Transmission, Distribution & Storage
Altering Carbonate Wettability for Hydrogen Storage: The Role of Surfactant and CO2 Floods
Oct 2025
Publication
Underground hydrogen storage (UHS) in depleted oil and gas fields is pivotal for balancing large-scale renewable-energy systems yet the wettability of reservoir rocks in contact with hydrogen after decades of Enhanced Oil Recovery (EOR) operations remains poorly quantified. This work experimentally investigates how two common EOR legacies cationic surfactant (city-trimethyl-ammonium bromide CTAB) and supercritical carbon dioxide (SC–CO2) flooding alter rock–water–Hydrogen (H2) wettability in carbonate formations. Contact angles were measured on dolomite and limestone rock slabs at 30–75 ◦C and 3.4–17.2 MPa using a high-pressure captive-bubble cell. Crude-oil aging shifted clean dolomite from strongly water-wet (θ ~ 28–29◦) to intermediate-wet (θ ≈ 84◦). Subsequent immersion in dilute CTAB solutions (0.5–2 wt %) fully reversed this effect restoring or surpassing the original water-wetness (θ ≈ 21–28◦). Limestone samples exposed to SC-CO2 at 60–80 ◦C became more hydrophilic (θ ≈ 18–30◦) relative to untreated controls; moderate carbonate dissolution (≤6 × 103 ppm Ca2+) produced the most significant improvement in water-wetness whereas severe dissolution yielded diminishing returns. These findings show that many mature reservoirs are already water-wet (post-CO2) or can be easily re-wetted (via residual CTAB). Across all scenarios sample wettability showed little sensitivity to pressure but higher temperature consistently promoted stronger water-wetness. Future work should include dynamic core-flooding experiments with realistic reservoir.
Evaluating the Potential for Underground Hydrogen Storage (UHS) in Lithuania: A Review of Geological Viability and Storage Integrity
Feb 2025
Publication
The aim of this study is to review and identify H2 storage suitability in geological reservoirs of the Republic of Lithuania. Notably Lithuania can store clean H2 effectively and competitively because of its wealth of resources and well-established infrastructure. The storage viability in Lithuanian geological contexts is highlighted in this study. In addition when it comes to injectivity and storage capacity salt caverns and saline aquifers present less of a challenge than other kinds of storage medium. Lithuania possesses sizable subterranean reservoirs (Cambrian rocks) that can be utilized to store H2. For preliminary assessment the cyclic H2 injection and production simulation is performed. A 10-year simulation of hydrogen injection and recovery in the Syderiai saline aquifer demonstrated the feasibility of UHS though efficiency was reduced by nearly 50% when using a single well for both injection and production. The study suggests using separate wells to improve efficiency. However to guarantee economic injectivity and containment security a detailed assessment of the geological structures is required specifically at the pore scale level. The volumetric approach estimated a combined storage capacity of approximately 898.5 Gg H2 (~11 TWh) for the Syderiai and Vaskai saline aquifers significantly exceeding previous estimates. The findings underscore the importance of detailed geological data and further research on hydrogen-specific factors to optimize UHS in Lithuania. Addressing technical geological and environmental challenges through multidisciplinary research is essential for advancing UHS implementation and supporting Lithuania’s transition to a sustainable energy system. UHS makes it possible to maximize the use of clean energy reduce greenhouse gas emissions and build a more sustainable and resilient energy system. Hence intensive research and advancements are needed to optimize H2 energy for broader applications in Lithuania.
Hydrogen Storage Potential of Unlined Granite Rock Caverns: Experimental and Numerical Investigations on Geochemical Interactions
Jun 2025
Publication
Underground Hydrogen Storage (UHS) offers a promising solution for large-scale energy storage yet suitable geological formations are often scarce. Unlined rock caverns (URCs) constructed in crystalline rocks like granite present a novel alternative particularly in regions where salt caverns or porous media are unsuitable. Despite their potential URCs remain largely unexplored for hydrogen storage. This study addresses this gap by providing one of the first comprehensive investigations into the geochemical interactions between hydrogen and granite host rock using a combined experimental and numerical approach. Granite powder samples were exposed to hydrogen and inert gas (N₂) in brine at room temperature and 5 MPa pressure for 14 weeks. Results showed minimal reactivity of silicate minerals with hydrogen indicated by negligible differences in elemental concentrations between H₂ and N₂ atmospheres. A validated geochemical model demonstrated that existing thermodynamic databases can accurately predict silicate‑hydrogen interactions. Additionally a kinetic batch model was developed to simulate long-term hydrogen storage under commercial URC conditions at Haje. The model predicts a modest 0.65 % increase in mineral volume over 100 years due to mineral precipitation which decreases net porosity and potentially enhances hydrogen containment by limiting leakage pathways. These findings support the feasibility of granite URCs for UHS providing a stable long-term storage option in regions lacking traditional geological formations. By filling a critical knowledge gap this study advances scalable hydrogen storage solutions contributing to the development of resilient renewable energy infrastructure.
A Cost-Optimizing Analysis of Energy Storage Technologies and Transmission Lines for Decarbonizing the UK Power System by 2035
Mar 2025
Publication
The UK net zero strategy aims to fully decarbonize the power system by 2035 anticipating a 40–60% increase in demand due to the growing electrification of the transport and heating sectors over the next thirteen years. This paper provides a detailed technical and economic analysis of the role of energy storage technologies and transmission lines in balancing the power system amidst large shares of intermittent renewable energy generation. The analysis is conducted using the cost-optimizing energy system modelling framework REMix developed by the German Aerospace Center (DLR). The obtained results of multiple optimization scenarios indicate that achieving the lowest system cost with a 73% share of electricity generated by renewable energy sources is feasible only if planning rules in England and Wales are flexible enough to allow the construction of 53 GW of onshore wind capacity. This flexibility would enable the UK to become a net electricity exporter assuming an electricity trading market with neighbouring countries. Depending on the scenario 2.4–11.8 TWh of energy storage supplies an average of 11% of the electricity feed-in with underground hydrogen storage representing more than 80% of that total capacity. In terms of storage converter capacity the optimal mix ranges from 32 to 34 GW of lithium-ion batteries 13 to 22 GW of adiabatic compressed air energy storage 4 to 24 GW of underground hydrogen storage and 6 GW of pumped hydro. Decarbonizing the UK power system by 2035 is estimated to cost $37–56 billion USD with energy storage accounting for 38% of the total system cost. Transmission lines supply 10–17% of the total electricity feed-in demonstrating that when coupled with energy storage it is possible to reduce the installed capacity of conventional power plants by increasing the utilization of remote renewable generation assets and avoiding curtailment during peak generation times.
