Canada
Feasibility Investigation of Hydrogen Refuelling Infrastructure for Heavy‐Duty Vehicles in Canada
Apr 2022
Publication
A potentially viable solution to the problem of greenhouse gas emissions by vehicles in the transportation sector is the deployment of hydrogen as alternative fuel. A limitation to the diffusion of the hydrogen‐fuelled vehicles option is the intricate refuelling stations that vehicles will require. This study examines the practical use of hydrogen fuel within the internal combustion engine (ICE)‐powered long‐haul heavy‐duty trucking vehicles. Specifically it appraises the techno‐ economic feasibility of constructing a network of long‐haul truck refuelling stations using hydrogen fuel across Canada. Hydrogen fuel is chosen as an option for this study due to its low carbon emissions rate compared to diesel. This study also explores various operational methods including variable technology integration levels and truck traffic flows truck and pipeline delivery of hydrogen to stations and the possibility of producing hydrogen onsite. The proposed models created for this work suggest important parameters for economic development such as capital costs for station construction the selling price of fuel and the total investment cost for the infrastructure of a nation‐ wide refuelling station. Results showed that the selling price of hydrogen gas pipeline delivery op‐ tion is more economically stable. Specifically it was found that at 100% technology integration the range in selling prices was between 8.3 and 25.1 CAD$/kg. Alternatively at 10% technology integration the range was from 12.7 to 34.1 CAD$/kg. Moreover liquid hydrogen which is delivered by trucks generally had the highest selling price due to its very prohibitive storage costs. However truck‐delivered hydrogen stations provided the lowest total investment cost; the highest is shown by pipe‐delivered hydrogen and onsite hydrogen production processes using high technology integration methods. It is worth mentioning that once hydrogen technology is more developed and deployed the refuelling infrastructure cost is likely to decrease considerably. It is expected that the techno‐economic model developed in this work will be useful to design and optimize new and more efficient hydrogen refuelling stations for any ICE vehicles or fuel cell vehicles.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Simulations of Hydrogen Releases from a Storage Tanks- Dispersion and Consequences of Ignition
Sep 2005
Publication
We present results from hydrogen dispersion simulations from a pressurized reservoir at constant flow rate in the presence and absence of a wall. The dispersion simulations are performed using a commercial finite volume solver. Validation of the approach is discussed. Constant concentration envelopes corresponding to the 2% 4% and 15% hydrogen concentration in air are calculated for a subcritical vertical jet and for an equivalent subcritical horizontal jet from a high pressure reservoir. The consequences of ignition and the resulting overpressure are calculated for subcritical horizontal and vertical hydrogen jets and in the latter case compared to available experimental data.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Canadian Hydrogen Safety Program.
Sep 2005
Publication
This paper discusses the rationale structure and contents of the Canadian Hydrogen Safety Program developed by the Codes & Standards Working Group of the Canadian Transportation Fuel Cell Alliance consisting of representatives from industry academia government and regulators. The overall program objective is to facilitate acceptance of the products services and systems of the Canadian Hydrogen Industry by the Canadian Hydrogen Stakeholder Community to facilitate trade ensure fair insurance policies and rates ensure effective and efficient regulatory approval procedures and to ensure that the interests of the general public are accommodated. The Program consists of four projects including Comparative Quantitative Risk Assessment of Hydrogen and Compressed Natural Gas (CNG) Refuelling Stations; Computational Fluid Dynamics (CFD) Modelling Validation Calibration and Enhancement; Enhancement of Frequency and Probability Analysis and Consequence Analysis of Key Component Failures of Hydrogen Systems; and Fuel Cell Oxidant Outlet Hydrogen Sensor Project. The Program projects are tightly linked with the content of the IEA Task 19 Hydrogen Safety. The Program also includes extensive (destructive and non-destructive) testing of hydrogen components.
Defining Hazardous Zones – Electrical Classification Distances
Sep 2005
Publication
This paper presents an analysis of computational fluid dynamic models of compressed hydrogen gas leaks into the air under different conditions to determine the volume of the hydrogen/air mixture and the extents of the lower flammable limit. The necessary hole size was calculated to determine a reasonably expected hydrogen leak rate from a valve or a fitting of 5 and 20 cfm under 400 bars resulting in a 0.1 and 0.2 mm effective diameter hole respectively. The results were compared to calculated hypothetical volumes from IEC 60079-10 for the same mass flowrate and in most cases the CFD results produced significantly smaller hydrogen/air volumes than the IEC standard. Prescriptive electrical classification distances in existing standards for hydrogen and compressed natural gas were examined but they do not consider storage pressure and there appears to be no scientific basis for the distance determination. A proposed table of electrical classification distances incorporating hydrogen storage volume and pressure was produced based on the hydrogen LFL extents from a 0.2 mm diameter hole and the requirements of existing standards. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Numerical results on hydrogen concentration predictions were obtained in the real industrial environment typical for a hydrogen refuelling or energy station.<br/><br/>
CFD Modeling of Hydrogen Dispersion Experiments for SAE J2578 Test Methods Development
Sep 2007
Publication
This paper discusses the results of validation of Computational Fluid Dynamics (CFD) modelling of hydrogen releases and dispersion inside a metal container imitating a single car garage based on experimental results. The said experiments and modelling were conducted as part of activities to predict fuel cell vehicles discharge flammability and potential build-up of hydrogen for the development of test procedures for the Recommended Practice for General Fuel Cell Vehicle Safety SAE J2578. The experimental setup included 9 hydrogen detectors located in each corner and in the middle of the roof of the container and a fan to ensure uniform mixing of the released hydrogen. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy effect and turbulence models. Obtained modelling results matched experimental data of a high-rate injection of hydrogen with fan-forced dispersion used to create near-uniform mixtures with a high degree of accuracy. This supports the conclusion that CFD modelling will be able to predict potential accumulation of hydrogen beyond the experimental conditions. CFD modelling of hydrogen concentrations has proven to be reliable effective and relatively inexpensive tool to evaluate the effects of hydrogen discharge from hydrogen powered vehicles or other hydrogen containing equipment.
