China, People’s Republic
Multi‑Criteria Optimization and Techno‑Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy‑EDAS Models
Aug 2025
Publication
Hydrogen offers an effective pathway for the large‑scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein the wind–solar–hydrogen stand‑alone and grid‑connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno‑economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi‑criteria decision anal‑ ysis models. The system is composed of 5588 kW solar photovoltaic panels an 800 kW wind turbine a 1600 kW electrolyzer a 421 kWh battery and a 50 kW fuel cell. In addi‑ tion to meeting the power requirements for system operation the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen‑fueled buses. The stand‑alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year with an NPC of USD 8.15 million an LCOE of USD 0.43/kWh and an LCOH of USD 5.26/kg. The grid‑connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million its LCOE is USD 0.11/kWh and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable en‑ ergy systems which will develop the hydrogen economy and create low‑carbon‑emission energy systems.
Internal Model Control for Onboard Methanol-Reforming Hydrogen Production Systems
Jan 2025
Publication
Methanol reforming is considered to be one of the most promising hydrogen production technologies for hydrogen fuel cells. It is expected to solve the problem of hydrogen storage and transportation because of its high hydrogen production rate low cost and good safety. However the strong nonlinearity and slow response of the pressure and temperature subsystems pose challenges to the tracking control of the methanol reforming hydrogen production system. In this paper two internal model-based temperature and pressure controllers are proposed in which the temperature is adjusted by controlling the air flow and the pressure is adjusted by controlling the opening of the backpressure valve. Firstly a lumped parameter model of the methanol reforming hydrogen production system is constructed using MATLAB/Simulink® (produced by MathWorks in Natick Massachusetts USA). In addition the transfer function model of the system is obtained by system identification at the equilibrium point and the internal model controller is further designed. The simulation results show that the control method achieves the robustness of the system and the temperature and pressure of the reforming reactor can quickly and accurately track the target value when the load changes. Small-load step tests indicate stable tracking of the temperature and pressure for the reforming reactor without steady-state errors. Under large-temperature step signal testing the response time for the reforming temperature is about 148 s while the large-pressure step signal test shows that the response time for the reforming pressure is about 8 s. Compared to the PID controller the internal model controller exhibits faster response zero steady-state error and no overshoot. The results show that the internal model control method has strong robustness and dynamic characteristics.
Network Evolutionary Game Analysis of Coal-to-Hydrogen CCUS Technology Dissemination in Carbon Trading Market
Jan 2025
Publication
Integrating coal-to-hydrogen production with Carbon Capture Utilization and Storage (CCUS) is essential for reducing greenhouse gas emissions and facilitating a shift towards a more sustainable energy paradigm. This paper explores the diffusion of CCUS technology within the coal-to-hydrogen sector against the dynamic backdrop of the carbon trading market. An evolutionary game-theoretic approach is utilized within a smallworld network framework to analyze the spread of CCUS technology among coal-tohydrogen enterprises. The simulation reveals that current market dynamics along with technological market and policy-related uncertainties do not robustly encourage the adoption of CCUS. As the carbon trading market continues to mature carbon prices become a significant factor influencing the diffusion of CCUS technology in coal-to-hydrogen processes. Furthermore investment costs hydrogen market prices and governmental policies are identified as pivotal elements in the propagation of CCUS technology. This study contributes valuable insights into the sustainable development of the hydrogen industry and the broader implications for low-carbon energy transition strategies.
Optimal Scheduling of Hydrogen Storage in Integrated Energy System Including Multi-source and Load Uncertainties
Dec 2024
Publication
Demand response (DR) is a crucial element in the optimization of integrated energy systems (IESs) that incor porate distributed generation (DG). However its inherent uncertainty poses significant challenges to the eco nomic viability of IESs. This research presents a novel economic dispatch model for IESs utilizing information gap decision theory (IGDT). The model integrates various components to improve IES performance and dispatch efficiency. With a focus on hydrogen energy the model considers users’ energy consumption patterns thereby improving system flexibility. By applying IGDT the model effectively addresses the uncertainty associated with DR and DG overcoming the limitations of traditional methods. The research findings indicate that in relation to the baseline method the proposed model has the potential to reduce operating costs by 6.3 % and carbon emissions by 4.2 %. The integration of a stepwise carbon trading mechanism helps boost both economic and environmental advantages achieving a 100 % wind power consumption rate in the optimized plan. In addition the daily operating costs are minimized to 23758.99 ¥ while carbon emissions are significantly reduced to 34192 kg. These findings provide quantitative decision support for IES dispatch planners to help them develop effective dispatch strategies that are consistent with low-carbon economic initiatives.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
Progress and Prospects of Reversible Solid Oxide Fuel Cell Materials
Dec 2021
Publication
Reversible solid oxide fuel cell (RSOFC) is an energy device that flexibly interchanges between electrical and chemical energy according to people’s life and production needs. The development of cell materials affects the stability and cost of the cell but also restricts its market-oriented development. After decades of research by scientists a lot of achievements and progress have been made on RSOFC materials. According to the composition and requirements of each component of RSOFC this article summarizes the research progress based on materials and discusses the merits and demerits of current cell materials in electrochemical performance. According to the efficiency of different materials in solid oxide fuel cell (SOFC mode) and solid oxide electrolyzer (SOEC mode) the challenges encountered by RSOFC in the operation are evaluated and the future development of RSOFC materials is boldly prospected.
Recent Progress in Seawater Electrolysis for Hydrogen Evolution by Transition Metal Phosphides
Dec 2021
Publication
The electrocatalytic seawater splitting has become an important and necessary way for large-scale hydrogen production with challenges ahead. In this review a brief introduction to the reaction mechanism of seawater electrocatalytic process is first provided including the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction as well as the competitive chloride evolution reaction. Recent progress in transition metal phosphides-based catalysts for seawater electrolysis such as phosphorus doped transition metals binary metal phosphides and structural engineering are then evaluated and discussed. Finally the challenges and opportunities of transition metal phosphides are proposed and discussed.