A Multi-objective Decision-making Framework for Renewable Energy Transportation
Aug 2025
Publication
The mismatch in renewable energy generation potential levelized cost and demand across different geographies highlight the potential of a future global green energy economy through the trade of green fuels. This potential and need call for modeling frameworks to make informed decisions on energy investments operations and regulations. In this work we present a multi-objective optimization framework for modeling and optimizing energy transmission strategies considering different generation locations transportation modes and often conflicting objectives of cost environmental impact and transportation risk. An illustrative case study on supplying renewable energy to Germany demonstrates the utility of the framework across diverse options and trade-offs. Sensitivity analysis reveals that the optimal energy carrier and transmission strategy depend on distance demand and existing infrastructure that can be re-purposed. The framework is adaptable across geographies and scales to offer actionable insights to guide investment operational and regulatory decisions in renewable energy and hydrogen supply chains.
Hydrogen Storage Potential of Salado Formation in the Permian Basin of West Texas, United States
Jun 2025
Publication
Hydrogen (H2) has the potential to become a cleaner fuel alternative to increase energy mix versatility as part of a low-carbon economy. Geological H2 storage represents a key component of the emerging H2 value chain since large-scale energy generation linked to energy generation and large-scale industrial applications will require significant upscaling of geological storage. Geological H2 storage can take place in both salt domes and bedded salt formations. Bedded salt formations offer a significant advantage for H2 storage over salt domes because of their widespread availability. This research focuses on evaluating the H2 storage potential of the Salado Formation a bedded salt deposit in the Permian Basin of West Texas in the United States. Using data from 3268 well logs this study analyzes an area of 136100 km2 to identify suitable depth and net halite thickness for H2 storage in salt caverns. In addition this work applies a novel geostatistical workflow to quantify the uncertainty in the formation’s storage potential. The H2 working gas potential of the Salado Formation ranges from 0.62 to 17.53 Tsm3 (1.75–49.68 PWh of stored energy) across low-risk to high-risk scenarios with a median potential of 1.19 Tsm3 (3.37 PWh). The counties with the largest storage potential are: Lea in New Mexico and Gaines and Andrews in Texas. These three counties account for more than 75 % of the formation’s total storage potential. This is the first study to quantify uncertainty in H2 storage estimates for a bedded salt formation while providing a detailed breakdown of results by county and 1 km2 grid sections. The findings of this work offer critical insights for developing H2 infrastructure in the Permian Basin. The Permian Basin of West Texas has the potential to become an important hub for H2 production from both natural gas and/or renewable energy. Estimating H2 storage potential is an important contribution to assess the feasibility of the entire H2 value chain in Texas. An interactive map accompanies this work allowing the readers to explore the results visually.
Above-ground Hydrogen Storage: A State-of-the-art Review
Oct 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Optimizing Storage Parameters for Underground Hydrogen Storage in Aquifers: Cushion Gas Selection, Well Pattern Design, and Purity Control
Oct 2025
Publication
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen it is essential to select the appropriate cushion gas and to study the influence of reservoir and process parameters. Based on the conceptual model of aquifer with single-well injection and production three potential cushion gas (carbon dioxide nitrogen and methane) were studied and the changes in hydrogen recovery for each cushion gas were compared. The effects of temperature initial pressure porosity horizontal permeability vertical to horizontal permeability ratio permeability gradient hydrogen injection rate and hydrogen production rate on the purity of recovered hydrogen were investigated. Additionally the impact of different well pattern on the purity of recovered hydrogen was studied. The results indicate that methane is the most effective cushion gas for improving hydrogen recovery in UHS. Different well patterns have significant impacts on the purity of recovered hydrogen. The mole fractions of methane in the produced gas for the single-well line-drive pattern and five-spot pattern were 16.8% 5% and 3.05% respectively. Considering the economic constraints the five-spot well pattern is most suitable for hydrogen storage in aquifers. Reverse rhythm reservoirs with smaller permeability differences should be chosen to achieve relatively high hydrogen recovery and purity of recovered hydrogen. An increase in hydrogen production rate leads to a significant decrease in the purity of the recovered hydrogen. In contrast hydrogen injection rate has only a minor effect. These findings provide actionable guidance for the selection of cushion gas site selection and operational design of aquifer-based hydrogen storage systems contributing to the large-scale seasonal storage of hydrogen and the balance of energy supply and demand.
Environmental and Economic Assessment of Large-scale Hydrogen Supply Chains across Europe: LOHC vs Other Hydrogen Technologies
Oct 2025
Publication
The transition to decarbonized energy systems positions hydrogen as a critical vector for achieving climate neutrality yet its large-scale transportation and storage remain key challenges. This study presents a comprehensive life cycle assessment (LCA) and economic analysis of large-scale H2 supply chains evaluating the liquid organic hydrogen carrier (LOHC) system based on benzyltoluene/perhydro-benzyltoluene (H0-BT/H12-BT) against conventional technologies: compressed gaseous hydrogen (CGH2) liquid hydrogen (LH2) and liquid ammonia (LNH3). The analysis includes multiple H2 transportation scenarios across Europe considering the steps: conditioning sea transportation post-processing and land distribution by truck or pipeline. Environmentally LOHC currently faces higher environmental impacts than CGH2 driven by energy-intensive dehydrogenation process. Truck-based distribution further amplifies impacts particularly over long distances while pipeline-based distribution significantly reduces the environmental burdens where infrastructure exists. Sensitivity analysis reveals that using H2 for dehydrogenation heat lowers process-level impacts but increases overall supply chain impacts questioning its net environmental benefit. Economically LOHC remains competitive despite high dehydrogenation costs benefiting from low sea transportation expenses compatibility with existing fossil fuel infrastructure and potential for future CAPEX and OPEX improvements. While CGH2 outperforms LH2 and LNH3 avoiding energy-intensive liquefaction and cracking its storage requirements add considerable costs. For land distribution LOHC trucks are optimal at lower capacities whereas repurposed natural gas pipelines favour CGH2 at higher scale reducing costs by up to 84 %. Despite current trade-offs the scalability flexibility and synergies with existing infrastructure position LOHC as a promising solution for long-distance H2 transport contingent on technological maturation to mitigate dehydrogenation impacts.
