Transmission, Distribution & Storage
Preliminary Analysis of Refilling Cold-adsorbed Hydrogen Tanks
Sep 2023
Publication
The effective storage of hydrogen is a critical challenge that needs to be overcome for it to become a widely used and clean energy source. Various methods exist for storing hydrogen including compression at high pressures liquefaction through extreme cooling (i.e. -253 °C) and storage with chemical compounds. Each method has its own advantages and disadvantages. MAST3RBoost (Maturing the Production Standards of Ultraporous Structures for High Density Hydrogen Storage Bank Operating on Swinging Temperatures and Low Compression) is a European funded Project aiming to establish a reliable benchmark for cold-adsorbed H2 storage (CAH2) at low compression levels (100 bar or below). This is achieved through the development of advanced ultraporous materials suitable for mobility applications such as hydrogen-powered vehicles used in road railway air and water transportation. The MAST3RBoost Project utilizes cutting-edge materials including Activated Carbons (ACs) and high-density MOFs (Metalorganic Frameworks) which are enhanced by Machine Learning techniques. By harnessing these materials the project seeks to create a groundbreaking path towards meeting industry goals. The project aims to develop the world's first adsorption-based demonstrator at a significant kg-scale. To support the design of the storage tank the project employs Computational Fluid Dynamics (CFD) software which allows for numerical investigations. In this paper a preliminary analysis of the tank refilling process is presented with a focus on the impact of the effect of the tank and hydrogen temperatures on quantity of hydrogen adsorbed.
Magnesium-Based Hydrogen Storage Alloys: Advances, Strategies, and Future Outlook for Clean Energy Applications
May 2024
Publication
Magnesium-based hydrogen storage alloys have attracted significant attention as promising materials for solid-state hydrogen storage due to their high hydrogen storage capacity abundant reserves low cost and reversibility. However the widespread application of these alloys is hindered by several challenges including slow hydrogen absorption/desorption kinetics high thermodynamic stability of magnesium hydride and limited cycle life. This comprehensive review provides an in-depth overview of the recent advances in magnesium-based hydrogen storage alloys covering their fundamental properties synthesis methods modification strategies hydrogen storage performance and potential applications. The review discusses the thermodynamic and kinetic properties of magnesium-based alloys as well as the effects of alloying nanostructuring and surface modification on their hydrogen storage performance. The hydrogen absorption/desorption properties of different magnesium-based alloy systems are compared and the influence of various modification strategies on these properties is examined. The review also explores the potential applications of magnesium-based hydrogen storage alloys including mobile and stationary hydrogen storage rechargeable batteries and thermal energy storage. Finally the current challenges and future research directions in this field are discussed highlighting the need for fundamental understanding of hydrogen storage mechanisms development of novel alloy compositions optimization of modification strategies integration of magnesium-based alloys into hydrogen storage systems and collaboration between academia and industry.
A Comparative Study on Energy Efficiency of the Maritime Supply Chains for Liquefied Hydrogen, Ammonia, Methanol and Natural Gas
Jun 2023
Publication
To cope with climate change emerging fuels- hydrogen ammonia and methanol- have been proposed as promising energy carriers that will replace part of the liquefied natural gas (LNG) in future maritime scenarios. Energy efficiency is an important indicator for evaluating the system but the maritime supply system for emerging fuels has yet to be revealed. In this study the energy efficiency of the maritime supply chain of hydrogen ammonia methanol and natural gas is investigated considering processes including production storage loading transport and unloading. A sensitivity analysis of parameters such as ambient temperature storage time pipeline length and sailing time is also carried out. The results show that hydrogen (2.366%) has the highest daily boil-off gas (BOG) rate and wastes more energy than LNG (0.413%) with ammonia and methanol both being lower than LNG. The recycling of BOG is of great importance to the hydrogen supply chain. When produced from renewable energy sources methanol (98.02%) is the most energy efficient followed by ammonia with hydrogen being the least (89.10%). This assessment shows from an energy efficiency perspective that ammonia and methanol have the potential to replace LNG as the energy carrier of the future and that hydrogen requires efficient BOG handling systems to increase competitiveness. This study provides some inspirations for the design of global maritime supply systems for emerging fuels.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Hydrogen Gas Compression for Efficient Storage: Balancing Energy and Increasing Density
