm. With the inclusion of Canadian clean hydrogen tax incentives the monthly cost per household is approximately $319 potentially decreasing to $239 with advancements in solid oxide cell technology and extended lifetimes of up to 80000 h. Furthermore implementing this system in Calgary could result in a monthly reduction of at least 250 kg of CO2 emissions per household.
Coalition Analysis for Low-carbon Hydrogen Supply Chains Using Cooperative Game Theory
Feb 2025
Publication
Low-carbon hydrogen is a promising option for energy security and decarbonization. Cooperation is needed to ensure the widespread use of low-carbon energy. Cooperation among hydrogen supply chain (HSC) agents is essential to overcome the high costs the lack of infrastructure that needs heavy financial support and the environmental failure risk. But how can cooperation be operationalized and its potential benefits be measured to evaluate the impact of different allocation schemes in low-carbon HSCs? This research works around this question and aims to analyze the potential of cooperation in a generalized low-carbon HSC with limited and critical resources using systems and cooperative game theory. This work is original in several aspects. It evaluates cooperation effects under different benefit allocation schemes while considering infrastructure agents’ dependencies (production transportation and storage) and specific traits. Additionally it provides a transparent replicable methodology adaptable to various case studies. It is highlighted that HSC coalitions form hierarchies with veto power pursuing common goals like maximizing decarbonization and demand fulfillment. A cooperative game theory toolbox is developed to evaluate display and compare the results of six allocation solutions. The toolbox does not aim to determine the best allocation scheme but rather to support smart decision-making in the bargaining process facilitating debate and agreement on a trade-off solution that ensures the viability and achievement of long-term coalition goals. It is built on three naïve and three game-theoretical allocation rules (Gately Nucleolus and Shapley value) applicable to peer group games with transferable utility. Results are presented for an 8-agent low-carbon HSC along with the total environmental benefit the allocated individual shares and numerical indicators (stability satisfaction propensity to disrupt) reflecting the acceptability of allocations. Numerical results show that the Nucleolus achieves the highest satisfaction among stable allocations while the Gately allocation minimizes disruption propensity. Naïve rules yield different outcomes: “equal distribution for producers” carries the highest risk whereas “equal shares for all agents” and “proportional to individual benefits” rules are stable but perform poorly on other criteria.
Smart Screening of Hydrogen Storage Capacities in MOFs Using a Tailored Machine Learning
Sep 2025
Publication
Metal-organic frameworks (MOFs) have emerged as promising candidates for solid-state hydrogen storage owing to their exceptional specific surface area high pore volume and chemically tunable structural properties. In this work a diverse set of experimentally synthesized MOFs were evaluated to model and predict hydrogen storage capacity (wt%) using 4 key descriptors which are Brunauer–Emmett–Teller (BET) surface area pore volume operating pressure and temperature. Correlation analysis revealed positive associations between BET surface area pressure and pore volume with storage capacity and a negative association with temperature consistent with physisorption mechanism. Six machine learning models were developed: support vector regression (SVR) artificial neural networks (ANN) random forest (RF) Gaussian process regression (GPR) gradient boosting (GB) and a Committee of Expert Systems (CES) integrating all base learners. While GB was the top-performing standalone model the CES delivered the highest predictive fidelity (R2 = 0.9958 MSE = 0.0094) as confirmed by parity plots and residual analysis. SHapley Additive exPlanations (SHAP) corroborated the statistical feature rankings consistently identifying BET surface area and pressure as the most influential positive contributors in alignment with adsorption thermodynamics. Paired t-tests on root-mean-square error (RMSE) values confirmed statistically significant CES improvements over all individual models. The CES framework thus offers a dataefficient accurate and interpretable approach for rapid MOF screening with straightforward adaptability to other porous materials and adsorption-based energy storage systems.
Systematic Evaluation of Physicochemical Properties for the Selection of Alternative Liquid Organic Hydrogen Carriers
Jan 2023
Publication
Chemical hydrogen storage is a key step for establishing hydrogen as a main energy vector. For this purpose liquid organic hydrogen carriers (LOHCs) present the outstanding advantage of allowing a safe efficient and high-density hydrogen storage being also highly compatible with existing transport infrastructures. Typical LOHCs are organic compounds able to be hydrogenated and dehydrogenated at mild conditions enabling the hydrogen storage and release respectively. In addition the physical properties of these chemicals are also critical for practical implementation. In this work key properties of potential LOHCs of three different chemical families (homoaromatics and Nand O-heteroaromatics) are estimated using molecular simulations. Thus density viscosity vapour pressure octanol-water coefficient melting point flash point dehydrogenation enthalpy and hydrogen content are estimated using the programs COSMO-RS and HYSYS. In addition we have also evaluated the performance of several binary mixtures as LOHCs using these methodologies. Considering the hydrogen content characteristic temperatures and previous experimental results of the cyclic process; our simulation results suggest that 1-methylnaphthalene/1-methyldecahydronaftalene and methylbenzylpyridine/perhydromethylbenzylpyridine pairs are appropriate candidates for chemical hydrogen storage. Binary mixtures of LOHCs are also relevant alternatives since substances with a great potential can be used as LOHCS when dissolved. That is the case of naphthalene and 1-methyl-naphthalene mixtures or indoles dissolved in benzene or benzylbenzene. Concerning O-compounds although several pairs could be used as LOHCs thermodynamic and kinetic feasibility of the hydrogenation/dehydrogenation cycles must be better studied.
A Review of Influence of Hydrogen on Fracture Toughness and Mechanical Properties of Gas Transmission Pipeline Steels
Jan 2025
Publication
The existing gas transmission pipeline network can be a convenient and cost-effective way to transport hydrogen. However hydrogen can cause hydrogen embrittlement (HE) of the steels used in pipeline construction. HE is typically manifested as a reduction in fracture toughness and ductility. To ensure structural integrity it is thus important to understand the fracture toughness of pipeline steels in hydrogen gas at pipeline pressures. This paper reviews (i) the influence of hydrogen on the fracture toughness of pipeline steels and (ii) the phenomena that occurs during fracture toughness tests of pipeline steel in air and hydrogen. Also reviewed are (i) the in fluence of hydrogen on tensile properties and (ii) the diffusion and solubility of hydrogen in pipeline steels under conditions relevant to hydrogen transport in gas transmission pipelines.
No more items...