Fractal Fuzzy‑Based Multi‑criteria Assessment of Sustainability in Rare Earth Use for Hydrogen Storage
Aug 2025
Publication
The use of rare earth elements in hydrogen storage processes offers significant advantages in terms of increasing technological efficiency and ensuring system security. However this process also creates some serious problems in terms of environmental and economic sustainability. It is necessary to determine the most critical indicators affecting the sustainable use of these elements. Studies on this subject in the literature are quite limited and this may lead to wrong investment decisions. The main purpose of this study is to determine the most important indicators to increase the sustainable use of rare earth elements in hydrogen storage processes. An original decision-making model in which Siamese network logarithmic percentage-change driven objective weighting (LOPCOW) fractal fuzzy numbers and weighted influence super matrix with precedence (WISP) approaches are integrated in the study. This study provides an original contribution to the literature by identifying the most critical indicators affecting the sustainable use of rare earths in hydrogen storage processes by presenting an innovative model. Fractal structures such as Koch Snowflake Cantor Dust and Sierpinski Triangle can model complex uncertainties more successfully. Fractal structures are particularly effective in modeling linguistic fuzziness because their recursive nature closely mirrors the layered and imprecise way humans often express subjective judgments. Unlike linear fuzzy sets fractals can capture the patterns of ambiguity found in expert evaluations. Hydrogen storage capacity and government supports are determined as the most vital criteria affecting sustainability in rare earth use.
Machine Learning Models for the Prediction of Hydrogen Solubility in Aqueous Systems
Aug 2025
Publication
Hydrogen storage is integral to reducing CO2 emissions particularly in the oil and gas industry. However a primary challenge involves the solubility of hydrogen in subsurface environments particularly saline aquifers. The dissolution of hydrogen in saline water can impact the efficiency and stability of storage reservoirs necessitating detailed studies of fluid dynamics in such settings. Beyond its role as a clean energy carrier and precursor for synthetic fuels and chemicals understanding hydrogen’s solubility in subsurface conditions can significantly enhance storage technologies. When hydrogen solubility is high it can reduce reservoir pressure and alter the chemical composition of the storage medium undermining process efficiency. Machine learning techniques have gained prominence in predicting physical and chemical properties across various systems. One of the most complex challenges in hydrogen storage is predicting its solubility in saline water influenced by factors such as pressure temperature and salinity. Machine learning models offer substantial promise in improving hydrogen storage by identifying intricate nonlinear relationships among these parameters. This study uses machine learning algorithms to predict hydrogen solubility in saline aquifers employing techniques such as Bayesian inference linear regression random forest artificial neural networks (ANN) support vector machines (SVM) and least squares boosting (LSBoost). Trained on experimental data and numerical simulations these models provide precise predictions of hydrogen solubility which is strongly influenced by pressure temperature and salinity under a wide range of thermodynamic conditions. Among these methods RF outperformed the others achieving an R2 of 0.9810 for test data and 0.9915 for training data with RMSE values of 0.048 and 0.032 respectively. These findings emphasize the potential of machine learning to significantly optimize hydrogen storage and reservoir management in saline aquifers.
Polymers and Composites for Hydrogen Economy: A Perspective
Oct 2025
Publication
This paper provides authors’ perspective on the current advances and challenges in utilising polymers and composites in hydrogen economy. It has originated from ‘Polymers and Composites for Hydrogen Economy’ symposium organised in March 2025 at the University of Warwick. This paper presents views from the event and thus provides a perspective from academia and industry on the ongoing advances and challenges for those materials in hydrogen applications.
Proactive Regulation for Hydrogen Supply Chains: Enhancing Logistics Frameworks in Australia
Jun 2025
Publication
The rapid growth of Australia’s hydrogen economy highlights the pressing need for innovative regulatory strategies that address the distinct characteristics of hydrogen supply chains. This study focuses on the supply-side dynamics of the hydrogen energy sector emphasizing the importance of tailored frameworks to ensure the safe efficient and reliable movement of hydrogen across the supply chain. Key areas of analysis include the regulatory challenges associated with various transportation and storage methods particularly during long-distance transport and extended storage periods. The research identifies notable gaps and inconsistencies within the current regulatory systems across Australian states which inhibit the development of a unified hydrogen economy. To address these challenges the concept of Proactive Regulation for Hydrogen Supply (PRHS) is introduced. PRHS emphasizes anticipatory governance that adapts alongside technological advancements to effectively manage hydrogen transportation and storage. The study advocates for harmonizing fragmented state frameworks into a cohesive national regulatory system to support the sustainable and scalable expansion of hydrogen logistics. Furthermore the paper examines the potential of blockchain technology to enhance safety accountability and traceability across the hydrogen supply chain offering practical solutions to current regulatory and operational barriers.
Investigation of Erosion Behavior and Life Prediction of Stainless Steel Tube Under Hydrogen Gas with High Velocity
Sep 2025
Publication
The erosion behavior and the service life of a hydrogen transmission tube with high velocity suitable for a hydrogen fuel aviation engine are not clear which is the bottleneck for its application. In this study a coupled model considering the fluid flow field of hydrogen and discrete motion of particles was established. The effects of the geometry parameters and erosion parameters on the hydrogen erosion behavior were investigated. The maximum erosion rate increased exponentially with the increased hydrogen velocity and increased linearly with the increased erosion time. The large bend radius and inner diameter of the bend tube contributed to the decreased erosion rate. There was an optimized window of the bend angle for a small erosion rate. The relationship between the accumulated thickness loss and maximum erosion rate was established. The prediction model of the service life was established using fourth strength theory. The service life of the tube was sensitive to the hydrogen velocity and erosion time. The experiments were conducted and the variations in thickness and hardness were measured. The simulated models agreed with the experiments and could provide guidance for the parameter selection and prediction of the service life of a bend tube.