Multi-Temporal Energy Management Strategy for Fuel Cell Ships Considering Power Source Lifespan Decay Synergy
Dec 2024
Publication
With increasingly stringent maritime environmental regulations hybrid fuel cell ships have garnered significant attention due to their advantages in low emissions and high efficiency. However challenges related to the coordinated control of multi-energy systems and fuel cell degradation remain significant barriers to their practical implementation. This paper proposes an innovative multi-timescale energy management strategy that focuses on optimizing the lifespan decay synergy of fuel cells and lithium batteries. The study designs an attention-based CNN-LSTM hybrid model for power prediction and constructs a twostage optimization framework: The first stage employs Model Predictive Control (MPC) for long-term power planning to optimize equivalent hydrogen consumption while the second stage focuses on real-time power allocation considering both power source degradation and system operational efficiency. The simulation results demonstrate that compared to single-layer MPC and the Equivalent Consumption Minimization Strategy (ECMS) the proposed method exhibits significant advantages in reducing single-voyage costs minimizing differences in power source degradation rates and alleviating power source stress. The overall performance of this strategy approaches the global optimal solution obtained through Dynamic Programming comprehensively validating its superiority in simultaneously optimizing system economics and durability.
A Bibliometric Study on the Research Trends and Hotspots of Proton Exchange Membrane Electrolyzer
Jan 2024
Publication
The application of hydrogen energy produced by proton exchange membrane electrolyzer (PEMEC) is conducive to the solution of the greenhouse effect and the energy crisis. In order to understand the development trends and research hotspot of PEMEC in recent years a total of 1874 research articles related to this field from 2003 to 2023 were obtained from the Web of Science Core Collection (WoS CC) database. The visualization software VOSviewer is used for bibliometric analysis and the research progress hotspots and trends in the PEMEC field are summarized. It was found that in the past two decades literature in the PEMEC field has shown a trend of stable increase at first and then rapidly increasing. And it is in a stage of rapid growth after 2021.Renewable Energy previously published research articles related to PEMEC with the highest frequency of citations. There are a total of 6128 researchers in this field but core authors only account for 4.5% of the total. Although China entered this field later than the United States and Canada it has the largest number of research articles. The research results provide a comprehensive overview of various aspects in the PEMEC field which is beneficial for researchers to grasp the development hotspots of PEMEC.
Research Progress on Corrosion and Hydrogen Embrittlement in Hydrogen-Natural Gas Pipeline Transportation
Jun 2023
Publication
Hydrogen clean efficient and zero-carbon is seen as a most promising energy source. The use of existing gas pipelines for hydrogenenatural gas transportation is considered to be an effective way to achieve long-distance large-scale efficient and economical hydrogen transportation. However the pipelines for hydrogenenatural gas transportation contain lots of impurities (e.g. CH4 high-pressure H2 H2S and CO2) and free water which will inevitably lead to corrosion and hydrogen embrittlement. This paper presents a systematic review of research and an outlook for corrosion and hydrogen embrittlement in hydrogenenatural gas pipeline transportation. The results show that gasphase hydrogen charging is suitable for hydrogenenatural gas transportation but this technique lacks technical standards. By contrast the liquid-phase hydrogen charging technique is more mature but has large deviation from the engineering reality. In the hydrogenenatural gas transportation pipelines corrosion and hydrogen embrittlement are synergetic and competitive but the failure mechanism and change law when corrosion and hydrogen embrittlement coexist remain unclear which need to be further clarified by experiments. The failure mechanism is believed to be mainly sensitive to three key factors i.e. the H2S/CO2 partial pressure ratio the hydrogen blending ratio and material strength. The increase of the three factors will make the pipeline materials more corrosive and more sensitive to hydrogen embrittlement. The research findings can be used as a reference for research and development of long-distance hydrogenenatural gas transportation technology and will drive the high-quality development of the hydrogenenatural gas blending industry.
Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction
Jan 2024
Publication
This review focuses on the energy structure of iron and steel production and a feasible development path for carbon reduction. The process path and feasible development direction of carbon emission reduction in the iron and steel industry have been analyzed from the perspective of the carbon–electricity–hydrogen ternary relationship. Frontier technologies such as “hydrogen replacing carbon” are being developed worldwide. Combining the high efficiency of microwave electric-thermal conversion with the high efficiency and pollution-free advantages of hydrogen-reducing agents may drive future developments. In this review a process path for “microwave + hydrogen” synergistic metallurgy is proposed. The reduction of magnetite powder by H2 (CO) in a microwave field versus in a conventional field is compared. The driving effect of the microwave field is found to be significant and the synergistic reduction effect of microwaves with H2 is far greater than that of CO.
Recent Advances in Electrocatalysts for Seawater Splitting
Dec 2020
Publication
Water splitting is an effective strategy to produce renewable and sustainable hydrogen energy. Especially seawater splitting avoiding use of the limited freshwater resource is more intriguing. Nowadays electrocatalysts explored for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using natural seawater or saline electrolyte have been increasingly reported. To better understand the current status and challenges of the electrocatalysts for HER and OER from seawater we comprehensively review the recent advances in electrocatalysts for seawater splitting. The fundamentals challenges and possible strategies for seawater splitting are firstly presented. Then the recently reported electrocatalysts that explored for HER and OER from seawater are summarized and discussed. Finally the perspectives in the development of high-efficient electrocatalysts for seawater splitting are also proposed.
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation emerging technologies have vital features such as prominent impact novelty relatively fast growth etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies novelty and prominent impact. After data processing topic modeling and analysis the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts overcoming the wide power fluctuations and large-scale instability of renewable energy power generation and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.
Optimal Scheduling of an Electric-Hydrogen-Integrated Energy System Considering Virtual Energy Storage
Jan 2024
Publication
In this paper a two-layer optimization approach is proposed to facilitate the multi-energy complementarity and coupling and optimize the system configuration in an electric-hydrogen-integrated energy system (EH-IES). Firstly an EH-IES with virtual energy storage is proposed to reduce the cost of physical energy storage equipment. Secondly a two-layer optimal allocation method is proposed under a multi-timescale strategy to examine the comprehensive evaluation index of environmental protection and economy. The upper layer utilizes the NSGA-II multi-objective optimization method for system capacity allocation while the lower layer performs economic dispatch at the lowest cost. Ultimately the output includes the results of the equipment capacity allocation of the EH-IES that satisfies the reliability constraint interval and the daily scheduling results of the equipment. The results demonstrate that the electric-hydrogen-integrated energy system with the coupling of multiple energy equipment not only enhances the utilization of renewable energy sources but also reduces the usage of fossil energy and improves the system’s reliability.