Fundamental Safety Testing and Analysis of Solid State Hydrogen Storage Materials and Systems
Sep 2007
Publication
Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH4 a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
Hydrogen Safety, Training and Risk Assessment System
Sep 2007
Publication
The rapid evolution of information related to hydrogen safety is multidimensional ranging from developing codes and standards to CFD simulations and experimental studies of hydrogen releases to a variety of risk assessment approaches. This information needs to be transformed into system design risk decision-making and first responder tools for use by hydrogen community stakeholders. The Canadian Transportation Fuel Cell Alliance (CTFCA) has developed HySTARtm an interactive Hydrogen Safety Training And Risk System. The HySTARtm user interacts with a Web-based 3-D graphical user interface to input hydrogen system configurations. The system includes a Codes and Standards Expert System that identifies the applicable codes and standards in a number of national jurisdictions that apply to the facility and its components. A Siting Compliance and Planning Expert System assesses compliance with clearance distance requirements in these jurisdictions. Incorporating the results of other CTFCA projects HySTARtm identifies stand-out hydrogen release scenarios and their corresponding release condition that serves as input to built-in consequence and risk assessment programs that output a variety of risk assessment metrics. The latter include on- and off-site individual risk probability of loss of life and expected number of fatalities. These results are displayed on the graphical user interface used to set up the facility. These content and graphical tools are also used to educate regulatory approval and permitting officials and build a first-responder training guide.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Estimation of Final Hydrogen Temperature From Refueling Parameters
Oct 2015
Publication
Compressed hydrogen storage is currently widely used in fuel cell vehicles due to its simplicity in tank structure and refuelling process. For safety reason the final gas temperature in the hydrogen tank during vehicle refuelling must be maintained under a certain limit e.g. 85 °C. Many experiments have been performed to find the relations between the final gas temperature in the hydrogen tank and refueling conditions. The analytical solution of the hydrogen temperature in the tank can be obtained from the simplified thermodynamic model of a compressed hydrogen storage tank and it serves as function formula to fit experimental temperatures. From the analytical solution the final hydrogen temperature can be expressed as a weighted average form of initial temperature inflow temperature and ambient temperature inspired by the rule of mixtures. The weighted factors are related to other refuelling parameters such as initial mass initial pressure refuelling time refuelling mass rate average pressure ramp rate (APRR) final mass final pressure etc. The function formula coming from the analytical solution of the thermodynamic model is more meaningful physically and more efficient mathematically in fitting experimental temperatures. The simple uniform formula inspired by the concept of the rule of mixture and its weighted factors obtained from the analytical solution of lumped parameter thermodynamics model is representatively used to fit the experimental and simulated results in publication. Estimation of final hydrogen temperature from refuelling parameters based on the rule of mixtures is simple and practical for controlling the maximum temperature and for ensuring hydrogen safety during fast filling process.