Electrospun Metal Hydride-polymer Nanocomposite Fibers for Enhanced Hydrogen Storage and Kinetics
Oct 2025
Publication
One of the key elements in the advancement of hydrogen (H2) and fuel cell technologies is to store H2 effectively for use in various industries such as transportation defense portable electronics and energy. Because of its highest energy density availability and environmental and health benefits H2 stands as a promising future energy carrier. Currently enterprises are searching for a solution for energy distribution management and H2 gas storage. Thus there is a need to develop an innovative solution to H2 storage that might be considered for later use in aviation applications. This study aims to synthesize an electrospun nanocomposite fiber (NCF) for an H2 storage application and to understand the absorption kinetics of the resultant highly porous NCF mats. This study incorporates functional NCFs with H2-sensitive inclusions to increase the storage capacity and absorption/desorption kinetics of H2 gas at lower temperatures and pressures. Here the electrospinning technique is utilized to produce NCFs with various nanoscale metal hydrides (MHs) and conductive particles which support enhancing H2 storage capacity and kinetics. These NCFs enable controlled H2 storage and improve thermal properties. Selected polymeric materials for H2 storage that have been investigated are polyacrylonitrile (PAN) polymethyl methacrylate (PMMA) and sulfonated polyether ether ketone (SPEEK) in combination with MHs and multiwalled carbon nanotubes (MWCNTs). On testing it was observed that H2 capacity with SPEEK which includes 4 wt% MWCNTs and 4 wt% MH MmNi4.5Fe0.5 shows significant H2 uptake compared to a PAN/PMMA polymer.
A Game Theory Approach in Hydrogen Supply Chain Resilience: Focus on Pricing, Sourcing, and Transmission Security
Jun 2025
Publication
This study examines the pricing and assesses resilience methods in hydrogen supply chains by thoroughly analyzing two main disruption scenarios. The model examines a scenario in which a hydrogen production company depends on a Renewable Power plant (RP) for its electricity supply. Ensuring a steady and efficient hydrogen supply chain is crucial but outages at renewable power sources provide substantial obstacles to sustainability and operational continuity. Therefore in the event of disruptions at the RP the company has two options for maintaining resilience: either sourcing electricity from a Fossil fuel Power plant (FP) through a grid network to continue hydrogen production or purchasing hydrogen directly from another company and utilizing third-party transportation for delivery. Using a game theoretic approach we examine how different methods affect demand satisfaction cost implications and environmental sustainability. The study employs sensitivity analysis to evaluate the impact of different disruption probabilities on each scenario. In addition a unique sensitivity analysis is performed to examine the resilience of transmission security to withstand disruptions. This study evaluates how investments in security measures affect the strength and stability of the supply chain in various scenarios of disruption. Our research suggests that the first scenario offers greater reliability and cost-effectiveness along with a higher resilience rate compared to the second scenario. Furthermore the examination of the environmental impact shows that the first scenario has a smaller amount of CO2 emissions per kg of hydrogen. This study offers important insights for supply chain managers to optimize resilience measures hence improving reliability reducing costs and minimizing environmental effects.
Dimensions, Structure, and Morphology Variations of Carbon-based Materials for Hydrogen Storage: A Review
Jul 2025
Publication
The swift and far-reaching evolution of advanced nanostructures and nanotechnologies has accelerated the research rate and extent which has a huge prospect for the benefit of the practical demands of solid-state hydrogen storage implementation. Carbonaceous materials are of paramount importance capable of forming versatile structures and morphology. This review aims to highlight the influence of the carbon material structure dimension and morphology on the hydrogen storage ability. An extensive range of synthesis routes and methods produces diverse micro/nanostructured materials with superb hydrogen-storing properties. The structures of carbon materials used for hydrogen adsorption from 0 to 3D and fabrication methods and techniques are discussed. Besides highlighting the striking merits of nanostructured materials for hydrogen storage remaining challenges and new research avenues are also considered.
Development of an Experimental Setup for Testing X52 Steel SENT Specimens in Electrolytic Hydrogen to Explore Repurposing Potential of Pipelines
Apr 2025
Publication
Hydrogen is considered a key alternative to fossil fuels in the broader context of ecological transition. Repurposing natural gas pipelines for hydrogen transport is one of the challenges of this approach. However hydrogen can diffuse into metallic lattices leading to hydrogen embrittlement (HE). For this reason typically ductile materials can experience unexpected brittle fractures and it is therefore necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport. This study examines the relationship between the microstructure of the circumferential weld joint in X52 pipeline steel and hydrogen concentration introduced electrolytically. Base material heat affected zone and fused zone were subjected to 1800 3600 7200 and 14400 s of continuous charging with a current density J = − 10 mA/cm2 in an acid solution. Results showed that the fusion zone absorbed the most hydrogen across all charging times while the base material absorbed more hydrogen than the heat-affected zone due to the presence of non-metallic inclusions. Fracture toughness was assessed using single edge notch tension specimens (SENT) in air and electrolytic hydrogen. Results indicate that the base material is particularly vulnerable to hydrogen environments exhibiting the greatest reduction in toughness when exposed to hydrogen compared to air.