Economic Analysis of Supply Chain for Offshore Wind Hydrogen Production for Offshore Hydrogen Refueling Stations
Jan 2025
Publication
In order to solve the problem of large-scale offshore wind power consumption the development of an offshore wind power hydrogen supply chain has become one of the trends. In this study 10 feasible options are proposed to investigate the economics of an offshore wind hydrogen supply chain for offshore hydrogen refueling station consumption from three aspects: offshore wind hydrogen production storage and transportation and application. The study adopts a levelized cost analysis method to measure the current and future costs of the hydrogen supply chain. It analyses the suitable transport modes for delivering hydrogen to offshore hydrogen refueling stations at different scales and distances as well as the profitability of offshore hydrogen refueling stations. The study draws the following key conclusions: (1) the current centralised wind power hydrogen production method is economically superior to the distributed method; (2) gas-hydrogen storage and transportation is still the most economical method at the current time with a cost of CNY 32.14/kg which decreases to CNY 13.52/kg in 2037 on a par with the cost of coal-based hydrogen production using carbon capture technology; and (3) at the boundaries of an operating load factor of 70% and a selling price of CNY 25/kg the offshore hydrogen refueling station. The internal rate of return (IRR) is 21% showing good profitability; (4) In terms of the choice of transport mode for supplying hydrogen to the offshore hydrogen refueling station gas-hydrogen ships and pipeline transport will mainly be used in the near future while liquid organic hydrogen carriers and synthetic ammonia ships can be considered in the medium to long term.
Comparative Assessment of Hydrogen and Methanol-Derived Fuel Co-Combustion for Improved Natural Gas Boiler Performance and Sustainability
Jan 2025
Publication
Faced with a global consensus on net-zero emissions the use of clean fuels to entirely or substantially replace traditional fuels has emerged as the industry’s primary development direction. Alcohol–hydrogen fuels primarily based on methanol are a renewable and sustainable energy source. This research focuses on energy sustainability and presents a boiler fuel blending system that uses methanol–hydrogen combinations. This system uses the boiler’s waste heat to catalytically decompose methanol into a gas mostly consisting of H2 and CO which is then co-combusted with the original fuel to improve thermal efficiency and lower emissions. A comparative experimental study considering natural gas (NG) blending with hydrogen and dissociated methanol gas (DMG) was carried out in a small natural gas boiler. The results indicate that with a controlled mixed fuel flow of 10 m3/h and an excess air coefficient of 1.2 a 10% hydrogen blending ratio maximizes the boiler’s thermal efficiency (ηt) resulting in a 3.5% increase. This ratio also results in a 1% increase in NOx emissions a 25% decrease in HC emissions and a 5.66% improvement in the equivalent economics (es). Meanwhile blending DMG at 15% increases the boiler’s ηt by 3% reduces NOx emissions by 13.8% and HC emissions by 20% and improves the es by 8.63%. DMG as a partial substitute for natural gas outperforms hydrogen in various aspects. If this technology can be successfully applied and promoted it could pave a new path for the sustainable development of energy in the boiler sector.
Optimizing Flexibility and Low-carbon Emissions in Integrated Energy Systems: A Two-stage Robust Optimization Model Invrporating Hydrogen and Carbon Trading
Jan 2025
Publication
Source-load output uncertainty poses significant risks to the stable operation of Integrated Energy Systems (IESs). To ensure safe and stable system operation while optimizing the balance among robustness economic viability and low-carbon emissions this paper presents a two-stage robust optimal scheduling model for IESs. This model is supported by hydrogen-containing electric dual-energy conversion characteristics under source-load uncer tainty. Additionally to promote the low-carbon characteristics of the system a ladder carbon trading mechanism is introduced on the source side of the carbon source equipment. Furthermore the integration of hydrogen energy enhances the clean characteristics of source-side multi-energy coupling. The proposed utilization mode Power-to-Hydrogen Hydrogen-to-Power Hydrogen Energy Storage and Hydrogen Load (P2H-H2P-HES-HL) allows for bidirectional conversion thereby increasing the flexibility and responsiveness of overall system scheduling. Finally to ensure that the model closely reflects actual operational and scheduling conditions a twophase robust approach is employed to address source-load uncertainties. This approach is solved iteratively using the linear transformation of the Karush-Kuhn-Tucker (KKT) conditions and the Column-and-Constraint Gener ation (C&CG) algorithm. The results demonstrate that the proposed model significantly enhances the scheduling capability of the system in coping with uncertainty thereby effectively ensuring its flexibility and security
The Development, Current Status and Challenges of Salt Cavern Hydrogen Storage Technology in China
Feb 2025
Publication
This paper provides a systematic visualization of the development current status and challenges of salt cavern hydrogen storage technology based on the relevant literature from the past five years in the Web of Science Core Collection database. Using VOSviewer (version 1.6.20) and CiteSpace software (advanced version 6.3.R3) this study analyzes the field from a knowledge mapping perspective. The findings reveal that global research hotspots are primarily focused on multi-energy collaboration integration of renewable energy systems and exploration of commercialization highlighting the essential role of salt cavern hydrogen storage in driving the energy transition and promoting sustainable development. In China research mainly concentrates on theoretical innovations and technological optimizations to address complex geological conditions. Despite the rapid growth in the number of Chinese publications unresolved challenges remain such as the complexity of layered salt rock and thermodynamic coupling effects during highfrequency injection and extraction as well as issues concerning permeability and microbial activity. Moving forward China’s salt cavern hydrogen storage technology should focus on strengthening engineering practices suited to local geological conditions and enhancing the application of intelligent technologies thereby facilitating the translation of theoretical research into practical applications.
A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants
Jul 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are regarded as promising alternatives to internal combustion engines (ICEs) to reduce pollution. Recent research on PEMFCs focuses on achieving higher power densities reducing the refueling time mitigating the final price and decreasing the degradations to facilitate the commercialization of hydrogen mobility. The design of bipolar plates and compression kits in addition to their coating can effectively improve performance increase durability and support water/thermal management. Past reviews usually focused on the specific aspect which can hardly provide readers with a complete picture of the key challenges facing and advances in the long-term performance of PEMFCs. This paper aims to deliver a comprehensive source to review from both experimental analytical and numerical viewpoints design challenges degradation modeling protective coatings for bipolar plates and key operational challenges facing and solutions to the stack to prevent contamination. The significant research gaps in the long-term performance of PEMFCs are identified as (1) improved bipolar-plate design and coating (2) the optimization of the design of sealing and compression kits to reduce mechanical stresses and (3) stack degradation regarding fuel contamination and dynamic operation.
Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization
Jan 2025
Publication
This paper focuses on the critical role of long-duration energy storage (LDES) technologies in facilitating renewable energy integration and achieving carbon neutrality. It presents a systematic review of four primary categories: mechanical energy storage chemical energy storage electrochemical energy storage and thermal energy storage. The study begins by analyzing the technical advantages and geographical constraints of pumped hydro energy storage (PHES) and compressed air energy storage (CAES) in high-capacity applications. It then explores the potential of hydrogen and synthetic fuels for long-duration clean energy storage. The section on electrochemical energy storage highlights the high energy density and flexible scalability of lithium-ion batteries and redox flow batteries. Finally the paper evaluates innovative advancements in large-scale thermal energy storage technologies including sensible heat storage latent heat storage and thermochemical heat storage. By comparing the performance metrics application scenarios and development prospects of various energy storage technologies this work provides theoretical support and practical insights for maximizing renewable energy utilization and driving the sustainable transformation of global energy systems.
Deep Reinforcement Learning Based Optimal Operation of Low-Carbon Island Microgrid with High Renewables and Hybrid Hydrogen–Energy Storage System
Jan 2025
Publication
Hybrid hydrogen–energy storage systems play a significant role in the operation of islands microgrid with high renewable energy penetration: maintaining balance between the power supply and load demand. However improper operation leads to undesirable costs and increases risks to voltage stability. Here multi-time-scale scheduling is developed to reduce power costs and improve the operation performance of an island microgrid by integrating deep reinforcement learning with discrete wavelet transform to decompose and mitigate power fluctuations. Specifically in the day-ahead stage hydrogen production and the hydrogen blending ratio in gas turbines are optimized to minimize operational costs while satisfying the load demands of the island. In the first intraday stage rolling adjustments are implemented to smooth renewable energy fluctuations and increase system stability by adjusting lithium battery and hydrogen production equipment operations. In the second intraday stage real-time adjustments are applied to refine the first-stage plan and to compensate for real-time power imbalances. To verify the proposed multi-stage scheduling framework real-world island data from Shanghai China are utilized in the case studies. The numerical simulation results demonstrate that the proposed innovative optimal operation strategy can simultaneously reduce both the costs and emissions of island microgrids.
Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution
Sep 2023
Publication
Large-scale hydrogen (H2 ) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water which is essential for electrolysis since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes such as competitive chloride evolution anodic oxygen evolution and cathodic hydrogen evolution that govern seawater electrocatalytic reactions. In this review advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed including transition metal doping with phosphorus the nanosheet structure of phosphides and structural engineering approaches. Application progress catalytic process efficiency opportunities and problems related to transition metal phosphides are also highlighted in detail. Collectively this review is a comprehensive summary of the topic focusing on the challenges and opportunities.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
Decarbonizing the Future for the Transportation and Aviation Industries: Green Hydrogen as the Sustainable Fuel Solution
Jun 2025
Publication
The pressure to move to sustainable energy sources is obvious in today's fast changing energy environment. In this context green hydrogen appears as a beacon of hope with the potential to reinvent the paradigms of energy consumption particularly in the transportation and aviation sectors. Hydrogen has long been intriguing owing to its unique characteristics. It is not only an energy transporter; it has the power to alter the game. Its growing significance is due to its capacity to decarbonize energy generation. Traditional hydrogen generation techniques have contributed considerably to world CO2 emissions accounting for over 2% of total emissions. This environmental problem is successfully addressed by the development of green hydrogen which is created from renewable energy sources. The International Energy Agency (IEA) predicts a 25 to 30 percent increase in global energy consumption by 2040 which is a very grim scenario. If continue to rely on coal and oil this growing demand will result in greater CO2 emissions exacerbating climate change's consequences. In this situation green hydrogen is not only an option but a need. Because green hydrogen has properties with conventional fuels it can be simply integrated into current infrastructure. This harmonic integration ensures that the shift to hydrogen-based solutions in these sectors would not demand a complete redesign of the present systems assuring cost-effectiveness and practicality. However like with any energy source green hydrogen has obstacles. Its combustibility and probable explosiveness have been cited as causes for concern. However developments in safety measures have successfully mitigated these dangers ensuring that hydrogen may be used safely and efficiently across various applications. A further difficulty is its energy density particularly in comparison to conventional fuels. While its energy-to-weight ratio may be good its bulk poses challenges particularly in the aviation industry where space is at a premium. Beyond its direct use as a fuel green hydrogen has potential in auxiliary capacities. It may be used as a dependable backup energy source during power outages as well as in a variety of different sectors and uses ranging from manufacturing to residential. Green hydrogen's adaptability demonstrates its potential to infiltrate all sectors of our economy. Storage is an important enabler for broad hydrogen use. Effective hydrogen storage technologies guarantee not only its availability but also its viability as a source of energy. Current research and advancements in this field are encouraging which strengthens the argument for green hydrogen. At conclusion green hydrogen is in the vanguard of sustainable energy solutions particularly for the transportation and aviation industries. In our collaborative quest of a sustainable future its unique features and environmental advantages make it a vital asset. As we explore further into the complexities of green hydrogen in this publication we want to shed light on its potential obstacles and future route.