May 2024
Publication
This article analyzes the processes of compressing hydrogen in the gaseous state an aspect considered important due to its contribution to the greater diffusion of hydrogen in both the civil and industrial sectors. This article begins by providing a concise overview and comparison of diverse hydrogen-storage methodologies laying the groundwork with an in-depth analysis of hydrogen’s thermophysical properties. It scrutinizes plausible configurations for hydrogen compression aiming to strike a delicate balance between energy consumption derived from the fuel itself and the requisite number of compression stages. Notably to render hydrogen storage competitive in terms of volume pressures of at least 350 bar are deemed essential albeit at an energy cost amounting to approximately 10% of the fuel’s calorific value. Multi-stage compression emerges as a crucial strategy not solely for energy efficiency but also to curtail temperature rises with an upper limit set at 200 ◦C. This nuanced approach is underlined by the exploration of compression levels commonly cited in the literature particularly 350 bar and 700 bar. The study advocates for a three-stage compression system as a pragmatic compromise capable of achieving high-pressure solutions while keeping compression work below 10 MJ/kg a threshold indicative of sustainable energy utilization.
Underground Hydrogen Storage in Salt Caverns: Laboratory Experiments to Determine Integrity of Rock Salt and Wellbore Through Effective Permeability Measurements
Dec 2024
Publication
Underground hydrogen storage in salt caverns is a promising solution for short-term storage allowing multiple cycles per year. This study experimentally investigates the integrity of such caverns and their wellbores under operating conditions typical of German salt caverns. Specifically we measure the permeability of rock salt cement (API Class G and High Magnesium Resistant (HMR+)) rock salt-anhydrite composites cement-salt composites and casing-cement composites. Rock salt demonstrates extremely low permeability (10− 23 m2 ) while casing-cement composites (HMR+) exhibit permeabilities similar to pure cement (10− 20 m2 or lower). Both salt-cement (HMR+) and casing-cement (HMR+) composites meet the strict tightness requirements for hydrogen storage (10− 19 m2 or less). While thin anhydrite layers in rock salt can increase permeability compaction can reduce it to levels comparable to rock salt. This study’s novelty lies in evaluating the feasibility of a real German cavern for hydrogen storage using a custom-built transient permeability setup capable of testing casing-cement composites at a 1:1 wellbore scale.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
Optimizing Post-production Alternate Hydrogen Supply Chain Pathways - An Integrated TEA and LCA Approach
Dec 2024
Publication
This study presents a comprehensive techno-economic assessment (TEA) of alternative hydrogen supply chain (HSC) pathways with a focus on the conditioning transportation and reconditioning stages. The pathways assessed include compressed hydrogen liquefied hydrogen and ammonia as a hydrogen carrier. A distinctive feature of this study is its consideration of a broad range of operational capacities and transportation distances facility economies of scale and multiple vessel capacities. The TEA is complemented by a life cycle assessment (LCA) to incorporate environmental impacts ensuring a holistic analysis of economic and environmental tradeoffs. The results reveal that the compressed hydrogen pathway is optimal for short distances and low-demand scenarios with levelized costs of hydrogen (LCOH) ranging from $1.11/kg to $6.91/kg. Liquefied hydrogen shows economic competitiveness for medium distances with LCOH between $1.43/kg and $3.84/kg. Ammonia emerges as the most cost-effective for longer distances and higher demand levels with LCOH between $1.61/kg and $3.80/kg. However the LCA analysis revealed that the ammonia pathway incurs higher emissions particularly during the ammonia synthesis and cracking processes making it less promising from an integrated perspective. This integration of LCA results into the TEA framework provides a comprehensive view of each pathway accounting for both economic and environmental factors. This study provides a robust framework for guiding decision-makers in the development of an effective hydrogen supply chain integrating both economic and environmental considerations.
Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review
Aug 2021
Publication
High-pressure hydrogen tanks which are composed of an aluminum alloy liner and a carbon fiber wound layer are currently the most popular means to store hydrogen on vehicles. Nevertheless the aluminum alloy is easily affected by high-pressure hydrogen which leads to the appearance of hydrogen embrittlement (HE). Serious HE of hydrogen tank represents a huge dangers to the safety of vehicles and passengers. It is critical and timely to outline the mainstream approach and point out potential avenues for further investigation of HE. An analysis including the mechanism (including hydrogen-enhanced local plasticity model hydrogen-enhanced decohesion mechanism and hydrogen pressure theory) the detection (including slow strain rate test linearly increasing stress test and so on) and methods for the prevention of HE on aluminum alloys of hydrogen vehicles (such as coating) are systematically presented in this work. Moreover the entire experimental detection procedures for HE are expounded. Ultimately the prevention measures are discussed in detail. It is believed that further prevention measures will rely on the integration of multiple prevention methods. Successfully solving this problem is of great significance to reduce the risk of failure of hydrogen storage tanks and improve the reliability of aluminum alloys for engineering applications in various industries including automotive and aerospace.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization
Feb 2024
Publication
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed HE may lead to catastrophic environmental failures in vessels containing hydrogen such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility toughness and strength mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption hydrogen diffusion and hydrogen interactions with intrinsic trapping sites like dislocations voids grain boundaries and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile double cantilever beam bent beam and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior mechanisms and characterization techniques.
Knowledge Production in Technological Innovation System: A Comprehensive Evaluation using a Multi-criteria Framework based on Patent Data - A Case Study on Hydrogen Storage
Jan 2025
Publication
Knowledge production activity is central within a technological innovation system. The number of patent ap plications is commonly used to evaluate this activity. However it is subject to bias and inaccurate evaluations can occur. This article proposes a multi-criteria framework based on seven complementary patent indicators taking into account the persistence commitment and coherence of knowledge production activities for a more comprehensive evaluation. We demonstrate the value of our proposal through a case study on hydrogen storage comparing patent data since 2000 about three technological solutions: physical chemical and adsorption technologies. Our framework clearly shows that physical hydrogen storage is the most advanced in terms of knowledge production despite not having the highest number of patent applications.
2D MXene: From Synthesis to Storage - Exploring their Potential as Sparking Materials for Hydrogen Storage
Jul 2025
Publication
In the advancing landscape of sustainable energy the development of efficient and reversible hydrogen storage materials operable under ambient conditions remains a critical challenge for material scientists and the broader research community. Hydrogen owing to its exceptionally high energy density is regarded as a leading candidate for facilitating the transition from conventional fossil fuels to cleaner renewable energy systems. However alongside its production the safe and efficient storage of hydrogen presents a significant bottleneck due to its low volumetric density and associated safety concerns.<br/>Conventional storage techniques such as high-pressure compression and cryogenic liquefaction though widely used demand complex infrastructure and carry substantial safety risks. These limitations have steered growing interest toward solid-state hydrogen storage systems that rely on physisorption or chemisorption mechanisms preferably operating near ambient conditions. Consequently the pursuit of materials with favourable thermodynamics and kinetics for reversible hydrogen uptake and release has become imperative. Among the emerging candidates MXenes a class of two-dimensional (2D) materials comprising transition metal carbides nitrides or carbonitrides have garnered significant attention due to their high surface area tuneable surface chemistry and excellent conductivity.<br/>Despite the growing body of literature on hydrogen storage using MXenes a comprehensive evaluation that bridges the gap between theoretical predictions and experimental realities remains limited. This review addresses that gap by critically examining current strategies for solid-state hydrogen storage with a particular emphasis on MXene-based materials. It highlights the influence of synthesis techniques on structural properties discusses the mechanisms of hydrogen interaction with MXene surfaces and evaluates their practical implications in real-world applications. While the potential of MXenes in hydrogen storage is considerable it is not yet fully realized. This article provides an in-depth assessment of the current advancements challenges and future directions for MXene-based materials in the context of hydrogen storage offering valuable insights for both fundamental research and applied energy systems.