Hydrogen Storage Potential in Underground Coal Gasification Cavities: A MD Simulation of Hydrogen Adsorption and Desorption Behavior in Coal Nanopores
May 2025
Publication
Underground hydrogen storage (UHS) in geological formations presents a viable option for long-term large-scale H2 storage. A physical coal model was constructed based on experimental tests and a MD simulation was used to investigate the potential of UHS in underground coal gasification (UCG) cavities. We investigated H2 behavior under various conditions including temperatures ranging from 278.15 to 348.15 K pressures in the range of 5–20 MPa pore sizes ranging from 1 to 20 nm and varying water content. We also examined the competitive adsorption dynamics of H2 in the presence of CH4 and CO2 . The findings indicate that the optimal UHS conditions for pure H2 involve low temperatures and high pressures. We found that coal nanopores larger than 7.5 nm optimize H2 diffusion. Additionally higher water content creates barriers to hydrogen diffusion due to water molecule clusters on coal surfaces. The preferential adsorption of CO2 and CH4 over H2 reduces H2 -coal interactions. This work provides a significant understanding of the microscopic behaviors of hydrogen in coal nanopores at UCG cavity boundaries under various environmental factors. It also confirms the feasibility of underground hydrogen storage (UHS) in UCG cavities.
The Link Between Microstructural Heterogeneity and Hydrogen Redistribution
Jul 2025
Publication
Green hydrogen is likely to play a major role in decarbonising the aviation industry. It is crucial to understand the effects of microstructure on hydrogen redistribution which may be implicated in the embrittlement of candidate fuel system metals. We have developed a multiscale finite element modelling framework that integrates micromechanical and hydrogen transport models such that the dominant microstructural effects can be efficiently accounted for at millimetre length scales. Our results show that microstructure has a significant effect on hydrogen localisation in elastically anisotropic materials which exhibit an interesting interplay between microstructure and millimetre-scale hydrogen redistribution at various loading rates. Considering 316L stainless steel and nickel a direct comparison of model predictions against experimental hydrogen embrittlement data reveals that the reported sensitivity to loading rate may be strongly linked with rate-dependent grain scale diffusion. These findings highlight the need to incorporate microstructural characteristics in hydrogen embrittlement models.
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
AI-driven Advances in Composite Materials for Hydrogen Storage Vessels: A Review
Sep 2025
Publication
This review provides a comprehensive examination of artificial intelligence methods applied to the design optimization and performance prediction of composite-based hydrogen storage vessels with a focus on composite overwrapped pressure vessels. Targeted at researchers engineers and industrial stakeholders in materials science mechanical engineering and renewable energy sectors the paper aims to bridge traditional mechanical modeling with evolving AI tools while emphasizing alignment with standardization and certification requirements to enhance safety efficiency and lifecycle integration in hydrogen infrastructure. The review begins by introducing HSV types their material compositions and key design challenges including high-pressure durability weight reduction hydrogen embrittlement leakage prevention and environmental sustainability. It then analyzes conventional approaches such as finite element analysis multiscale modeling and experimental testing which effectively address aspects like failure modes fracture strength liner damage dome thickness winding angle effects crash behavior crack propagation charging/discharging dynamics burst pressure durability reliability and fatigue life. On the other hand it has been shown that to optimize and predict the characteristics of hydrogen storage vessels it is necessary to combine the conventional methods with artificial intelligence methods as conventional methods often fall short in multi-objective optimization and rapid predictive analytics due to computational intensity and limitations in handling uncertainty or complex datasets. To overcome these gaps the paper evaluates hybrid frameworks that integrate traditional techniques with AI including machine learning deep learning artificial neural networks evolutionary algorithms and fuzzy logic. Recent studies demonstrate AI’s efficacy in failure prediction design optimization to mitigate structural risks structural health monitoring material property evaluation burst pressure forecasting crack detection composite lay-up arrangement weight minimization material distribution enhancement metal foam ratio optimization and optimal material selection. By synthesizing these advancements this work underscores AI’s potential to accelerate development reduce costs and improve HSV performance while advocating for physics-informed models robust datasets and regulatory alignment to facilitate industrial adoption.
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
Jun 2025
Publication
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy leveraging the unique geomechanical properties of salt formations—including low permeability self-healing capabilities and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage such as rapid injection and extraction capabilities cost-effectiveness compared to other storage methods (e.g. hydrogen storage in depleted oil and gas reservoirs aquifers and aboveground tanks) and minimal environmental impact. It also addresses critical challenges including hydrogen embrittlement microbial activity and regulatory fragmentation. Through global case studies best operational practices for risk mitigation in real-world applications are highlighted such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan Hubei Yunying and Henan Pingdingshan. By integrating technological innovation policy coordination and cross-sector collaboration salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy bridging the gap between renewable energy production and industrial decarbonization.
Investigating the Effects of Flow Regime on Hydrogen Transport in Salt Rock
Jun 2025
Publication
Underground hydrogen storage (UHS) in salt caverns is emerging as a promising solution for the transition to a sustainable energy future. However a thorough understanding of hydrogen flow mechanisms through salt rock is essential to ensure safe and efficient storage operations. In this study we conducted hydrogen flow experiments in salt rocks using the pressure pulse decay (PPD) method covering a range of hydrogen pore pressures from 0.4 MPa to 7.5 MPa within the slip and transitional flow regimes (Knudsen numbers between 0.04 and 1.5). The Knudsen numbers were determined by measuring the pore size distribution (PSD) of the salt rock samples and assigning an average pore size to each sample based on the measured PSD. Our results indicate that the intrinsic permeability of the tested salt rock samples ranges from 5 × 10− 21 m2 to 1.0 × 10− 20 m2 . However a significant enhancement in apparent permeability up to 10 times the intrinsic permeability was observed particularly at lower pressures. This permeability enhancement is attributed to the nanoscale pore structure of salt rocks where the mean free path of hydrogen becomes comparable to the pore sizes leading to a shift from slip flow to the transitional flow regime. The results further reveal that the first-order slip model underestimates the apparent permeability in the transitional flow regime despite its satisfactory accuracy in the slip region. Moreover the higher-order slip model demonstrates acceptable accuracy across both the slip and transitional flow regimes.