An Experimental Investigation of Hydrogen Production through Biomass Electrolysis
Jan 2024
Publication
This work investigated hydrogen production from biomass feedstocks (i.e. glucose starch lignin and cellulose) using a 100 mL h-type proton exchange membrane electrolysis cell. Biomass electrolysis is a promising process for hydrogen production although low in technology readiness level but with a series of recognised advantages: (i) lower-temperature conditions (compared to thermochemical processes) (ii) minimal energy consumption and low-cost post-production (iii) potential to synthesise high-volume H2 and (iv) smaller carbon footprint compared to thermochemical processes. A Lewis acid (FeCl3 ) was employed as a charge carrier and redox medium to aid in the depolymerisation/oxidation of biomass components. A comprehensive analysis was conducted measuring the H2 and CO2 emission volume and performing electrochemical analysis (i.e. linear sweep voltammetry and chronoamperometry) to better understand the process. For the first time the influence of temperature on current density and H2 evolution was studied at temperatures ranging from ambient temperature (i.e. 19 ◦C) to 80 ◦C. The highest H2 volume was 12.1 mL which was produced by FeCl3 -mediated electrolysis of glucose at ambient temperature which was up to two times higher than starch lignin and cellulose at 1.20 V. Of the substrates examined glucose also showed a maximum power-to-H2 -yield ratio of 30.99 kWh/kg. The results showed that hydrogen can be produced from biomass feedstock at ambient temperature when a Lewis acid (FeCl3 ) is employed and with a higher yield rate and a lower electricity consumption compared to water electrolysis.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Thermodynamic and Techno-Economic Performance Comparison of Methanol Aqueous Phase Reforming and Steam Reforming for Hydrogen Production
Dec 2024
Publication
Methanol which can be derived from sustainable energy sources such as biomass solar power and wind power is widely considered an ideal hydrogen carrier for distributed and mobile hydrogen production. In this study a comprehensive comparison of the thermodynamic and techno-economic performance of the aqueous phase reforming (APR) and steam reforming (SR) of methanol was conducted using Aspen Plus and CAPCOST software to evaluate the commercial feasibility of the APR process. Thermodynamic analysis based on the Gibbs free energy minimization method reveals that while APR and SR have similar energy demands APR achieves higher energy efficiency by avoiding losses from evaporation and compression. APR typically operates at higher pressures and lower temperatures compared to SR suppressing CO formation and increasing hydrogen fraction but reducing methanol single-pass conversion. A techno-economic comparison of APR and SR for a distributed hydrogen production system with a 50 kg/h hydrogen output shows that although APR requires higher fixed operating costs and annual capital charges it benefits from lower variable operating costs. The minimum hydrogen selling price for APR was calculated to be 7.07 USD/kg compared to 7.20 USD/kg for SR. These results suggest that APR is a more economically viable alternative to SR for hydrogen production.
Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Jun 2024
Publication
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency heat loss and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio with the hydrogen blending ratio increasing from 0% to 25% the laminar flame propagation speed of the fuel increases the extinction strain rate rises and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0 and the combustion intensity of the flame is the highest at this time. In the field tests as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and AnionExchange Membrane Water/Seawater Electrolyzers
Mar 2023
Publication
Developing low-cost and high-performance transition metal-based electro-catalysts is crucial for realizing sustainable hydrogen evolution reaction (HER)in alkaline media. Here a cooperative boron and vanadium co-doped nickelphosphide electrode (B V-Ni2P) is developed to regulate the intrinsic elec-tronic configuration of Ni2P and promote HER processes. Experimental andtheoretical results reveal that V dopants in B V-Ni2P greatly facilitate the dis-sociation of water and the synergistic effect of B and V dopants promotes thesubsequent desorption of the adsorbed hydrogen intermediates. Benefitingfrom the cooperativity of both dopants the B V-Ni2P electrocatalyst requires alow overpotential of 148 mV to attain a current density of −100 mA cm−2 withexcellent durability. The B V-Ni2P is applied as the cathode in both alkalinewater electrolyzers (AWEs) and anion exchange membrane water electrolyzers(AEMWEs). Remarkably the AEMWE delivers a stable performance to achieve500 and 1000 mA cm−2 current densities at a cell voltage of 1.78 and 1.92 Vrespectively. Furthermore the developed AWEs and AEMWEs also demon-strate excellent performance for overall seawater electrolysis.
Origin and Evolution of Hydrogen-rich Gas Discharges from a Hot Spring in the Eastern Coastal Area of China
Jan 2020
Publication
Unlike the typical low-temperature (< 150 °C) continental geothermal systems usually characterized by high N2 CH4 and CO2 concentrations but a trace H2 concentration the sandstone-dominated Jimo hot spring on China's eastern coast exhibits: (1) abnormally high H2 concentrations (2.4–12.5 vol%) and H2/CH4 (up to 46.5); (2) depleted δD-H2 (−822 to −709‰) comparable to the Kansas hot springs near the Mid-Continent rift system with the most depleted δD-H2 (−836 to −740‰) recorded in nature; and (3) dramatic gas concentration and isotope ratio variations within an area of 0.2 km2 . Gas chemistry and H-C-He-Ne isotope ratios are studied with reference to published H2 isotope data from various systems. The origin of the gas is most likely attributed to: (a) allochthonous abiotic H2 generated by the reduction of water and oxidation of FeII-rich pyroxene and olivine (serpentinization) in the basalt located 2 km away under near-surface conditions and migration to the deep sandstone reservoir; (b) primary thermogenic CH4 produced in the sandstone; (c) mixing with a considerable amount of microbial H2 from shallow fresh and marine sediments; and (d) biotic CH4 with typical abiotic signatures resulting from isotope exchanges with fluids high in H2/CH4 and CO2/CH4 ratios. Allochthonous abiotic H2 in a sandstone-dominated continental geothermal system and massive microbial fermentation-based H2 production in shallow fresh and residual marine sediments with insignificant but differential consumption activity are highlighted. The published hydrogen isotope ratios for H2 produced under various natural geological environmental and experimental conditions have been collected systematically to provide a fundamental framework and an initial tool for restricting the dominant origin of H2.
