1900

Assessment of Hydrogen Flame Length Full Bore Pipeline Rupture

Abstract

The study aims at the development of a safety engineering methodology for the assessment of flame length after full-bore rupture of hydrogen pipeline. The methodology is validated using experimental data on hydrogen jet flame from full-bore pipeline rupture by Acton et al. (2010). The experimental pressure dynamics in the hydrogen pipeline system is simulated using previously developed adiabatic and “isothermal” blowdown models. The hydrogen release area is taken as equal, similar to the experiment, to doubled pipeline cross-section as hydrogen was coming out from both sides of the ruptured pipe. The agreement with the experimental pressure decay in the piping system was achieved using discharge coefficient CD=0.26 and CD=0.21 for adiabatic and “isothermal” blowdown model respectively that indicates significant friction and minor pressure losses. The hydrogen flame length was calculated using the dimensionless correlation by Molkov and Saffers (2013). The correlation relies on the density of hydrogen in the choked flow at the pipe exit. The maximum experimental flame length between 92 m and 111 m was recorded at 6 s after the pipe rupture under the ground. The calculated by the dimensionless correlation flame length is 110 m and 120 m for the “isothermal” and adiabatic blowdown model respectively. This is an acceptable accuracy for such a large-scale experiment. It is concluded that the methodology can be applied as an engineering tool to assess flame length resulting from ruptured hydrogen pipelines.

Related subjects: Safety
Countries: United Kingdom
Loading

Article metrics loading...

/content/conference3694
2021-09-24
2022-10-03
http://instance.metastore.ingenta.com/content/conference3694
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error