Recovery Through Reform: Assessing the climate compatibility of Canada’s COVID-19 response in 2020
Feb 2021
Publication
Governments around the world are leveraging unprecedented amounts of capital to respond to the pandemic and bailing out struggling industries. Trends in energy-related spending indicate that despite the green push the world’s largest economies have still favoured fossil energy over clean energy.<br/><br/>We evaluate energy-related spending in Canada in 2020 (since the onset of COVID-19) using data from the Energy Policy Tracker. Trends in Canada are then compared to flagship policies in key jurisdictions with recent progressive climate policy announcements including France Germany and the United Kingdom. The brief ends with broad recommendations on how Canada can better align its recovery funding with climate action and fossil fuel subsidy reform.<br/><br/>This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways
Jul 2016
Publication
Power-to-gas is a promising option for storing interment renewables nuclear baseload power and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways” including Power to Hydrogen Power to Natural Gas End-users Power to Renewable Content in Petroleum Fuel Power to Power Seasonal Energy Storage to Electricity Power to Zero Emission Transportation Power to Seasonal Storage for Transportation Power to Micro grid Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”) and Power to Renewable Natural Gas (RNG) to Seasonal Storage. In order to compare the different pathways the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems
Large Eddy Simulations of Asymmetric Turbulent Hydrogen Jets Issuing from Realistic Pipe Geometries
Sep 2017
Publication
In the current study a Large Eddy Simulation strategy is applied to model the dispersion of compressible turbulent hydrogen jets issuing from realistic pipe geometries. The work is novel as it explores the effect of jet densities and Reynolds numbers on vertical buoyant jets as they emerge from the outer wall of a pipe through a round orifice perpendicular to the mean flow within the pipe. An efficient Godunov solver is used and coupled with Adaptive Mesh Refinement to provide high resolution solutions only in areas of interest. The numerical results are validated against physical experiments of air and helium which allows a degree of confidence in analysing the data obtained for hydrogen releases. The results show that the jets investigated are always asymmetric. Thus significant discrepancies exist when applying conventional round jet assumptions to determine statistical properties associated with gas leaks from pipelines.
Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study
Apr 2014
Publication
The potential benefits are examined of the “Power-to-Gas” (P2G) scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane) for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically wind farms located in southwestern Ontario Canada are considered. Infrastructure requirements wind farm size pipeline capacity geographical dispersion hydrogen production rate capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.
Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators
Jul 2021
Publication
Transformers are generally considered to be the costliest assets in a power network. The lifetime of a transformer is mainly attributable to the condition of its solid insulation which in turn is measured and described according to the degree of polymerization (DP) of the cellulose. Since the determination of the DP index is complex and time-consuming and requires the transformer to be taken out of service utilities prefer indirect and non-invasive methods of determining the DP based on the byproduct of cellulose aging. This paper analyzes solid insulation degradation by measuring the furan concentration recently introduced methanol and dissolved gases like carbon oxides and hydrogen in the insulating oil. A group of service-aged distribution transformers were selected for practical investigation based on oil samples and different kinds of tests. Based on the maintenance and planning strategy of the power utility and a weighted combination of measured chemical indicators a neural network was also developed to categorize the state of the transformer in certain classes. The method proved to be able to improve the diagnostic capability of chemical indicators thus providing power utilities with more reliable maintenance tools and avoiding catastrophic failure of transformers.
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) which corresponded to the ductile-brittle transition temperature of the Charpy impact test. The results indicated that the ratio of Esp/Fm could better represent the energy of transition in SPT compared with Esp. The ductile-to-brittle transition temperature of the four different types of materials was measured using the hydrogen charging test by SPT. These four types of materials included the base metal and the weld metal in the as-received state and the base metal and the weld metal in the de-embrittled state. The results showed that there was a degree of temper embrittlement in the base metal and the weld metal after ten years of service at 390 °C. The specimens became slightly more brittle but this was not obvious after hydrogen charging. Because the toughness of the material of the hydrogenation reactor was very good the flat samples of SPT could not characterize the energy transition temperature within the liquid nitrogen temperature. Additionally there was no synergetic effect of temper embrittlement and hydrogen embrittlement found in 3Cr1Mo1/4V steel.
Decarbonization of Cement Production in a Hydrogen Economy
Apr 2022
Publication
The transition to net-zero emission energy systems creates synergistic opportunities across sectors. For example fuel hydrogen production from water electrolysis generates by-product oxygen that could be used to reduce the cost of carbon capture and storage (CCS) essential in the decarbonization of clinker production in cement making. To assess this opportunity a techno-economic assessment was carried out for the production of clinker using oxy-combustion in a natural gas-fueled plant coupled to CCS. Material and energy flows were assessed in a reference case for clinker production (oxygen from air no CCS) and compared to oxy-combustion clinker production from either an air separation unit (ASU 95% O2) or water electrolysis (100% O2) both coupled to CCS. Compared to the reference air-combusted clinker plant oxy-combustion increases thermal energy demand by 7% and electricity demand by 137% for ASU and 67% for electrolytic oxygen. The levelized cost of oxygen supply ranges from $49/tO2 for an on-site ASU to pipelined electrolytic O2 at $35/tO2 (200 km) or $13/t O2 (20 km). The cost of clinker for the reference plant without CCS increases linearly from $84/t clinker to $193/t clinker at a carbon price of $0/tCO2 to $150/tCO2 respectively. With oxy-combustion and CCS the clinker production cost ranges from $119 to $122/t clinker reflecting a breakeven carbon price of $39 to $53/tCO2 compared to the reference case. The lower cost for the electrolytic supply of by-product oxygen compared to ASU oxygen must be balanced against the reliability of supply the pipeline transport distance and the charges that may be added by the hydrogen producer.
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
On the Climate Impacts of Blue Hydrogen Production
Nov 2021
Publication
Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored such hydrogen could be a low-carbon energy carrier. However recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain the CO2 removal rate at the hydrogen production plant and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.