Design of Energy Management Strategy for Integrated Energy System Including Multi-Component Electric–Thermal–Hydrogen Energy Storage
Dec 2024
Publication
To address the challenges of multi-energy coupling decision-making caused by the complex interactions and significant conflicts of interest among multiple entities in integrated energy systems an energy management strategy for integrated energy systems with electricity heat and hydrogen multi-energy storage is proposed. First based on the coupling relationship of electricity heat and hydrogen multi-energy flows the architecture of the integrated energy system is designed and the mathematical model of the main components of the system is established. Second evaluation indexes in three dimensions including energy storage device life load satisfaction rate and new energy utilization rate are designed to fully characterize the economy stability and environmental protection of the system during operation. Then an improved radar chart model considering multi-evaluation index comprehensive optimization is established and an adaptability function is constructed based on the sector area and perimeter. Combined with the operation requirements of the electric–thermal–hydrogen integrated energy system constraint conditions are determined. Finally the effectiveness and adaptability of the strategy are verified by examples. The proposed strategy can obtain the optimal decision instructions under different operation objectives by changing the weight of evaluation indexes while avoiding the huge decision space and secondary optimization problems caused by multiple non-inferior solutions in conventional optimization and has multiscenario adaptability.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Research on the Technical Scheme of Multi-stack Common Rail Fuel Cell Engine Based on the Demand of Commercial Vehicle
Feb 2024
Publication
At present most fuel cell engines are single-stack systems and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks mainly because the increase in the single active area and the excessive number of cells will lead to poor distribution uniformity of water gas and heat in the stack which will cause local attenuation and reduce the performance of the stack. This paper introduces the design concept of internal combustion engine takes three-stack fuel cell engine as an example designs multi-stack fuel cell system scheme and serialized high-voltage scheme. Through Intelligent control technology of independent hydrogen injection based on multi-stack coupling the hydrogen injection inflow of each stack is controlled online according to the real-time anode pressure to achieve accurate fuel injection of a single stack and ensure the consistency between multiple stacks. proves the performance advantage of multi-stack fuel cell engine through theoretical designintelligent control and test verification and focuses on analyzing the key technical problems that may exist in multi-stack consistency. The research results provide a reference for the design of multi-stack fuel cell engines and have important reference value for the powertrain design of long-distance heavy-duty and high-power fuel cell trucks.
Comparative Study of Different Alternative Fuel Options for Shipowners Based on Carbon Intensity Index Model Under the Background of Green Shipping Development
Nov 2024
Publication
The International Maritime Organization (IMO)’s annual operational carbon intensity index (CII) rating requires that from 1 January 2023 all applicable ships meet both technical and operational energy efficiency requirements. In this paper we conduct a comparative study of different alternative fuel options based on a CII model from the perspective of shipowners. The advantages and disadvantages of alternative fuel options such as liquefied natural gas (LNG) methanol ammonia and hydrogen are presented. A numerical example using data from three China Ocean Shipping (Group) shipping lines is analyzed. It was found that the overall attained CII of different ship types showed a decreasing trend with the increase of the ship’s deadweight tonnage. A larger ship size choice can obtain better carbon emission reduction for the carbon emission reduction investment program using alternative fuels. The recommended options of using LNG fuel and zero-carbon fuel (ammonia and hydrogen) on Route 1 and Route 3 during the study period were analyzed for the shipowners. Carbon reduction scenarios using low-carbon fuels (LNG and methanol) and zero-carbon fuels (ammonia and hydrogen) on Route 2 are in line with IMO requirements for CII.
Brief Review of Hydrocarbon-reforming Catalysts Map for Hydrogen Production
Jun 2023
Publication
Hydrogen energy the cleanest fuel presents extensive applications in renewable energy technologies such as fuel cells. However the transition process from carbon-based (fossil fuel) energy to desired hydrogen energy is usually hindered by inevitable scientific technological and economic obstacles which mainly involves complex hydrocarbon reforming reactions. Hence this paper provides a systematic and comprehensive analysis focusing on the hydrocarbon reforming mechanism. Accordingly recent related studies are summarized to clarify the intrinsic difference among the reforming mechanism. Aiming to objectively assess the activated catalyst and deactivation mechanism the rate-determining steps of reforming process have been emphasized summarized and analyzed. Specifically the effect of metals and supports on individual reaction processes is discussed followed by the metalsupport interaction. Current tendency and research map could be established to promote the technology development and expansion of hydrocarbon reforming field. This review could be considered as the guideline for academics and industry designing appropriate catalysts.
Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; The Role of Hydrogen Production
Aug 2023
Publication
The affordability and availability of water and energy have a huge impact on food production. Research has shown that there exists a direct and indirect link between power production and clean water generation. Hence the inclusion/importance given to the energy-water-food (EWF) nexus in the United Nations’ sustainable development goals. Acknowledging the importance of decarbonization to the global future there exists a gap in literature on the development of models that can enhance the EWF nexus reduce energy poverty and achieve 100% renewable energy in the electricity sector. Therefore the technical and economic prospect of geothermal energy for bridging the aforementioned gaps in existing works of literature is presented in this study. The energy poverty/wealthy status of a country has been confirmed to have a significant impact on economic development as economic development is largely reflected in the food-water availability. Ditto this study is focused on the interconnectivity of the EWF nexus while incorporating global decarbonization targets. Geothermal energy is of the utmost significance in East Africa due to its abundant potential and distinctive geological features. Located in the Great Rift Valley the region has an abundance of geothermal reservoirs making it an ideal location for geothermal power generation. This study is novel as a comprehensive assessment framework for energy poverty is developed and innovative models utilizing primarily the geothermal resource in the East African region to mitigate this problem are proposed and analyzed. The role of hydrogen generation from critical excess electricity production is also analyzed. The East Africa region is considered the case study for implementing the models developed. A central renewable energy grid is proposed/modelled to meet the energy demand for seven East African countries namely; Ethiopia Tanzania Uganda Djibouti Comoros Eritrea and Rwanda. This study considers 2030 2040 and 2050 as the timestamp for the implementation of the proposed models. The hybrid mix of the biomass power plant solar photovoltaic (PV) pumped hydro storage system and onshore wind power is considered to furthermore show the potency of renewable energy resources in this region. Results showed that the use of geothermal energy to meet energy demands in the case study will mitigate energy poverty and enhance the region’s EWF.
Enhancing Flexibility in Wind-powered Hydrogen Production Systems through Coordinated Electrolyzer Operation
Jun 2025
Publication
Wind-powered water electrolysis for hydrogen production is a sustainable and environmentally friendly energy technology. However the inherent intermittency and variability of wind power significantly damage the stability and efficiency of the hydrogen production system. To enhance the operational flexibility and system efficiency a novel wind-hydrogen production system is proposed which integrates a new coordination of the conventional alkaline electrolyzers (AEL) and proton exchange membrane electrolyzers (PEMEL) for optimizing the dynamic operation of the system under fluctuating wind power. The developed approach employs variational mode decomposition to classify wind power fluctuations into different frequency components which are then allocated to suitable type of electrolyzers. The configurations of the developed system are optimized using the non-dominated sorting genetic algorithm and the operating scenarios are dynamically analyzed through clustering techniques. Compared to the AEL-only system the proposed system demonstrates significant enhancements with energy efficiency and internal rate of return increased by 5.78% and 10.65% respectively. Meanwhile the coordinated operation extends the continuous operating time of the AEL by 7.08%. The proposed approach enhances the economic viability and operational stability of wind-powered hydrogen production providing a valuable reference for industrial green hydrogen applications.
