Chile
Improved Overall Hydrogen Storage Properties of a CsH and KH Co-doped Mg(NH2)2/2LiH System by Forming Mixed Amides of Li–K and Cs–Mg
Jun 2017
Publication
A CsH and KH co-doped Mg(NH2)2/2LiH composite was prepared with a composition of Mg(NH2)2/2LiH–(0.08 − x)CsH–xKH and the hydrogen storage characteristics was systematically investigated. The results showed that the presence of KH further improved the reaction thermodynamics and kinetics of hydrogen storage in a CsH-containing Mg(NH2)2/2LiH system. A sample with 0.04 mol CsH and 0.04 mol KH had optimal hydrogen storage performance; its dehydrogenation could proceed at 130 °C and hydrogenation at 120 °C with 4.89 wt% of hydrogen storage capacity. At 130 °C a 25-fold increase in the dehydrogenation rate was achieved for the CsH and KH co-doped sample. More importantly the CsH and KH co-doped sample also had good cycling stability because more than 97% of the hydrogen storage capacity (4.34 wt%) remained for theMg(NH2)2/2LiH–0.04CsH–0.04KH sample after 30 cycles. A structural characterization revealed that added CsH and KH participated in the dehydrogenation and hydrogenation reactions by reversibly forming mixed amides of Li–K and Cs–Mg which caused the improved hydrogen storage thermodynamics and kinetics.
Ignition of H2-NO2/N2O4 Mixtures Under Volumetric Expansion Conditions
Sep 2019
Publication
The competition between chemical energy release rate and volumetric expansion related to shock wave’s dynamics is of primary importance for a number of situations relevant to explosion safety. While studies have been performed on this topic over the years they have been limited to mixtures with monotonous energy release profile. In the present study the ignition of H2-NO2/N2O4 mixtures which exhibit a single-step or a two-step energy release rate profile depending on the equivalence ratio has been investigated under volumetric expansion conditions. The rate of expansion has been calculated using the Taylor-Sedov solution and accounted for using 0-D numerical simulations with time-dependent specific volume. The results were analyzed in terms of a Damkohler number defined as the ratio of the expansion to ignition times. For mixtures with non-monotonous energy release rate profiles two critical Damkohler numbers can be identified one for each of the steps of energy release. It was also shown that the fluid element which is the most likely to ignite corresponds to the one behind a shock propagating at the Chapman-Jouguet velocity. The thermo-chemical dynamics have been analyzed about the critical conditions using energy release rate per reaction rate of production and sensitivity analyses.
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan
Aug 2020
Publication
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively different distribution storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta CL to the port of Osaka JP.
Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Dec 2021
Publication
The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energyconsuming equipment. Hence 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy considering threegeneration scenarios (minimum maximum and the annual average). In all cases the energy supply in the electrolyzer was 3.08 MWe. In addition the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel meaning that the output kWh of each system is economically similar. In addition the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
Oct 2020
Publication
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy where hydrogen fuel cells stand out. However the implementation of a competitive hydrogen economy still presents several challenges related to economic costs required infrastructures and environmental performance. In this context the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations considering as functional unit 1 kg of hydrogen produced 1 kWh of energy obtained and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream the use of photovoltaic electricity and the implementation of an energy recovery system for the residual methane stream.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
Evaluation of a Hydrogen Powered Scooter Toy Prototype
Nov 2022
Publication
Electric scooters are used as alternative ways of transport because they easily make travel faster. However the batteries can take around 5 h to charge and have an autonomy of 30 km. With the presence of the hydrogen cell a hybrid system reduces the charging times and increases the autonomy of the vehicle by using two types of fuel. An increase of up to 80% in maximum distance and of 34% in operating times is obtained with a 1:10 scale prototype with the hydrogen cell; although more energy is withdrawn the combined fuel efficiency increases too. This suggests the cell that is used has the same behavior as some official reported vehicles which have a long range but low power. This allows concluding that use of the cell is functional for load tests and that the comparison factor obtained works as input for real-scale scooter prototypes to compete with the traditional electric scooters.
Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges
Dec 2022
Publication
The article presents a review of the research on green hydrogen from the social sciences identifying its main lines of research its problems and the relevant challenges due to the benefits and impacts that this energy vector has on energy transitions and climate change. The review analyzes a corpus of 78 articles indexed in the Web of Science (WoS) and SCOPUS published between 1997 and 2022. The review identified three research areas related to green hydrogen and the challenges for the social sciences in the future: (a) risks socio-environmental impacts and public perception; (b) public policies and regulation and (c) social acceptance and willingness to use associated technologies. Our results show that Europe and Asia lead the research on green hydrogen from the social sciences. Also most of the works focus on the area of public policy and regulation and social acceptance. Instead the field of social perception of risk is much less developed. We found that little research from the social sciences has focused on assessments of the social and environmental impacts of hydrogen on local communities and indigenous groups as well as the participation of local authorities in rural locations. Likewise there are few integrated studies (technical and social) that would allow a better assessment of hydrogen and cleaner energy transitions. Finally the lack of familiarity with this technology in many cases constitutes a limitation when evaluating its acceptance.
No more items...