Design and Analysis of a New Renewable-Nuclear Hybrid Energy System for Production of Hydrogen, Fresh Water and Power
Nov 2021
Publication
This paper investigates an integrated system where solar energy system (with 75MWp bifacial PV arrays) and nuclear power plant (with 2×10MWt HTR-10 type pebble bed reactors) are hybridized and integrated with a 72MWe capacity high-temperature solid oxide electrolysis (SOE) unit to produce hydrogen fresh water and electrical power. Bifacial PV plant is integrated to system for supplying electricity with a low LCOE and zero-carbon system. A Rankine cycle is integrated to generate power from the steam that generated from nuclear heat. According to the available irradiance; the steam is diverted between steam turbine and high-temperature electrolyzer for hydrogen and power generation. Multi-effect desalination unit is integrated to exploit the excess heat to generate fresh water. A system performance assessment is carried out by energy and exergy efficiencies thermodynamically. The bifacial PV plant is analyzed in six selected latitudes in order to assess the feasibility and applicability of the system. Numerous time-dependent analyses are carried out to study the effects of varying inputs such as solar radiation intensity. For 20MWt nuclear 75MWp solar capacity; hydrogen productions are found to be between 0.036 and 0.562kg/s. Among the Northern Hemisphere latitudes the peak daily hydrogen production rate is expected to reach 25.9 tons of hydrogen per day for the 75 °N case mostly with the influence of low temperature and high albedo. The pitch distance change is increased the hydrogen production rate by 28% between 3 m and 7 m tracker spacing. The overall system energy efficiency is obtained between 21.8% and 24.2% where the overall system exergy efficiency is found between 18.6% and 21.1% under dynamic conditions for the 45°N latitude case.
The Development of an Assessment Framework to Determine the Technical Hydrogen Production Potential from Wind and Solar Energy
Jun 2022
Publication
Electrolytic hydrogen produced from wind and solar energy is considered a long-term option for multi-sectoral decarbonization. The study objective is to develop a framework for assessing country-level hydrogen technical potential from wind and solar energy. We apply locational suitability and zonal statistical analyses methods in a geographic information system-based environment to derive granular insights on non-captive technically exploitable hydrogen potential in high-resource locations. Seven setback factors were considered for locational suitability and integrated with modules developed for evaluating the wind and solar resource penetration from open-source theoretical renewable resource geospatial data and electricity-to-hydrogen conversion analyses. The technique applied in this study would be a relevant contribution to determining national and regional-wide electrolytic hydrogen production potentials in other jurisdictions with requisite adjustments to data and technical constraints. The results from the case study country Canada – a major hydrogen-producing country – show that the technical hydrogen potentials from wind and solar energy are approximately 1897 and 448 million metric tonnes per year respectively at least 6.3 times greater than global hydrogen demand in 2019. When we integrated locational data on enabling infrastructure we discovered that the lack of access to power transmission lines in low-population-density areas of the country significantly reduces the exploitable wind- and solar-based hydrogen potential by over 80% and 6% respectively. The findings of this study show that in the absence of spatial data on infrastructural constraints the exploitable hydrogen potential in a jurisdiction can be overestimated leading to improper guidance for policy and decision-makers.
A Catalyst Fusible Link for Hydrogen Detection and Activation of Passive Ventilation Systems
Sep 2021
Publication
This paper presents an experimental study of a hydrogen fusible link developed for use in the detection of hydrogen and in the activation of passive ventilation or other safety systems. Fusible links are commonly used to passively close fire dampers in the event of a fire; they generally consist of two pieces of metal joined together by a low temperature alloy to form a single device. When exposed to fire the link will heat up and eventually melt the alloy causing the metal pieces to separate. The same principle has been adopted for the hydrogen fusible link in which hydrogen recombiner catalyst was coated onto small rectangular brass plates. These plates were then soldered together to create prototypes of the hydrogen fusible link. When the resulting link is exposed to a hydrogen-air mixture an exothermic reaction occurs on the catalyst surface that will heat up the link and melt the solder separating the two sections of the hydrogen fusible link. A series of experiments was performed to characterize the thermal response of the hydrogen fusible links to various hydrogen-air mixtures. The effect of both hydrogen concentration and its rate of accumulation on the increase of catalyst temperature was examined. This study demonstrated the applicability of the hydrogen fusible link for managing hydrogen risk.