Hydrogen Leakage Location Prediction in a Fuel Cell System of Skid-Mounted Hydrogen Refueling Stations
Jan 2025
Publication
Hydrogen safety is a critical issue during the construction and development of the hydrogen energy industry. Hydrogen refueling stations play a pivotal role in the hydrogen energy chain. In the event of an accidental hydrogen leak at a hydrogen refueling station the ability to quickly predict the leakage location is crucial for taking immediate and effective measures to prevent disastrous consequences. Therefore the development of precise and efficient technologies to predict leakage locations is vital for the safe and stable operation of hydrogen refueling stations. This paper studied the localization technology of high-risk leakage locations in the fuel cell system of a skid-mounted hydrogen refueling station. The hydrogen leakage and diffusion processes in the fuel cell system were predicted using CFD simulations and the hydrogen concentration data at various monitoring points were obtained. Then a multilayer feedforward neural network was developed to predict leakage locations using simulated concentration data as training samples. After multiple adjustments to the network structure and hyperparameters a final model with two hidden layers was selected. Each hidden layer consisted of 10 neurons. The hyperparameters included a learning rate of 0.0001 a batch size of 32 and 10-fold cross-validation. The Softmax classifier and Adam optimizer were used with a training set for 1500 epochs. The results show that the algorithm can predict leakage locations not included in the training set. The accuracy achieved by the model was 95%. This approach addresses the limitations of sensor detection in accurately locating leaks and mitigates the risks associated with manual inspections. This paper provides a feasible method for locating hydrogen leakage in hydrogen energy application scenarios.
Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage
Feb 2025
Publication
Integrated energy systems (IESs) are essential for enabling the energy transition in communities and reducing CO2 emissions. This paper proposes a novel IES that combines photovoltaic (PV) and solar thermal energy with coordinated electrical and thermal energy storage to meet the energy demands of residential communities. The system also incorporates hydrogen production for fuel cell vehicles. A dual-objective optimization model was developed minimizing both economic costs and CO2 emissions. The system’s performance was evaluated using data from a case study in Dalian which showed that the IES successfully reduced the annual total cost and CO2 emissions compared to conventional systems. The key findings showed that PV electrolysis for hydrogen production provides both economic and environmental advantages. The system’s integration of solar thermal energy offers higher economic efficiency while PV energy supplies enhance coordination. Additionally carbon trading prices effectively reduce emissions but excessively high prices do not always lead to better emission outcomes. This study introduces a comprehensive multi-energy approach for optimizing the energy supply contributing novel insights to the field of sustainable energy systems.
Comparative Study and Optimization of Energy Management Strategies for Hydrogen Fuel Cell Vehicles
Sep 2024
Publication
Fuel cell hybrid systems due to their combination of the high energy density of fuel cells and the rapid response capability of power batteries have become an important category of new energy vehicles. This paper discusses energy management strategies in hydrogen fuel cell vehicles. Firstly a detailed comparative analysis of existing PID control strategies and Adaptive Equivalent Consumption Minimization Strategies (A-ECMSs) is conducted. It was found that although A-ECMS can balance the energy utilization of the fuel cell and power battery well the power fluctuations of the fuel cell are significant leading to increased hydrogen consumption. Therefore this paper proposes an improved Adaptive Low-Pass Filter Equivalent Consumption Minimization Strategy (A-LPF-ECMS). By introducing low-pass filtering technology transient changes in fuel cell power are smoothed effectively reducing fuel consumption. Simulation results show that under the 6*FTP75 cycle the energy loss of A-LPF-ECMS is reduced by 10.89% (compared to the PID strategy) and the equivalent hydrogen consumption is reduced by 7.1%; under the 5*WLTC cycle energy loss is reduced by 5.58% and equivalent hydrogen consumption is reduced by 3.18%. The research results indicate that A-LPF-ECMS performs excellently in suppressing fuel cell power fluctuations under idling conditions significantly enhancing the operational efficiency of the fuel cell and showing high application value.
Impact of Hydrogen Direct Injection on Engine Combustion and Emissions in a GDI Engine
Sep 2023
Publication
The combustion and emission characteristics of a hydrogen engine were investigated through experimental analysis using a GDI engine. To enable hydrogen in-cylinder direct injection a specialized hydrogen gas injector was employed. A comparative analysis of the combustion performance between gasoline and hydrogen fuels in a spark-ignited engine was conducted. Additionally the study experimentally explored the thermal efficiency and emission reduction potential of hydrogen engines in lean combustion modes. The results indicated a significant improvement in the combustion rate when hydrogen fuel was utilized in the spark-ignited engine. However the effective thermal efficiency was found to be lower than that of gasoline fuel due to the delayed MBF50 under stoichiometric conditions. Furthermore when compared to gasoline fuel the reduction of CO and THC emissions was accompanied by an increase in NOx emissions. Nevertheless optimizing the air dilution ratio in hydrogen engines led to an improvement in the effective thermal efficiency. Specifically under medium load conditions a Lambda value of 2.7 resulted in an effective thermal efficiency of 43.5%. Additionally under ultra-lean conditions (Lambda > 2.3) NOx emissions could be reduced to below 50 ppm reaching as low as 44 ppm. This study highlights the potential of improving combustion efficiency and reducing emissions by utilizing hydrogen fuel particularly in lean combustion modes. It contributes to the continuous development of hydrogen engine technology and promotes the implementation of cleaner and more efficient energy solutions.
