Transmission, Distribution & Storage
Modeling and Simulation of Coupled Biochemical and Two-phase Compositional Flow in Underground Hydrogen Storage
Aug 2025
Publication
Integrating microbial activity into underground hydrogen storage models is crucial for simulating longterm reservoir behavior. In this work we present a coupled framework that incorporates bio-geochemical reactions and compositional flow models within the Matlab Reservoir Simulation Toolbox (MRST). Microbial growth and decay are modeled using a double Monod formulation with populations influenced by hydrogen and carbon dioxide availability. First a refined Equation of State (EoS) is employed to accurately capture hydrogen dissolution thereby improving phase behavior and modeling of microbial activity. The model is then discretized using a cell-centered finite-volume method with implicit Euler time discretization. A fully coupled fully implicit strategy is considered. Our implementation builds upon MRST’s compositional module by incorporating the Søreide–Whitson EoS microbial reaction kinetics and specific effects such as bio-clogging and molecular diffusion. Through a series of 1D 2D and 3D simulations we analyze the effects of microbialinduced bio-geochemical transformations on underground hydrogen storage in porous media.These results highlight that accounting for bio-geochemical effects can substantially impact hydrogen loss purity and overall storage performance.
AI-driven Advances in Composite Materials for Hydrogen Storage Vessels: A Review
Sep 2025
Publication
This review provides a comprehensive examination of artificial intelligence methods applied to the design optimization and performance prediction of composite-based hydrogen storage vessels with a focus on composite overwrapped pressure vessels. Targeted at researchers engineers and industrial stakeholders in materials science mechanical engineering and renewable energy sectors the paper aims to bridge traditional mechanical modeling with evolving AI tools while emphasizing alignment with standardization and certification requirements to enhance safety efficiency and lifecycle integration in hydrogen infrastructure. The review begins by introducing HSV types their material compositions and key design challenges including high-pressure durability weight reduction hydrogen embrittlement leakage prevention and environmental sustainability. It then analyzes conventional approaches such as finite element analysis multiscale modeling and experimental testing which effectively address aspects like failure modes fracture strength liner damage dome thickness winding angle effects crash behavior crack propagation charging/discharging dynamics burst pressure durability reliability and fatigue life. On the other hand it has been shown that to optimize and predict the characteristics of hydrogen storage vessels it is necessary to combine the conventional methods with artificial intelligence methods as conventional methods often fall short in multi-objective optimization and rapid predictive analytics due to computational intensity and limitations in handling uncertainty or complex datasets. To overcome these gaps the paper evaluates hybrid frameworks that integrate traditional techniques with AI including machine learning deep learning artificial neural networks evolutionary algorithms and fuzzy logic. Recent studies demonstrate AI’s efficacy in failure prediction design optimization to mitigate structural risks structural health monitoring material property evaluation burst pressure forecasting crack detection composite lay-up arrangement weight minimization material distribution enhancement metal foam ratio optimization and optimal material selection. By synthesizing these advancements this work underscores AI’s potential to accelerate development reduce costs and improve HSV performance while advocating for physics-informed models robust datasets and regulatory alignment to facilitate industrial adoption.
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
Jun 2025
Publication
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy leveraging the unique geomechanical properties of salt formations—including low permeability self-healing capabilities and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage such as rapid injection and extraction capabilities cost-effectiveness compared to other storage methods (e.g. hydrogen storage in depleted oil and gas reservoirs aquifers and aboveground tanks) and minimal environmental impact. It also addresses critical challenges including hydrogen embrittlement microbial activity and regulatory fragmentation. Through global case studies best operational practices for risk mitigation in real-world applications are highlighted such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan Hubei Yunying and Henan Pingdingshan. By integrating technological innovation policy coordination and cross-sector collaboration salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy bridging the gap between renewable energy production and industrial decarbonization.
