1900

Physics of Spontaneous Ignition of High-Pressure Hydrogen Release and Transition to Jet Fire

Abstract

The main objective of this study is an insight into physical phenomena underlying spontaneous ignition of hydrogen at sudden release from high pressure storage and its transition into the sustained jet fire. This paper describes modelling and large eddy simulation (LES) of spontaneous ignition dynamics in a tube with a rupture disk separating high pressure hydrogen storage and the atmosphere. Numerical experiments carried out by a LES model have provided an insight into the physics of the spontaneous ignition phenomenon. It is demonstrated that a chemical reaction commences in a boundary layer within the tube, and propagates throughout the tube cross-section after that. Simulated by the LES model dynamics of flame formation outside the tube has reproduced experimental observation of combustion by high-speed photography, including vortex induced “flame separation". It is concluded that the model developed can be applied for hydrogen safety engineering, in particular for development of innovative pressure relief devices.

Related subjects: Safety
Countries: United Kingdom
Loading

Article metrics loading...

/content/conference391
2009-09-16
2021-09-18
http://instance.metastore.ingenta.com/content/conference391
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error