Hydrogen Storage Systems at Ports for Enhanced Safety and Sustainability: A Review
Sep 2025
Publication
With the increasing demand for clean energy and the global push toward carbon neutrality hydrogen has emerged as a promising alternative fuel. Ports are critical nodes in the hydrogen supply chain that are increasingly being utilized as long-term hydrogen storage hubs. However integrating hydrogen storage systems into port infrastructure presents unique technical environmental and safety challenges. This review systematically examines current technologies used for hydrogen storage in port environments—including compressed gas cryogenic liquid cryocompressed gas ammonia liquid organic hydrogen carriers solid-state hydrides and underground storage. Each technology is evaluated based on performance infrastructure requirements accident risks environmental impact and cost. The study also assesses port-specific infrastructure vulnerabilities under operational stress and climate change conditions and explores strategies for accident prevention emergency response and postincident recovery. A comprehensive framework is proposed to enhance the resilience and safety of hydrogen storage systems at ports. This study offers valuable insights for stakeholders and researchers by addressing technical gaps regulatory challenges and future directions for sustainable and safe hydrogen storage in port facilities
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
Oct 2025
Publication
As industry moves from fossil fuels to green energy substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns depleted hydrocarbon fields and saline aquifers. Among other criteria these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is thus of utmost importance. In this review the main factors influencing fluid flow are examined. These are the wettability of the caprock formation the interfacial tension (IFT) between the rock and the gas or liquid phases and the ability of gases to diffuse through it. To achieve effective sealing the caprock formation should possess low porosity a disconnected or highly complicated pore system low permeability and remain strongly water-wet regardless of pressure and temperature conditions. In addition it must exhibit low rock–liquid IFT while presenting high rock–gas and liquid–gas IFT. Finally the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals the evaporites low-organic-content shales mudstones muscovite clays and anhydrite have been identified as highly effective caprocks offering excellent sealing capabilities and preventing hydrogen leakages.
Study on the Thermodynamic Behavior of Large Volume Liquid Hydrogen Bottle Under the Coupling of Different Motion States and Operational Parameters
Oct 2025
Publication
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states different operational pressures and different insulation thicknesses and their mutual coupling scenarios were studied. The results show that the movement makes the phase state in the liquid hydrogen bottle more uniform the pressure drop rate faster and the temperature lower: the heating rate in the liquid hydrogen bottle at 0.85 MPa operational pressure is lower than that at 0.5 MPa and 1.2 MPa. When the operational pressure is coupled with the motion state the influence of the motion state on the thermodynamic behavior of the fluid is dominant: the temperature near the wall rises rapidly. The temperature near the tank wall rises rapidly; however as the thickness of the insulation layer increases both the heating rate inside the liquid hydrogen tank and the temperature difference within the tank gradually tend to stabilize and become uniform.
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
Jul 2025
Publication
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies underground storage solutions such as radioactive disposal CO2 NH3 and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D) often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms which are ubiquitous in laboratory environments can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp. Enterobacter sp. and Cronobacter sp. bacteria which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods including ultraviolet irradiation autoclaving oven heating ethanol treatments and gamma irradiation in removing the microorganisms from silica sand. Additionally the consideration of their effects on mineral properties are reviewed. A total of 567 vials each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable reproducible data particularly in future studies where microbial contamination could induce artifacts in laboratory research.
Underground Hydrogen Storage Suitability Index: A Geological Tool for Evaluating and Ranking Storage Sites
Jun 2025
Publication
Underground Hydrogen Storage (UHS) is a promising solution to maximize the use of hydrogen as an energy carrier. This study presents a standardized methodology for assessing UHS quality by introducing the Underground Hydrogen Storage Suitability Index (UHSSI) which integrates three sub-indices: the Caprock Potential Index (CPI) the Reservoir Quality Index (RQI) and the Site Potential Index (SPI). Parameters such as porosity permeability lithology caprock thickness depth temperature and salinity are evaluated and ranked from 0 (unsuitable) to 5 (excellent). The methodology was validated using data from six worldwide sites including salt caverns and aquifers. Sites like Moss Bluff Clemens Dome and Spindletop (USA) scored highly while Teesside (UK) Lobodice (Czech Republic) and Beynes (France) were classified as unsuitable due to shallow depths and microbial activity. A software tool the UHSSI Calculator was developed to automate site evaluations. This approach offers a cost-effective tool for preliminary screening and supports the safer development of UHS.
Influence of Optimized Decarburization on Hydrogen Uptake and Aqueous Corrosion Behaviors of Ultrasong Martensitic Steel
Oct 2025
Publication
This study examined the effects of microstructural alterations by controlling the surface carbon gradient via a thermal decarburizing process on hydrogen evolution adsorption and permeation along with neutral aqueous corrosion behavior of an ultra-high-strength steel with a tensile strength of 2.4 GPa. Microstructural analyses showed that an optimized decarburizing process at 1100 ◦C led to partial transformation to ferrite without precipitating Fe3C in a marked fraction. Electrochemical impedance spectroscopy along with the permeation results revealed that there was a notable decrease in hydrogen evolution and subsurface hydrogen concentration. Moreover immersion test in a neutral aqueous condition showed slower corrosion kinetics with a comparatively uniform corroded surface indicating improved corrosion resistance. However the extent of improvement is significantly limited under non-optimized decarburizing conditions specifically when the temperature is below or above 1100 ◦C due to insufficient decarburization or the formation of coarse-spheroidized Fe3C particles accompanied by a porous subsurface layer. In particular a far greater adsorption tendency at bridge sites on Fe3C (001) in a pre-charged surface is highlighted. This study provides insight that the adjustment of the carbon gradient through an optimized annealing process can be an effective technical strategy to overcome the critical drawbacks of ultrastrong martensitic steels under hydrogen-rich or corrosive conditions.