Investigating the Effects of Flow Regime on Hydrogen Transport in Salt Rock
Jun 2025
Publication
Underground hydrogen storage (UHS) in salt caverns is emerging as a promising solution for the transition to a sustainable energy future. However a thorough understanding of hydrogen flow mechanisms through salt rock is essential to ensure safe and efficient storage operations. In this study we conducted hydrogen flow experiments in salt rocks using the pressure pulse decay (PPD) method covering a range of hydrogen pore pressures from 0.4 MPa to 7.5 MPa within the slip and transitional flow regimes (Knudsen numbers between 0.04 and 1.5). The Knudsen numbers were determined by measuring the pore size distribution (PSD) of the salt rock samples and assigning an average pore size to each sample based on the measured PSD. Our results indicate that the intrinsic permeability of the tested salt rock samples ranges from 5 × 10− 21 m2 to 1.0 × 10− 20 m2 . However a significant enhancement in apparent permeability up to 10 times the intrinsic permeability was observed particularly at lower pressures. This permeability enhancement is attributed to the nanoscale pore structure of salt rocks where the mean free path of hydrogen becomes comparable to the pore sizes leading to a shift from slip flow to the transitional flow regime. The results further reveal that the first-order slip model underestimates the apparent permeability in the transitional flow regime despite its satisfactory accuracy in the slip region. Moreover the higher-order slip model demonstrates acceptable accuracy across both the slip and transitional flow regimes.
Hydrogen Storage Systems at Ports for Enhanced Safety and Sustainability: A Review
Sep 2025
Publication
With the increasing demand for clean energy and the global push toward carbon neutrality hydrogen has emerged as a promising alternative fuel. Ports are critical nodes in the hydrogen supply chain that are increasingly being utilized as long-term hydrogen storage hubs. However integrating hydrogen storage systems into port infrastructure presents unique technical environmental and safety challenges. This review systematically examines current technologies used for hydrogen storage in port environments—including compressed gas cryogenic liquid cryocompressed gas ammonia liquid organic hydrogen carriers solid-state hydrides and underground storage. Each technology is evaluated based on performance infrastructure requirements accident risks environmental impact and cost. The study also assesses port-specific infrastructure vulnerabilities under operational stress and climate change conditions and explores strategies for accident prevention emergency response and postincident recovery. A comprehensive framework is proposed to enhance the resilience and safety of hydrogen storage systems at ports. This study offers valuable insights for stakeholders and researchers by addressing technical gaps regulatory challenges and future directions for sustainable and safe hydrogen storage in port facilities
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
Oct 2025
Publication
As industry moves from fossil fuels to green energy substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns depleted hydrocarbon fields and saline aquifers. Among other criteria these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is thus of utmost importance. In this review the main factors influencing fluid flow are examined. These are the wettability of the caprock formation the interfacial tension (IFT) between the rock and the gas or liquid phases and the ability of gases to diffuse through it. To achieve effective sealing the caprock formation should possess low porosity a disconnected or highly complicated pore system low permeability and remain strongly water-wet regardless of pressure and temperature conditions. In addition it must exhibit low rock–liquid IFT while presenting high rock–gas and liquid–gas IFT. Finally the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals the evaporites low-organic-content shales mudstones muscovite clays and anhydrite have been identified as highly effective caprocks offering excellent sealing capabilities and preventing hydrogen leakages.
Study on the Thermodynamic Behavior of Large Volume Liquid Hydrogen Bottle Under the Coupling of Different Motion States and Operational Parameters
Oct 2025
Publication
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states different operational pressures and different insulation thicknesses and their mutual coupling scenarios were studied. The results show that the movement makes the phase state in the liquid hydrogen bottle more uniform the pressure drop rate faster and the temperature lower: the heating rate in the liquid hydrogen bottle at 0.85 MPa operational pressure is lower than that at 0.5 MPa and 1.2 MPa. When the operational pressure is coupled with the motion state the influence of the motion state on the thermodynamic behavior of the fluid is dominant: the temperature near the wall rises rapidly. The temperature near the tank wall rises rapidly; however as the thickness of the insulation layer increases both the heating rate inside the liquid hydrogen tank and the temperature difference within the tank gradually tend to stabilize and become uniform.
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
Jul 2025
Publication
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies underground storage solutions such as radioactive disposal CO2 NH3 and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D) often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms which are ubiquitous in laboratory environments can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp. Enterobacter sp. and Cronobacter sp. bacteria which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods including ultraviolet irradiation autoclaving oven heating ethanol treatments and gamma irradiation in removing the microorganisms from silica sand. Additionally the consideration of their effects on mineral properties are reviewed. A total of 567 vials each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable reproducible data particularly in future studies where microbial contamination could induce artifacts in laboratory research.