Exploring Decentralized Ammonia Synthesis for Hydrogen Storage and Transport: A Comprehensive CFD Investigation with Experimental Validation and Parametric Study
Sep 2023
Publication
Hydrogen energy plays a vital role in the transition towards a carbon-neutral society but faces challenges in storage and transport as well as in production due to fluctuations in renewable electricity generation. Ammonia (NH3 ) as a carbon-neutral hydrogen carrier offers a promising solution to the energy storage and transport problem. To realize its potential and support the development of a hydrogen economy exploring NH3 synthesis in a decentralized form that integrates with distributed hydrogen production systems is highly needed. In this study a computational fluid dynamics (CFD) model for the Ruthenium (Ru) catalysts-based Haber– Bosch reactor is developed. First a state-of-the-art kinetic model comprehensively describing the complex catalytic reaction is assessed for its sensitivity and applicability to temperature pressure and conversion. Then the kinetic model is integrated into the CFD model and its accuracy is verified through comparison with experimental data obtained from different Ru-based catalysts and operation conditions. Detailed CFD results for a given case are presented offering a visual understanding of thermal gradients and species distributions inside the reactor. Finally a CFD-based parametric study is performed to reveal the impacts of key operation parameters and optimize the NH3 synthesis reactor. The results show that the NH3 production rate is predominantly influenced by temperature with a two-fold difference observed for every 30 ◦C variation while pressure primarily affects the equilibrium. Additionally the affecting mechanism of space velocity is thoroughly discussed and the best value for efficient NH3 synthesis is found to be 180000 h−1. In conclusion the CFD model and simulation results provide valuable insights for the design and control of decentralized NH3 synthesis reactor and operation contributing to the advancement of sustainable energy technologies.
Energy Storage Strategy - Narrative
Feb 2023
Publication
This narrative document sets out the main rationale for hydrogen storage development at scale in the UK: - To meet net zero the UK will need considerable energy storage - Hydrogen storage will be a major and essential part of this - Physical hydrogen storage is needed in the UK - Only geological hydrogen storage can deliver at the scale needed within the timescales for net zero - Geological hydrogen storage should be supported through a viable business model now to ensure it comes online in the 2030s.
Hydrogen Storage Capacity of Salt Caverns and Deep Aquifers Versus Demand for Hydrogen Storage: A Case Study of Poland
Nov 2023
Publication
Geological structures in deep aquifers and salt caverns can play an important role in large-scale hydrogen storage. However more work needs to be done to address the hydrogen storage demand for zero-emission energy systems. Thus the aim of the article is to present the demand for hydrogen storage expressed in the number of salt caverns in bedded rock salt deposits and salt domes or the number of structures in deep aquifers. The analysis considers minimum and maximum hydrogen demand cases depending on future energy system configurations in 2050. The method used included the estimation of the storage capacity of salt caverns in bedded rock salt deposits and salt domes and selected structures in deep aquifers. An estimation showed a large hydrogen storage potential of geological structures. In the case of analyzed bedded rock salt deposits and salt domes the average storage capacity per cavern is 0.05–0.09 TWhH2 and 0.06–0.20 TWhH2 respectively. Hydrogen storage capacity in analyzed deep aquifers ranges from 0.016 to 4.46 TWhH2. These values indicate that in the case of the upper bound for storage demand there is a need for the 62 to 514 caverns depending on considered bedded rock salt deposits and salt domes or the 9 largest analyzed structures in deep aquifers. The results obtained are relevant to the discussion on the global hydrogen economy and the methodology can be used for similar considerations in other countries.
Laboratory Studies on Underground H2 Storage: Bibliometric Analysis and Review of Current Knowledge
Dec 2024
Publication
: The global demand for energy and the need to mitigate climate change require a shift from traditional fossil fuels to sustainable and renewable energy alternatives. Hydrogen is recognized as a significant component for achieving a carbon-neutral economy. This comprehensive review examines the underground hydrogen storage and particularly laboratory-scale studies related to rock– hydrogen interaction exploring current knowledge. Using bibliometric analysis of data from the Scopus and Web of Science databases this study reveals an exponential increase in scientific publications post-2015 which accounts for approximately 85.26% of total research output in this field and the relevance of laboratory experiments to understand the physicochemical interactions of hydrogen with geological formations. Processes in underground hydrogen storage are controlled by a set of multi-scale parameters including solid properties (permeability porosity composition and geomechanical properties) and fluid properties (liquid and gas density viscosity etc.) together with fluid–fluid and solid–fluid interactions (controlled by solubility wettability chemical reactions etc.). Laboratory experiments aim to characterize these parameters and their evolution simulating real-world storage conditions to enhance the reliability and applicability of findings. The review emphasizes the need to expand research efforts globally to comprehensively address the currently existing issues and knowledge gaps.