Low-Carbon Economic Scheduling of Hydrogen-Integrated Energy Systems with Enhanced Bilateral Supply–Demand Response Considering Vehicle to Grid Under Power-to-Gas–Carbon Capture System Coupling
Feb 2025
Publication
Hydrogen-Integrated energy systems (HIESs) are pivotal in driving the transition to a low-carbon energy structure in China. This paper proposes a low-carbon economic scheduling strategy to improve the operational efficiency and reduce the carbon emissions of HIESs. The approach begins with the implementation of a stepwise carbon trading framework to limit the carbon output of the system. This is followed by the development of a joint operational model that combines hydrogen energy use and carbon capture. To improve the energy supply flexibility of HIESs modifications to the conventional combined heat and power (CHP) unit are made by incorporating a waste heat boiler and an organic Rankine cycle. This results in a flexible CHP response model capable of adjusting both electricity and heat outputs. Furthermore a comprehensive demand response model is designed to optimize the flexible capacities of electric and thermal loads thereby enhancing demand-side responsiveness. The integration of electric vehicles (EVs) into the system is analyzed with respect to their energy consumption patterns and dispatch capabilities which improves their potential for flexible scheduling and enables an optimized synergy between the demand-side flexibility and system operations. Finally a low-carbon economic scheduling model for the HIES is developed with the objective of minimizing system costs. The results show that the proposed scheduling method effectively enhances the economy low-carbon performance and flexibility of HIES operation while promoting clean energy consumption deep decarbonization of the system and the synergistic complementarity of flexible supply–demand resources. In the broader context of expanding clean energy and growing EV adoption this study demonstrates the potential of energy-saving emissionreduction systems and vehicle-to-grid (V2G) strategies to contribute to the sustainable and green development of the energy sector.
Optimal Operation Strategy for Wind–Photovoltaic Power-Based Hydrogen Production Systems Considering Electrolyzer Start-Up Characteristics
Aug 2024
Publication
Combining electrolytic hydrogen production with wind–photovoltaic power can effectively smooth the fluctuation of power and enhance the schedulable wind–photovoltaic power which provides an effective solution to solve the problem of wind–photovoltaic power accommodation. In this paper the optimization operation strategy is studied for the wind–photovoltaic power-based hydrogen production system. Firstly to make up for the deficiency of the existing research on the multi-state and nonlinear characteristics of electrolyzers the three-state and power-current nonlinear characteristics of the electrolyzer cell are modeled. The model reflects the difference between the cold and hot starting time of the electrolyzer and the linear decoupling model is easy to apply in the optimization model. On this basis considering the operation constraints of the electrolyzer hydrogen storage tank battery and other equipment the optimization operation model of the wind–photovoltaic power-based hydrogen production system is developed based on the typical scenario approach. It also considers the cold and hot starting time of the electrolyzer with the daily operation cost as the goal. The results show that the operational benefits of the system can be improved through the proposed strategy. The hydrogen storage tank capacity will have an impact on the operation income of the wind–solar hydrogen coupling system and the daily operation income will increase by 0.32% for every 10% (300 kg) increase in the hydrogen storage tank capacity.
Advances in Whole-cell Photobiological Hydrogen Production
Jan 2021
Publication
Solar energy is the largest energy source on Earth. In contrast to the limited andgreenhouse gases-emitting fossil fuels solar energy is inexhaustible carbonneutral and nonpolluting. The conversion of this most abundant but highlydiffused source into hydrogen is increasingly attractive. In nature photosyntheticmicroorganisms exploit solar energy to produce hydrogen via photosynthesiswhich is also known as photobiological hydrogen production. More recentlyvarious types of artificial materials have been developed to hybrid microorgan-isms for converting solar energy into hydrogen namely semiartificial photo-synthesis hydrogen production. Herein the strategies for converting solar energyinto hydrogen with whole-cell biocatalyst are summarized and their potentials forfuture social sustainable development are discussed.
The Current Status of Hydrogen Energy: An Overview
Sep 2023
Publication
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future especially in complex geographical areas (hills arid plateaus etc.) and harsh climates (desert ice etc.). Thus in this report we present a current status of achievable hydrogen fuel based on various scopes including production methods storage and transportation techniques the global market and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy society and environment. These techniques are contrasted in terms of their effects on the environment manufacturing costs energy use and energy efficiency. In addition hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field this review offers an overview of hydrogen as the ideal renewable energy for the future society its production methods the most recent storage technologies and transportation strategies which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
In-situ Direct Seawater Electrolysis Using Floating Platform in Ocean with Uncontrollable Wave Motion
Jun 2024
Publication
Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking. Here fluctuating conditions of the ocean were considered for the first time and seawater electrolysis in wave motion environment was achieved. We present the successful scaling of a floating seawater electrolysis system that employed wind power in Xinghua Bay and the integration of a 1.2 Nm3 h−1 -scale pilot system. Stable electrolysis operation was achieved for over 240 h with an electrolytic energy consumption of 5 kWh Nm−3 H2 and a high purity (>99.9%) of hydrogen under fluctuating ocean conditions (0~0.9 m wave height 0~15 m s−1 wind speed) which is comparable to that during onshore water electrolysis. The concentration of impurity ions in the electrolyte was low and stable over a long period of time under complex and changing scenarios. We identified the technological challenges and performances of the key system components and examined the future outlook for this emerging technology.
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus a comprehensive understanding of the decompression damage is significant for the development of a suitable liner material and the commercialization of the type IV hydrogen storage tank. This study discusses the decompression damage mechanism of the polymer liner which includes damage characterizations and evaluations influential factors and damage prediction. Finally some future research directions are proposed to further investigate and optimize tanks.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Low-Carbon Production in China’s Iron and Steel Industry: Technology Choices, Economic Assessment, and Policy
Feb 2025
Publication
The iron and steel industry (ISI) plays a significant role in carbon emissions contributing approximately 15% of the nation’s total emissions in China. Transitioning to low-carbon practices is crucial for achieving the country’s carbon neutrality goals. This paper reviews the current state of China’s ISI and assesses the feasibility of various decarbonization technologies including hydrogen utilization biomass substitution zero-carbon electricity Carbon Capture Utilization and Storage (CCUS) as well as their combinations. The blast furnace–basic oxygen furnace (BF-BOF) process currently dominates the industry with an overwhelming share of around 90% presenting significant challenges for decarbonization. In contrast the Direct Reduced Iron–Electric Arc Furnace (DRI-EAF) process is still at the demonstration project stage but it is rapidly growing and shows great potential for achieving net-zero emissions. Electric arc furnaces (EAFs) that use scrap steel account for about 9% of production and have the lowest energy consumption. However their production capacity is limited by the availability of scrap steel. Among numerous options blue hydrogen carbon-neutral biomass and CCUS technologies have relatively low costs and high technological maturity. Nevertheless no single technology can currently achieve deep decarbonization while significantly reducing costs. The nation needs to select the most suitable decarbonization strategies based on geographical location infrastructure and economic conditions. The government should enact corresponding policies provide economic incentives and ensure mitigation of the environmental and social impacts during the decarbonization transition.
No more items...