Underground Hydrogen Storage Suitability Index: A Geological Tool for Evaluating and Ranking Storage Sites
Jun 2025
Publication
Underground Hydrogen Storage (UHS) is a promising solution to maximize the use of hydrogen as an energy carrier. This study presents a standardized methodology for assessing UHS quality by introducing the Underground Hydrogen Storage Suitability Index (UHSSI) which integrates three sub-indices: the Caprock Potential Index (CPI) the Reservoir Quality Index (RQI) and the Site Potential Index (SPI). Parameters such as porosity permeability lithology caprock thickness depth temperature and salinity are evaluated and ranked from 0 (unsuitable) to 5 (excellent). The methodology was validated using data from six worldwide sites including salt caverns and aquifers. Sites like Moss Bluff Clemens Dome and Spindletop (USA) scored highly while Teesside (UK) Lobodice (Czech Republic) and Beynes (France) were classified as unsuitable due to shallow depths and microbial activity. A software tool the UHSSI Calculator was developed to automate site evaluations. This approach offers a cost-effective tool for preliminary screening and supports the safer development of UHS.
Influence of Optimized Decarburization on Hydrogen Uptake and Aqueous Corrosion Behaviors of Ultrasong Martensitic Steel
Oct 2025
Publication
This study examined the effects of microstructural alterations by controlling the surface carbon gradient via a thermal decarburizing process on hydrogen evolution adsorption and permeation along with neutral aqueous corrosion behavior of an ultra-high-strength steel with a tensile strength of 2.4 GPa. Microstructural analyses showed that an optimized decarburizing process at 1100 ◦C led to partial transformation to ferrite without precipitating Fe3C in a marked fraction. Electrochemical impedance spectroscopy along with the permeation results revealed that there was a notable decrease in hydrogen evolution and subsurface hydrogen concentration. Moreover immersion test in a neutral aqueous condition showed slower corrosion kinetics with a comparatively uniform corroded surface indicating improved corrosion resistance. However the extent of improvement is significantly limited under non-optimized decarburizing conditions specifically when the temperature is below or above 1100 ◦C due to insufficient decarburization or the formation of coarse-spheroidized Fe3C particles accompanied by a porous subsurface layer. In particular a far greater adsorption tendency at bridge sites on Fe3C (001) in a pre-charged surface is highlighted. This study provides insight that the adjustment of the carbon gradient through an optimized annealing process can be an effective technical strategy to overcome the critical drawbacks of ultrastrong martensitic steels under hydrogen-rich or corrosive conditions.
Addressing Spatiotemporal Mismatch via Hourly Pipeline Scheduling: Regional Hydrogen Energy Supply Optimization
Nov 2025
Publication
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and optimizes hourly flow schedules to minimize annualized cost and CO2 emissions simultaneously. For 15000 HFCVs expected in 2025 (137 t d−1 demand) the Pareto-optimal design consists of 13 production plants 43 pipelines and 38 refueling stations delivering 50767 t yr−1 at 68% pipeline utilization. Hebei provides 88% of the hydrogen 70% of which is consumed in the two megacities. Hourly profiles reveal that 65% of electrolytic output coincides with local wind–solar peaks whereas refueling surges arise during morning and evening rush hours; the proposed schedule offsets the 4–6 h mismatch without additional storage. Transport distances are 40% < 50 km 35% 50–200 km and 25% > 200 km. Raising the green hydrogen share from 10% to 70% increases total system cost from USD 1.56 bn to USD 2.73 bn but cuts annual CO2 emissions from 142 kt to 51 kt demonstrating the trade-off between cost and decarbonization. The model quantifies the value of sub-day pipeline scheduling in resolving spatial–temporal imbalances for large-scale low-carbon hydrogen supply.
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
Nov 2025
Publication
The effect of tempering temperature and tempering time on the density of hydrogen traps hydrogen diffusivity and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second third and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity the highest trap density and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 ◦C for 0.25 h. In contrast tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However as the tempering time or temperature increases the opposite occurs which is attributed to the formation of alloy carbides. Finally hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage tempering times of 0.25 h and in the as-quenched condition. However with increasing tempering time hydrogen has a hardening effect.