A Review on Underground Gas Storage Systems: Natural Gas, Hydrogen and Carbon Sequestration
May 2023
Publication
The concept of underground gas storage is based on the natural capacity of geological formations such as aquifers depleted oil and gas reservoirs and salt caverns to store gases. Underground storage systems can be used to inject and store natural gas (NG) or hydrogen which can be withdrawn for transport to end-users or for use in industrial processes. Geological formations can additionally be used to securely contain harmful gases such as carbon dioxide deep underground by means of carbon capture and sequestration technologies. This paper defines and discusses underground gas storage highlighting commercial and pilot projects and the behavior of different gases (i.e. CH4 H2 and CO2) when stored underground as well as associated modeling investigations. For underground NG/H2 storage the maintenance of optimal subsurface conditions for efficient gas storage necessitates the use of a cushion gas. Cushion gas is injected before the injection of the working gas (NG/H2). The behavior of cushion gas varies based on the type of gas injected. Underground NG and H2 storage systems operate similarly. However compared to NG storage several challenges could be faced during H2 storage due to its low molecular mass. Underground NG storage is widely recognized and utilized as a reference for subsurface H2 storage systems. Furthermore this paper defines and briefly discusses carbon capture and sequestration underground. Most reported studies investigated the operating and cushion gas mixture. The mixture of operating and cushion gas was studied to explore how it could affect the recovered gas quality from the reservoir. The cushion gas was shown to influence the H2 capacity. By understanding and studying the different underground system technologies future directions for better management and successful operation of such systems are thereby highlighted.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
Multi-criteria Site Selection Workflow for Geological Storage of Hydrogen in Depleted Gas Fields: A Case for the UK
Oct 2023
Publication
Underground hydrogen storage (UHS) plays a critical role in ensuring the stability and security of the future clean energy supply. However the efficiency and reliability of UHS technology depend heavily on the careful and criteria-driven selection of suitable storage sites. This study presents a hybrid multi-criteria decision-making framework integrating the Analytical Hierarchy Process (AHP) and Preference Ranking Organisation Method for Enrichment of Evaluations (PROMETHEE) to identify and select the best hydrogen storage sites among depleted gas reservoirs in the UK. To achieve this a new set of site selection criteria is proposed in light of the technical and economic aspects of UHS including location reservoir rock quality and tectonic characteristics maximum achievable hydrogen well deliverability rate working gas capacity cushion gas volume requirement distance to future potential hydrogen clusters and access to intermittent renewable energy sources (RESs). The framework is implemented to rank 71 reservoirs based on their potential and suitability for UHS. Firstly the reservoirs are thoroughly evaluated for each proposed criterion and then the AHP-PROMETHEE technique is employed to prioritise the criteria and rank the storage sites. The study reveals that the total calculated working gas capacity based on single-well plateau withdrawal rates is around 881 TWh across all evaluated reservoirs. The maximum well deliverability rates for hydrogen withdrawal are found to vary considerably among the sites; however 22 % are estimated to have deliverability rates exceeding 100 sm3 /d and 63 % are located within a distance of 100 km from a major hydrogen cluster. Moreover 70 % have access to nearby RESs developments with an estimated cumulative RESs capacity of approximately 181 GW. The results highlight the efficacy of the proposed multicriteria site selection framework. The top five highest-ranked sites for UHS based on the evaluated criteria are the Cygnus Hamilton Saltfleetby Corvette and Hatfield Moors gas fields. The insights provided by this study can contribute to informed decision-making sustainable development and the overall progress of future UHS projects within the UK and globally.
No more items...