Design and Simulation Studies of Hybrid Power Systems Based on Photovoltaic, Wind, Electrolyzer, and PEM Fuel Cells
May 2021
Publication
In recent years the need to reduce environmental impacts and increase flexibility in the energy sector has led to increased penetration of renewable energy sources and the shift from concentrated to decentralized generation. A fuel cell is an instrument that produces electricity by chemical reaction. Fuel cells are a promising technology for ultimate energy conversion and energy generation. We see that this system is integrated where we find that the wind and photovoltaic energy system is complementary between them because not all days are sunny windy or night so we see that this system has higher reliability to provide continuous generation. At low load hours PV and electrolysis units produce extra power. After being compressed hydrogen is stored in tanks. The purpose of this study is to separate the Bahr AL-Najaf Area from the main power grid and make it an independent network by itself. The PEM fuel cells were analyzed and designed and it were found that one layer is equal to 570.96 Watt at 0.61 volts and 1.04 A/Cm2 . The number of layers in one stack is designed to be equal to 13 layers so that the total power of one stack is equal to 7422.48 Watt. That is the number of stacks required to generate the required energy from the fuel cells is equal to 203 stk. This study provided an analysis of the hybrid system to cover the electricity demand in the Bahr AL-Najaf region of 1.5 MW the attained hybrid power system TNPC cost was about 9573208 USD whereas the capital cost and energy cost (COE) were about 7750000 USD and 0.169 USD/kWh respectively for one year.
A New Energy System Based on Biomass Gasification for Hydrogen and Power Production
Apr 2020
Publication
In this paper a new gasification system is developed for the three useful outputs of electricity heat and hydrogen and reported for practical energy applications. The study also investigates the composition of syngas leaving biomass gasifier. The composition of syngas is represented by the fractions of hydrogen carbon dioxide carbon monoxide and water. The integrated energy system comprises of an entrained flow gasifier a Cryogenic Air Separation (CAS) unit a double-stage Rankine cycle Water Gas Shift Reactor (WGSR) a combined gas–steam power cycle and a Proton Exchange Membrane (PEM) electrolyzer. The whole integrated system is modeled in the Aspen plus 9.0 excluding the PEM electrolyzer which is modeled in Engineering Equation Solver (EES). A comprehensive parametric investigation is conducted by varying numerous parameters like biomass flow rate steam flow rate air input flow rate combustion reactor temperature and power supplied to the electrolyzer. The system is designed in a way to supply the power produced by the steam Rankine cycle to the PEM electrolyzer for hydrogen production. The overall energy efficiency is obtained to be 53.7% where the exergy efficiency is found to be 45.5%. Furthermore the effect of the biomass flow rate is investigated on the various system operational parameters.
A Model for Hydrogen Detonation Diffraction or Transmission to a Non-confined Layer
Sep 2021
Publication
One strategy for arresting propagating detonation waves in pipes is by imposing a sudden area enlargement which provides a rapid lateral divergence of the gases in the reaction zone and attenuates the leading shock. For sufficiently small tube diameter the detonation decays to a deflagration and the shock decays to negligible strengths. This is known as the critical tube diameter problem. In the present study we provide a closed form model to predict the detonation quenching for 2D channels. This problem also applies to the transmission of a detonation wave from a confined layer to a weakly-confined layer. Whitham’s geometric shock dynamics coupled with a shock evolution law based on shocks sustained by a constant source obtained by the shock change equations of Radulescu is shown to capture the lateral shock dynamics response to the failure wave originating at the expansion corner. A criterion for successful detonation transmission to open space is that the lateral strain rate provided by the failure wave not exceed the critical strain rate of steady curved detonations. Using the critical lateral strain rate obtained by He and Clavin a closed form solution is obtained for the critical channel opening permitting detonation transmission. The predicted critical channel width is found in excellent agreement with our recent experiments and simulations of diffracting H2/O2/Ar detonations. Model comparison with available data for H2/air detonation diffraction into open space at ambient conditions or for transmission into a weakly confined layer by air is also found in good agreement within a factor never exceeding 2 for the critical opening or layer dimension.
Hydrogen Storage for Mobility: A Review
Jun 2019
Publication
Numerous reviews on hydrogen storage have previously been published. However most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities quick uptake and release of fuel operation at room temperatures and atmospheric pressure safe use and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks including complex thermal management systems boil-off poor efficiency expensive catalysts stability issues slow response rates high operating pressures low energy densities and risks of violent and uncontrolled spontaneous reactions. While not perfect the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies.
Improving Carbon Efficiency and Profitability of the Biomass to Liquid Process with Hydrogen from Renewable Power
Aug 2018
Publication
A process where power and biomass are converted to Fischer-Tropsch liquid fuels (PBtL) is compared to a conventional Biomass-to-Liquid (BtL) process concept. Based on detailed process models it is demonstrated that the carbon efficiency of a conventional Biomass to Liquid process can be increased from 38 to more than 90% by adding hydrogen from renewable energy sources. This means that the amount of fuel can be increased by a factor of 2.4 with the same amount of biomass. Electrical power is applied to split water/steam at high temperature over solid oxide electrolysis cells (SOEC). This technology is selected because part of the required energy can be replaced by available heat. The required electrical power for the extra production is estimated to be 11.6 kWh per liter syncrude (C ) 5+ . By operating the SOEC iso-thermally close to 850 °C the electric energy may be reduced to 9.5 kWh per liter which is close to the energy density of jet fuel. A techno-economic analysis is performed where the total investments and operating costs are compared for the BtL and PBtL. With an electrical power price of 0.05 $/kWh and with SOEC investment cost of the 1000 $/kW(el) the levelized cost of producing advanced biofuel with the PBtL concept is 1.7 $/liter which is approximately 30% lower than for the conventional BtL. Converting excess renewable electric power to advanced biofuel in a PBtL plant is a sensible way of storing energy as a fuel with a relatively high energy density.