A Comprehensive Review of Influence of Critical Parameters on Wettability of Rock-hydrogen-brine Systems: Implications for Underground Hydrogen Storage
Oct 2025
Publication
The rock wettability is one of the most critical parameters that influences rock storage potential trapping and H2 withdrawal rate during Underground hydrogen storage (UHS). However the existing review articles on wettability of H2-brine-rock systems do not provide detailed information on complexities introduced by reservoir wettability influencing parameters such as high pressure temperature salinity conditions micro-biotic effects cushion gases and organic acids relevant to subsurface environments. Therefore a comprehensive review of existing research on various parameters influencing rock wettability during UHS and residual trapping of H2 was conducted in this study. Literature that provides insight into molecular-level interaction through machine learning and molecular dynamic (MD) simulations and role of surface-active chemicals such as nanoparticles surfactants and wastewater chemicals were also reviewed. The review suggested that UHS could be feasible in clean geo-storage formations but the presence of rock surface contaminants at higher storage depth and microbial effects should be accounted for to prevent over-estimation of the rock storage potentials. The H2 wettability of storage/caprocks and associated risks of UHS projects could be higher in rocks with high proportion of carbonate minerals organic-rich shale and basalt with high plagioclase minerals content. However treatment of rock surfaces with nanofluids surfactants methylene blue and methyl orange has proven to alter the rock wettability from H2-wet towards water-wet. Research results on effect of rock wettability on residually trapped hydrogen and snap-off effects during UHS are contradictory thus further studies would be required in this area. The review generally concludes that rock wettability plays prominent role on H2 storage due to the frequency and cyclic loading of UHS hence it is vital to evaluate the effects of all possible wettability influencing parameters for successful designs and implementation of UHS projects.
Threats and Challenges Associated with Ammonia Transport via Pipeline Systems
Oct 2025
Publication
Ammonia due to its favorable physicochemical properties is considered an effective hydrogen carrier enabling the storage of surplus energy generated from renewable sources. Large-scale implementation of this concept requires the safe transport of ammonia over long distances commonly achieved through pipeline systems—a practice with global experience dating back to the 1960s. However operational history demonstrates that failures in such infrastructures remain inevitable often leading to severe environmental consequences. This article reviews both passive and active methods for preventing and mitigating incidents in ammonia pipeline systems. Passive measures include the assessment of material compatibility with ammonia and the designation of adequate buffer zones. Active methods focus on leak detection techniques such as balance-based systems acoustic monitoring and ammonia-specific sensors. Additionally the article highlights the potential environmental risks associated with ammonia release emphasizing its contribution to the greenhouse effect as well as its adverse impacts on soil surface and groundwater and human health. By integrating historical lessons with modern safety technologies the article contributes to the development of reliable ammonia transport infrastructure for the hydrogen economy.
Degradation Heterogeneity in Active X70 Pipeline Welds Microstructure-Property Coupling Under Multiphysics Environments of Hydrogen-Blended Natural Gas
Oct 2025
Publication
This study investigates the performance degradation of X70 steel weld material in highpressure natural gas pipelines in the Sichuan-Chongqing region and its impact on pipeline safety by investigating their behavior under multiphysics environments including varying gas media (nitrogen methane hydrogen-blended) pressure conditions (0.1–10 MPa) and material regions (base metal vs. weld). A key novelty of this work is the introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. A key novelty of this work is the explicit introduction of a “degradation rate” metric to quantitatively assess the deterioration of weld mechanical properties. Slow strain rate tensile tests combined with fracture morphology and microstructure analysis reveal that welds exhibit inferior mechanical properties due to microstructural inhomogeneity and residual stresses including a yield stress reduction of 15.2–18.7%. The risk of brittle fracture was highest in the hydrogen-blended environment while nitrogen exhibited the most benign effect. Material region changes were identified as the most significant factor affecting degradation. This research provides crucial data and theoretical support for pipeline safety design and material performance optimization.
Changes in the Operating Conditions of Distribution Gas Networks as a Function of Altitude Conditions and the Proportion of Hydrogen in Transported Natural Gas
Nov 2025
Publication
The article presents a comparison between the pressure conditions of a real low-pressure gas network and the results of hydraulic calculations obtained using various simulation programs and empirical equations. The calculations were performed using specialized gas network analysis software: STANET (ver 10.0.26) SimNet SSGas 7 and SONET. Additionally the simulation results were compared with calculations based on the empirical Darcy–Weisbach and Renouard equations. In the first part of the analysis two calculation models were compared. In one model the geodetic elevation of individual network nodes was included (elevation-aware model) while in the second calculations were performed without considering node elevation (flat model). For low-pressure gas networks accounting for elevation is critical due to the presence of the pressure recovery phenomenon which does not occur in medium- and high-pressure networks. Furthermore considering the growing need to increase the share of renewable energy the study also examined the network’s operating conditions when using natural gas–hydrogen mixtures. The following hydrogen concentrations were considered: 2.5% 5.0% 10.0% 20.0% and 50.0%. The results confirm the importance of incorporating elevation data in the modeling of low-pressure gas networks. This is supported by the small differences between calculated results and actual pressure measurements taken from the operating network. Moreover increasing the hydrogen content in the mixture intensifies the pressure recovery effect. The hydraulic results obtained using different computational tools were consistent and showed only minor discrepancies.