Addressing Spatiotemporal Mismatch via Hourly Pipeline Scheduling: Regional Hydrogen Energy Supply Optimization
Nov 2025
Publication
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and optimizes hourly flow schedules to minimize annualized cost and CO2 emissions simultaneously. For 15000 HFCVs expected in 2025 (137 t d−1 demand) the Pareto-optimal design consists of 13 production plants 43 pipelines and 38 refueling stations delivering 50767 t yr−1 at 68% pipeline utilization. Hebei provides 88% of the hydrogen 70% of which is consumed in the two megacities. Hourly profiles reveal that 65% of electrolytic output coincides with local wind–solar peaks whereas refueling surges arise during morning and evening rush hours; the proposed schedule offsets the 4–6 h mismatch without additional storage. Transport distances are 40% < 50 km 35% 50–200 km and 25% > 200 km. Raising the green hydrogen share from 10% to 70% increases total system cost from USD 1.56 bn to USD 2.73 bn but cuts annual CO2 emissions from 142 kt to 51 kt demonstrating the trade-off between cost and decarbonization. The model quantifies the value of sub-day pipeline scheduling in resolving spatial–temporal imbalances for large-scale low-carbon hydrogen supply.
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
Nov 2025
Publication
The effect of tempering temperature and tempering time on the density of hydrogen traps hydrogen diffusivity and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second third and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity the highest trap density and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 ◦C for 0.25 h. In contrast tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However as the tempering time or temperature increases the opposite occurs which is attributed to the formation of alloy carbides. Finally hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage tempering times of 0.25 h and in the as-quenched condition. However with increasing tempering time hydrogen has a hardening effect.
A Comprehensive Review of Influence of Critical Parameters on Wettability of Rock-hydrogen-brine Systems: Implications for Underground Hydrogen Storage
Oct 2025
Publication
The rock wettability is one of the most critical parameters that influences rock storage potential trapping and H2 withdrawal rate during Underground hydrogen storage (UHS). However the existing review articles on wettability of H2-brine-rock systems do not provide detailed information on complexities introduced by reservoir wettability influencing parameters such as high pressure temperature salinity conditions micro-biotic effects cushion gases and organic acids relevant to subsurface environments. Therefore a comprehensive review of existing research on various parameters influencing rock wettability during UHS and residual trapping of H2 was conducted in this study. Literature that provides insight into molecular-level interaction through machine learning and molecular dynamic (MD) simulations and role of surface-active chemicals such as nanoparticles surfactants and wastewater chemicals were also reviewed. The review suggested that UHS could be feasible in clean geo-storage formations but the presence of rock surface contaminants at higher storage depth and microbial effects should be accounted for to prevent over-estimation of the rock storage potentials. The H2 wettability of storage/caprocks and associated risks of UHS projects could be higher in rocks with high proportion of carbonate minerals organic-rich shale and basalt with high plagioclase minerals content. However treatment of rock surfaces with nanofluids surfactants methylene blue and methyl orange has proven to alter the rock wettability from H2-wet towards water-wet. Research results on effect of rock wettability on residually trapped hydrogen and snap-off effects during UHS are contradictory thus further studies would be required in this area. The review generally concludes that rock wettability plays prominent role on H2 storage due to the frequency and cyclic loading of UHS hence it is vital to evaluate the effects of all possible wettability influencing parameters for successful designs and implementation of UHS projects.
Threats and Challenges Associated with Ammonia Transport via Pipeline Systems
Oct 2025
Publication
Ammonia due to its favorable physicochemical properties is considered an effective hydrogen carrier enabling the storage of surplus energy generated from renewable sources. Large-scale implementation of this concept requires the safe transport of ammonia over long distances commonly achieved through pipeline systems—a practice with global experience dating back to the 1960s. However operational history demonstrates that failures in such infrastructures remain inevitable often leading to severe environmental consequences. This article reviews both passive and active methods for preventing and mitigating incidents in ammonia pipeline systems. Passive measures include the assessment of material compatibility with ammonia and the designation of adequate buffer zones. Active methods focus on leak detection techniques such as balance-based systems acoustic monitoring and ammonia-specific sensors. Additionally the article highlights the potential environmental risks associated with ammonia release emphasizing its contribution to the greenhouse effect as well as its adverse impacts on soil surface and groundwater and human health. By integrating historical lessons with modern safety technologies the article contributes to the development of reliable ammonia transport infrastructure for the hydrogen economy.
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
Oct 2025
Publication
This study investigates the performance degradation of X70 steel weld material in highpressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments including varying gas media (nitrogen methane hydrogen-blended) pressure conditions (0.1–10 MPa) and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests combined with fracture morphology and microstructure analysis reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization.
Changes in the Operating Conditions of Distribution Gas Networks as a Function of Altitude Conditions and the Proportion of Hydrogen in Transported Natural Gas
Nov 2025
Publication
The article presents a comparison between the pressure conditions of a real low-pressure gas network and the results of hydraulic calculations obtained using various simulation programs and empirical equations. The calculations were performed using specialized gas network analysis software: STANET (ver 10.0.26) SimNet SSGas 7 and SONET. Additionally the simulation results were compared with calculations based on the empirical Darcy–Weisbach and Renouard equations. In the first part of the analysis two calculation models were compared. In one model the geodetic elevation of individual network nodes was included (elevation-aware model) while in the second calculations were performed without considering node elevation (flat model). For low-pressure gas networks accounting for elevation is critical due to the presence of the pressure recovery phenomenon which does not occur in medium- and high-pressure networks. Furthermore considering the growing need to increase the share of renewable energy the study also examined the network’s operating conditions when using natural gas–hydrogen mixtures. The following hydrogen concentrations were considered: 2.5% 5.0% 10.0% 20.0% and 50.0%. The results confirm the importance of incorporating elevation data in the modeling of low-pressure gas networks. This is supported by the small differences between calculated results and actual pressure measurements taken from the operating network. Moreover increasing the hydrogen content in the mixture intensifies the pressure recovery effect. The hydraulic results obtained using different computational tools were consistent and showed only minor discrepancies.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
Advanced Analytical Modeling of Polytropic Gas Flow in Pipelines: Unifying Flow Regimes for Efficient Energy Transport
Oct 2025
Publication
In the present work a new analytical model of polytropic flow in constant-diameter pipelines is developed to accurately describe the flow of compressible gases including natural gas and hydrogen explicitly accounting for heat exchange between the fluid and the environment. In contrast to conventional models that assume isothermal or adiabatic conditions the proposed model simultaneously accounts for variations in pressure temperature density and entropy i.e. it is based on a realistic polytropic gas flow formulation. A system of differential equations is established incorporating the momentum continuity energy and state equations of the gas. An implicit closed-form solution for the specific volume along the pipeline axis is then derived. The model is universal and allows the derivation of special cases such as adiabatic isothermal and isentropic flows. Numerical simulations demonstrate the influence of heat flow on the variation in specific volume highlighting the critical role of heat exchange under real conditions for the optimization and design of energy systems. It is shown that achieving isentropic flow would require the continuous removal of frictional heat which is not practically feasible. The proposed model therefore provides a clear reproducible and easily visualized framework for analyzing gas flows in pipelines offering valuable support for engineering design and education. In addition a unified sensitivity analysis of the analytical solutions has been developed enabling systematic evaluation of parameter influence across the subsonic near-critical and heated flow regimes.