Alberta Hydrogen Roadmap
Nov 2021
Publication
Alberta is preparing for a lower emission future. The Hydrogen Roadmap is a key part of that future and Alberta's Recovery Plan. The roadmap is our path to building a provincial hydrogen economy and accessing global markets. It contains several policy actions that will be introduced in the coming months and years and it provides support to the sector as technology and markets develop.<br/>Alberta is already the largest hydrogen producer in Canada. We have all the resources expertise and technology needed to quickly become a global supplier of clean low-cost hydrogen. With a worldwide market estimated to be worth over $2.5 trillion a year by 2050 hydrogen can be the next great energy export that fuels jobs investment and economic opportunity across our province.
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser using the abondand water resources which are covering around ⅔ of the Earth's surface. Electrolysers however require high-quality water with conductivity in the range of 0.1–1 μS/cm. In January 2018 there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation using renewable resources such as photovoltaic (PV) devices wind turbines as well as electricity from the grid was assessed considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources under the assumption of a nominal discount rate inflation rate project lifetime and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro and the main findings being as follows:<br/>The cost of producing water with quality required by the electrolyser is low compared with the cost of electricity for operation of the electrolyser and therefore has little effect on the total cost of hydrogen production (less than 1%).<br/>The optimal solution was shown to be electricity from the grid which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.<br/>Grid based electricity resulted in the lowest hydrogen production cost even when costs for CO2 emissions in Norway that will start to apply in 2025 was considered being approximately US$7.7/kg H2.<br/>From economical point of view wind energy was found to be a more economical than solar.
The Trajectory of Hybrid and Hydrogen Technologies in North American Heavy Haul Operations
Jul 2021
Publication
The central aim of this paper is to provide an up-to-date snapshot of hybrid and hydrogen technology-related developments and activities in the North American heavy haul railway setting placed in the context of the transportation industry more broadly. An overview of relevant alternative propulsion technologies is provided including a discussion of applicability to the transportation sector in general and heavy haul freight rail specifically. This is followed by a discussion of current developments and research in alternative and blended fuels discussed again in both general and specific settings. Key factors and technical considerations for heavy haul applications are reviewed followed by a discussion of non-technical and human factors that motivate a move toward clean energy in North American Heavy Haul systems. Finally current project activities are described to provide a clear understanding of both the status and trajectory of hybrid and hydrogen technologies in the established context.
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
Energy Storage Systems: A Review
Jul 2022
Publication
The world is rapidly adopting renewable energy alternatives at a remarkable rate to address the ever-increasing environmental crisis of CO2 emissions. Renewable Energy Systems (RES) offers enormous potential to decarbonize the environment because they produce no greenhouse gases or other polluting emissions. However the RES relies on natural resources for energy generation such as sunlight wind water geothermal which are generally unpredictable and reliant on weather season and year. To account for these intermittencies renewable energy can be stored using various techniques and then used in a consistent and controlled manner as needed. Several researchers from around the world have made substantial contributions over the last century to developing novel methods of energy storage that are efficient enough to meet increasing energy demand and technological break-throughs. This review attempts to provide a critical review of the advancements in the Energy Storage System (ESS) from 1850–2022 including its evolution classification operating principles and comparison
Fueling Tomorrow's Commute: Current Status and Prospects of Public Bus Transit Fleets Powered by Sustainable Hydrogen
Apr 2024
Publication
Transportation is an economic sector that contributes significantly to global warming due to its high consumption of fossil fuels and sustainably produced hydrogen is a major contender for an alternative clean energy source. Public transit is vital for environmental sustainability via reducing individual vehicle usage and traffic congestion and the prospect of powering buses using hydrogen fuel has been extensively studied lately. This paper seeks to comprehensively review the current status of research on hydrogen-powered buses considering triple bottom line sustainability perspectives. A brief technical overview of prospective environmentally benign hydrogen production processes has been presented. Technological economic and environmental findings and research trends seen in recent analyses on hydrogen-powered buses have been summarized along with the status quo of global hydrogen refuelling stations. Identified focal points for future studies include performance enhancements refuelling infrastructure propagation and policy formulation. The conclusions derived from this review will benefit the accelerated deployment of hydrogen-fuelled public transit fleets.