Correlation Development for Para-to-Ortho Hydrogen Catalytic Conversion in Vapor-Cooled Shields of Hydrogen Tanks
Nov 2025
Publication
The cooling effect from the para-ortho hydrogen conversion (POC) combined with a vaporcooled shield (VCS) and multi-layer insulation (MLI) can effectively extend the storage duration of liquid hydrogen in cryogenic tanks. However there is currently no effective and straightforward empirical correlation available for predicting the catalytic POC efficiency in VCS pipelines. This study focuses on the development of correlations for the catalytic conversion of para-hydrogen to ortho-hydrogen in pipelines particularly in the context of cryogenic hydrogen storage systems. A model that incorporates the Langmuir adsorption characteristics of catalysts and introduces the concept of conversion efficiency to quantify the catalytic process’s performance is introduced. Experimental data were obtained in the temperature range of 141.9~229.9 K from a cryogenic hydrogen catalytic conversion facility where the effects of temperature pressure and flow rate on the catalytic conversion efficiency were analyzed. Based on a validation against the experimental data the proposed model offers a reliable method for predicting the cooling effects and optimizing the catalytic conversion process in VCS pipelines which may contribute to the improvement of liquid hydrogen storage systems enhancing both the efficiency and duration of storage.
Advanced Analytical Modeling of Polytropic Gas Flow in Pipelines: Unifying Flow Regimes for Efficient Energy Transport
Oct 2025
Publication
In the present work a new analytical model of polytropic flow in constant-diameter pipelines is developed to accurately describe the flow of compressible gases including natural gas and hydrogen explicitly accounting for heat exchange between the fluid and the environment. In contrast to conventional models that assume isothermal or adiabatic conditions the proposed model simultaneously accounts for variations in pressure temperature density and entropy i.e. it is based on a realistic polytropic gas flow formulation. A system of differential equations is established incorporating the momentum continuity energy and state equations of the gas. An implicit closed-form solution for the specific volume along the pipeline axis is then derived. The model is universal and allows the derivation of special cases such as adiabatic isothermal and isentropic flows. Numerical simulations demonstrate the influence of heat flow on the variation in specific volume highlighting the critical role of heat exchange under real conditions for the optimization and design of energy systems. It is shown that achieving isentropic flow would require the continuous removal of frictional heat which is not practically feasible. The proposed model therefore provides a clear reproducible and easily visualized framework for analyzing gas flows in pipelines offering valuable support for engineering design and education. In addition a unified sensitivity analysis of the analytical solutions has been developed enabling systematic evaluation of parameter influence across the subsonic near-critical and heated flow regimes.
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
Oct 2025
Publication
As a key zero-carbon energy carrier the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However the ultra-low temperature ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area thereby suppressing boil-off gas generation and enhancing pressure stability which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen crucial for the accuracy of the phase-change simulation were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database as the ideal gas law is invalid under the cryogenic conditions studied. Specifically the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phasechange processes involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters including inlet flow conditions and inlet liquid temperature on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy.
Enhancing Regional Integrated Energy Systems Through Seasonal Hydrogen Storage: Insights from a Stackelberg Game Model
Nov 2025
Publication
This study enhances regional integrated energy systems by proposing a Stackelberg planning–operation model with seasonal hydrogen storage addressing source–network separation. An equilibrium algorithm is developed that integrates a competitive search routine with mixed-integer optimization. In the price–energy game framework the hydrogen storage operator is designated as the leader while energy producers load aggregators and storage providers act as followers facilitating a distributed collaborative optimization strategy within the Stackelberg game. Using an industrial park in northern China as a case study the findings reveal that the operator’s initiative results in a revenue increase of 38.60% while producer profits rise by 6.10% and storage-provider profits surge by 108.75%. Additionally renewable accommodation reaches 93.86% reflecting an absolute improvement of 20.60 percentage points. Total net energy imbalance decreases by 55.70% and heat-loss load is reduced by 31.74%. Overall the proposed approach effectively achieves cross-seasonal energy balancing and multi-party gains providing an engineering-oriented reference for addressing energy imbalances in regional integrated energy systems.
No more items...