1900

Visualizaion of auto-ignition phenomenon under the controlled burst pressure

Abstract

A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame.

Related subjects: Safety
Loading

Article metrics loading...

/content/conference734
2015-10-19
2021-10-21
http://instance.metastore.ingenta.com/content/conference734
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error