Optimizing Renewable Injection in Integrated Natural Gas Pipeline Networks Using a Multi-Period Programming Approach
Mar 2023
Publication
In this paper we propose an optimization model that considers two pathways for injecting renewable content into natural gas pipeline networks. The pathways include (1) power-to-hydrogen or PtH where off-peak electricity is converted to hydrogen via electrolysis and (2) power-to-methane or PtM where carbon dioxide from different source locations is converted into renewable methane (also known as synthetic natural gas SNG). The above pathways result in green hydrogen and methane which can be injected into an existing natural gas pipeline network. Based on these pathways a multi-period network optimization model that integrates the design and operation of hydrogen from PtH and renewable methane is proposed. The multi-period model is a mixed-integer non-linear programming (MINLP) model that determines (1) the optimal concentration of hydrogen and carbon dioxide in the natural gas pipelines (2) the optimal location of PtH and carbon dioxide units while minimizing the overall system cost. We show using a case study in Ontario the optimal network structure for injecting renewable hydrogen and methane within an integrated natural gas network system provides a $12M cost reduction. The optimal concentration of hydrogen ranges from 0.2 vol % to a maximum limit of 15.1 vol % across the network while reaching a 2.5 vol % at the distribution point. This is well below the maximum limit of 5 vol % specification. Furthermore the optimizer realized a CO2 concentration ranging from 0.2 vol % to 0.7 vol %. This is well below the target of 1% specified in the model. The study is essential to understanding the practical implication of hydrogen penetration in natural gas systems in terms of constraints on hydrogen concentration and network system costs.
Development of a New Renewable Energy System for Clean Hydrogen and Ethanol Production
Mar 2024
Publication
The present research work aims to present a uniquely designed renewable energy-based integrated system along with an equilibrium model for the processing of feedstock by following a hybrid route of thermochemical and biochemical ways. In this regard Canadian maple leaves and plastic wastes are selected as potential feedstocks for co-pyrolysis and syngas fermentation. The influence of co-pyrolysis process parameters on the overall system performance is investigated and assessed. Also several sensitivity analyses are performed to determine the optimal operating parameters that can generate maximum yields of hydrogen and ethanol. The present system is further investigated thermodynamically in terms of energetic and exergetic approaches and efficiencies. The present study shows that a molar flow ratio of 1:1 for maple leaves to plastic wastes a temperature of 1000◦C temperature and a pressure of 1 bar appear to be the most suitable operating conditions with the net production capacities of 7.43 tons/day for hydrogen and 8.72 tons/day for ethanol. The cold gas efficiency and LHV of the syngas produced are found to be 57.23% and 19.96 MJ/kg respectively. The overall energetic and exergetic efficiencies of the present system are found to be 30.98% and 26.88% respectively.
Hydrogen Recombiners for Non-nuclear Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen recombiners are catalyst-based hydrogen mitigation systems that have been successfully implemented in the nuclear industry but have not yet received serious interest from the hydrogen industry. Recombiners have been installed in the containment buildings of many nuclear power plants to prevent the accumulation of hydrogen in potential accidents. The attractiveness of hydrogen recombiners for the nuclear industry is due to the confined state of the containment building where hydrogen cannot be vented easily and its passive design where no power or actions are needed for the unit to operate. Alternatively in the hydrogen industry most applications utilize ventilation to mitigate potential hydrogen accumulation in confined areas and passive safety is not essential. However many applications in the hydrogen industry may utilize hydrogen recombiners from a different approach. For instance recombiners could be utilized in emerging hydrogen areas to minimize the costs of ventilation upgrades or built into hydrogen appliances to avoid vent connections. The potential applications for recombiners in the hydrogen industry have different atmospheric conditions than the nuclear industry which may impact the catalyst in the units and render them less effective. Thus experiments have been performed to investigate the limits of the recombiner catalyst and if modifications to the catalyst can extend their use to the hydrogen industry. This paper will present and discuss the applications of interest conditions that may affect the catalyst and results from experiments investigating the catalyst behaviour at temperatures less than 0 °C and carbon monoxide concentrations up to 1000 ppm.
Hydrogen Fuel Cell Integration and Testing in a Hybrid-electric Propulsion Rig
Jun 2023
Publication
On the road towards greener aviation hybrid-electric propulsion systems have emerged as a viable solution. In this paper a system based on hydrogen fuel cells is proposed and evaluated in a laboratory setting with its future integration in a propulsive system in mind and main focus on the ability to lessen the power demand on the opposing side of the bench. The setup consists in a parallel architecture with two power sources: a hydrogen fuel cell and a battery. First the performance of the fuel cell and its capability to provide power to one of the motors are analyzed. Then the entire parallel hybrid system is evaluated. Although the experimental setup was shown to be sub-optimal the results demonstrated the ability of this greener alternative to reduce power demand on the opposing side of the parallel configuration with a reduction of up to 40.3% in the highest load scenario and maximum power output on the fuel cell of 257.8 W. The stack performance was also concluded to be very dependent on the operating temperature.
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
Thermo-physical Numerical Model for Hydrogen Storage in Underground Tanks and Caverns
Apr 2024
Publication
Compressed hydrogen storage is an energy-efficient alternative to liquefaction and in the absence of underground salt formations reservoirs like rock caverns mining shafts and cased boreholes are gaining traction. The limited reservoir volume constrained by excavation or drilling results in short high-pressure cycles. Thus effective temperature control is crucial to maintain integrity and maximize hydrogen density. This study presents a validated numerical model with open-access code for simulating heat exchange and predicting operating pressure and temperature for underground hydrogen storage in tanks or caverns. The validation encompasses analytical solutions and existing cylindrical models. Results highlight the heat transfer’s impact on hydrogen density and the limited penetration depth of the thermal perturbation underscoring the need for simulating heat transfer across multiple layers especially in restrictive media like cement. Managing injection and extraction flow rates is crucial to limit temperature peaks for larger radius reservoirs where heat transfer is less efficient.
Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece
Apr 2024
Publication
The European Union is committed to a 55% reduction in greenhouse gas emissions by 2030 as outlined in the Green Deal and Climate Law initiatives. In response to geopolitical events the RePowerEU initiative aims to enhance energy self-sufficiency reduce reliance on Russian natural gas and promote hydrogen utilization. Hydrogen valleys localized ecosystems integrating various hydrogen supply chain elements play a key role in this transition particularly benefiting isolated regions like islands. This manuscript focuses on optimizing a Centralized Green Hydrogen Production Facility (CGHPF) on the island of Crete. A mixed-integer linear programming framework is proposed to optimize the CGHPF considering factors such as land area wind and solar potential costs and efficiency. Additionally an in-depth sensitivity analysis is conducted to explore the impact of key factors on the economic feasibility of hydrogen investments. The findings suggest that hydrogen can be sold in Crete at prices as low as 3.5 EUR/kg. Specifically it was found in the base scenario that selling hydrogen at 3.5 EUR/kg the net profit of the investment could be as high as EUR 6.19 million while the capacity of the solar and wind installation supplying the grid hydrogen facility would be 23.51 MW and 52.97 MW respectively. It is noted that the high profitability is justified by the extraordinary renewable potential of Crete. Finally based on our study a policy recommendation to allow a maximum of 20% direct penetration of renewable sources of green hydrogen facilities into the grid is suggested to encourage and accelerate green hydrogen expansion.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Thermochemical Looping Technologies for Clean Hydrogen Production – Current Status and Recent Advances
Nov 2022
Publication
This review critically analyses various aspects of the most promising thermochemical cycles for clean hydrogen production. While the current hydrogen market heavily relies on fossil-fuel-based platforms the thermochemical water-splitting systems based on the reduction-oxidation (redox) looping reactions have a significant potential to significantly contribute to the sustainable production of green hydrogen at scale. However compared to the water electrolysis techniques the thermochemical cycles suffer from a low technology readiness level (TRL) which retards the commercial implementation of these technologies. This review mainly focuses on identifying the capability of the state-of-the-art thermochemical cycles to deploy large-scale hydrogen production plants and their techno-economic performance. This study also analyzed the potential integration of the hybrid looping systems with the solar and nuclear reactor designs which are evidenced to be more cost-effective than the electrochemical water-splitting methods but it excludes fossil-based thermochemical processes such as gasification steam methane reforming and pyrolysis. Further investigation is still required to address the technical issues associated with implementing the hybrid thermochemical cycles in order to bring them to the market for sustainable hydrogen production.
A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides
Dec 2010
Publication
The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada) and Military University of Technology (Warsaw Poland) are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size) induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which in turn act catalytically. However these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g. enthalpy change of hydrogen sorption reactions). It is shown that a complex metal hydride LiAlH4 after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor is able to desorb relatively large quantities of hydrogen at RT 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.
Recyclable Metal Fuels for Clean and Compact Zero-carbon Power
Jun 2018
Publication
Metal fuels as recyclable carriers of clean energy are promising alternatives to fossil fuels in a future low-carbon economy. Fossil fuels are a convenient and widely-available source of stored solar energy that have enabled our modern society; however fossil-fuel production cannot perpetually keep up with increasing energy demand while carbon dioxide emissions from fossil-fuel combustion cause climate change. Low-carbon energy carriers with high energy density are needed to replace the multiple indispensable roles of fossil fuels including for electrical and thermal power generation for powering transportation fleets and for global energy trade. Metals have high energy densities and metals are therefore fuels within many batteries energetic materials and propellants. Metal fuels can be burned with air or reacted with water to release their chemical energy at a range of power-generation scales. The metal-oxide combustion products are solids that can be captured and then be recycled using zero-carbon electrolysis processes powered by clean energy enabling metals to be used as recyclable zero-carbon solar fuels or electrofuels. A key technological barrier to the increased use of metal fuels is the current lack of clean and efficient combustor/reactor/engine technologies to convert the chemical energy in metal fuels into motive or electrical power (energy). This paper overviews the concept of low-carbon metal fuels and summarizes the current state of our knowledge regarding the reaction of metal fuels with water to produce hot hydrogen on demand and the combustion of metal fuels with air in laminar and turbulent flames. Many important questions regarding metal-fuel combustion processes remain unanswered as do questions concerning the energy-cycle efficiency and life-cycle environmental impacts and economics of metals as recyclable fuels. Metal fuels can be an important technology option within a future low-carbon society and deserve focused attention to address these open questions.
No more items...