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
Oct 2025
Publication
As a key zero-carbon energy carrier the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However the ultra-low temperature ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area thereby suppressing boil-off gas generation and enhancing pressure stability which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen crucial for the accuracy of the phase-change simulation were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database as the ideal gas law is invalid under the cryogenic conditions studied. Specifically the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phasechange processes involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters including inlet flow conditions and inlet liquid temperature on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy.
Enhancing Regional Integrated Energy Systems Through Seasonal Hydrogen Storage: Insights from a Stackelberg Game Model
Nov 2025
Publication
This study enhances regional integrated energy systems by proposing a Stackelberg planning–operation model with seasonal hydrogen storage addressing source–network separation. An equilibrium algorithm is developed that integrates a competitive search routine with mixed-integer optimization. In the price–energy game framework the hydrogen storage operator is designated as the leader while energy producers load aggregators and storage providers act as followers facilitating a distributed collaborative optimization strategy within the Stackelberg game. Using an industrial park in northern China as a case study the findings reveal that the operator’s initiative results in a revenue increase of 38.60% while producer profits rise by 6.10% and storage-provider profits surge by 108.75%. Additionally renewable accommodation reaches 93.86% reflecting an absolute improvement of 20.60 percentage points. Total net energy imbalance decreases by 55.70% and heat-loss load is reduced by 31.74%. Overall the proposed approach effectively achieves cross-seasonal energy balancing and multi-party gains providing an engineering-oriented reference for addressing energy imbalances in regional integrated energy systems.
Application of Machine Learning and Data Augmentation Algorithms in the Discovery of Metal Hydrides for Hydrogen Storage
Nov 2025
Publication
The development of efficient and sustainable hydrogen storage materials is a key challenge for realizing hydrogen as a clean and flexible energy carrier. Among various options metal hydrides offer high volumetric storage density and operational safety yet their application is limited by thermodynamic kinetic and compositional constraints. In this work we investigate the potential of machine learning (ML) to predict key thermodynamic properties—equilibrium plateau pressure enthalpy and entropy of hydride formation—based solely on alloy composition using Magpie-generated descriptors. We significantly expand an existing experimental dataset from ~400 to 806 entries and assess the impact of dataset size and data augmentation using the PADRE algorithm on model performance. Models including Support Vector Machines and Gradient Boosted Random Forests were trained and optimized via grid search and cross-validation. Results show a marked improvement in predictive accuracy with increased dataset size while data augmentation benefits are limited to smaller datasets and do not improve accuracy in underrepresented pressure regimes. Furthermore clustering and cross-validation analyses highlight the limited generalizability of models across different material classes though high accuracy is achieved when training and testing within a single hydride family (e.g. AB2). The study demonstrates the viability and limitations of ML for accelerating hydride discovery emphasizing the importance of dataset diversity and representation for robust property prediction.
Material Compatibility in Hydrogen Infrastructure: Challenges, Advances, and Future Prospects
Oct 2025
Publication
The adoption of hydrogen as a clean energy carrier depends heavily on the development of materials capable of enduring the extreme conditions associated with its production storage and transportation. This review critically evaluates the performance of metals polymers and composites in hydrogen-rich environments focusing on degradation mechanisms such as hydrogen embrittlement rapid gas decompression and long-term fatigue. Metals like carbon steels and high-strength alloys can experience a 30–50 % loss in tensile strength due to hydrogen exposure while polymers suffer from permeability increases and sealing degradation. Composite materials though strong and lightweight may lose up to 15 % of their mechanical properties over time in hydrogen environments. The review highlights current mitigation strategies including hydrogen-resistant alloys polymer blends protective coatings composite liners and emerging technologies like predictive modeling and AI-based material design. With hydrogen production expected to reach 500 GW globally by 2030 improving material compatibility and developing international standards are essential for scaling hydrogen infrastructure safely and cost-effectively. This work presents an integrated analysis of material degradation mechanisms highlights key challenges across metals polymers and composites in hydrogen environments and explores recent innovations and future strategies to enhance durability and performance in hydrogen infrastructure.
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
Nov 2025
Publication
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass momentum and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution average pressure of the system and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally the pair (273 K 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry along with evaluating dynamic cycling performance in practical operating conditions. Additionally experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications.
Underground Hydrogen Storage: Insights for Future Development
Oct 2025
Publication
Underground hydrogen storage (UHS) is a relatively new technology that demonstrates notable potential for the efficient storage of large quantities of green hydrogen. Its large-scale implementation requires a comprehensive understanding of numerous factors including safe and effective storage methods as well as overcoming various thresholds and challenges. This article presents strategies for accelerating the implementation of this technology identifying the thresholds and challenges affecting the development and future scale-up of UHS. It characterises challenges and constraints related to geology (including the type and geological characterisation of structures hydrogen storage capacity and hydrogen interactions with underground environments) the technological aspects of hydrogen storage (such as infrastructure management and monitoring) and economic and legal considerations. The need for the rapid implementation of demonstration projects has been emphasised. The identified thresholds and challenges along with the resulting recommendations are crucial for paving the way for the large-scale implementation of UHS. Addressing these issues will significantly influence the implementation of this technology post-2030.
No more items...