China, People’s Republic
Energy Equivalent Consumption and Optimization Strategies for Hybrid Hydrogen Fuel Systems in Multirotor Drones
Jan 2025
Publication
This paper presents an improved Equivalent Consumption Minimization Strategy (ECMS) designed to optimize energy management for the hybrid hydrogen fuel power setups in multirotor drones. The proposed strategy aims to reduce hydrogen consumption and enhance the performance of the system consisting of Proton Exchange Membrane Fuel Cells (PEMFCs) and lithium batteries. Multirotor drones experience rapid power fluctuations due to their agile maneuvering but PEMFCs are unable to meet these demands swiftly due to their inherent limitations. To address this lithium batteries supplement peak power requirements and absorb excess energy on the DC bus. However this can lead to energy loss if the batteries are charged when not required. Our improved ECMS considers these inefficiencies and adjusts energy distribution to reduce hydrogen consumption and optimize the system’s performance. The proposed strategy effectively maintains the lithium batteries’ State of Charge (SOC) reduces hydrogen usage and enhances overall system efficiency when compared to traditional ECMS approaches.
Exergo-Economic Analysis of Solar-Driven Ammonia Production System for a Sustainable Energy Carrier
Apr 2025
Publication
The industrial sector’s movement toward decarbonization is regarded as essential for governments. This paper assesses a system that uses only solar energy to synthesize liquid hydrogen and ammonia as energy carriers. Photovoltaic modules deliver electrical power while parabolic dish collectors are responsible for directing thermal energy to the solid oxide electrolyzer for hydrogen production which then mixes with nitrogen to produce ammonia after a number of compression stages. To investigate the proposed system comprehensive thermodynamic and exergo-economic studies are performed using an engineering equation solver and ASPEN PLUS software.
Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane
Apr 2025
Publication
Biogas (primarily biomethane) as a carbon-neutral renewable energy source holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming posing challenges such as high temperatures high energy consumption and high system complexity. In this study we propose a novel multi-product sequential separation-enhanced reforming method for biogas-derived hydrogen production which achieves high H2 yield and CO2 capture under mid-temperature conditions. The effects of reaction temperature steam-to-methane ratio and CO2/CH4 molar ratio on key performance metrics including biomethane conversion and hydrogen production are investigated. At a moderate reforming temperature of 425 ◦C and pressure of 0.1 MPa the conversion rate of CH4 in biogas reaches 97.1% the high-purity hydrogen production attains 2.15 mol-H2/mol-feed and the hydrogen yield is 90.1%. Additionally the first-law energy conversion efficiency from biogas to hydrogen reaches 65.6% which is 11 percentage points higher than that of conventional biogas reforming methods. The yield of captured CO2 reaches 1.88 kg-CO2/m3 -feed effectively achieving near-complete recovery of green CO2 from biogas. The mild reaction conditions allow for a flexible integration with industrial waste heat or a wide selection of other renewable energy sources (e.g. solar heat) facilitating distributed and carbonnegative hydrogen production.
Research on Energy Management Strategy Based on Adaptive Equivalent Fuel Consumption Minimum for Hydrogen Hybrid Energy Systems
Mar 2025
Publication
Hydrogen has attracted widespread attention due to its zero emissions and high energy density and hydrogen-fueled power systems are gradually emerging. This paper combines the advantages of the high conversion efficiency of fuel cells and strong engine power to propose a hydrogen hybrid energy system architecture based on a mixture of fuel cells and engines in order to improve the conversion efficiency of the energy system and reduce its fuel consumption rate. Firstly according to the topology of the hydrogen hybrid energy system and the circuit model of its core components a state-space model of the hydrogen hybrid energy system is established using the Kirchhoff node current principle laying the foundation for the control and management of hydrogen hybrid energy systems. Then based on the state-space model of the hydrogen hybrid system and Pontryagin’s minimum principle a hydrogen hybrid system management strategy based on adaptive equivalent fuel consumption minimum strategy (A-ECMS) is proposed. Finally a hydrogen hybrid power system model is established using the AVL Cruise simulation platform and a control strategy is developed using matlab 2021b/Simulink to analyze the output power and fuel economy of the hybrid energy system. The results show that compared with the equivalent fuel consumption minimum strategy (ECMS) the overall fuel economy of A-ECMS could improve by 10%. Meanwhile the fuel consumption of the hydrogen hybrid energy system is less than half of that of traditional engines.
Advanced Online Fuel Cell Stack Water Management Strategies for Fuel Cell Stacks in Vehicle Powertrain Control
Sep 2025
Publication
Effective water management is crucial for the optimal performance and durability of proton exchange membrane fuel cells (PEMFCs) in automotive applications. Conventional techniques like electrochemical impedance spectroscopy (EIS) face challenges in accurately measuring high-frequency resistance (HFR) impedance during dynamic vehicle operations. This study proposes a novel stack water management stability control and vehicle energy control method to address these limitations. Simulation and experimental results demonstrate improved system and powertrain efficiency extended stack lifespan and optimized hydrogen consumption. These findings contribute to advancing robust water management strategies supporting the transition toward sustainable zero-emission fuel cell vehicles.
Review of Offshore Superconducting Wind Power Generation for Hydrogen Production
Apr 2025
Publication
Green hydrogen plays a vital role in facilitating the transition to sustainable energy systems with stable and high-capacity offshore wind resources serving as an ideal candidate for large-scale green hydrogen production. However as the capacity of offshore wind turbines continues to grow the increasing size and weight of these systems pose significant challenges for installation and deployment. This study investigates the application of high-temperature superconducting (HTS) materials in the generator and the power conducting cables as a promising solution to these challenges. Compared to conventional wind turbines HTS wind turbines result in significant reductions in weight and size while simultaneously enhancing power generation and transmission efficiency. This paper conducts a comprehensive review of mainstream electrolysis-based hydrogen production technologies and advanced hydrogen storage methods. The main contribution of this research is the development of an innovative conceptual framework for a superconducting offshore windto-hydrogen energy system where a small amount of liquid hydrogen is used to provide a deep-cooling environment for the HTS wind turbine and the remaining liquid hydrogen is used for the synthesis of ammonia as a final product. Through functional analysis this study demonstrates its potential for enabling large-scale offshore hydrogen production and storage. Additionally this paper discusses key challenges associated with real-world implementation including optimizing the stability of superconducting equipment and ensuring component coordination. The findings offer crucial insights for advancing the offshore green hydrogen sector showing that HTS technology can significantly enhance the energy efficiency of offshore wind-to-hydrogen systems. This research provides strong technical support for achieving carbon neutrality and fostering sustainable development in the offshore renewable energy sector.
A GAN‑and‑Transformer‑Assisted Scheduling Approach for Hydrogen‑Based Multi‑Energy Microgrid
Sep 2025
Publication
Against the backdrop of ever‑increasing energy demand and growing awareness of en‑ vironmental protection the research and optimization of hydrogen‑related multi‑energy systems have become a key and hot issue due to their zero‑carbon and clean characteristics. In the scheduling of such multi‑energy systems a typical problem is how to describe and deal with the uncertainties of multiple types of energy. Scenario‑based methods and ro‑ bust optimization methods are the two most widely used methods. The first one combines probability to describe uncertainties with typical scenarios and the second one essentially selects the worst scenario in the uncertainty set to characterize uncertainties. The selection of these scenarios is essentially a trade‑off between the economy and robustness of the so‑ lution. In this paper to achieve a better balance between economy and robustness while avoiding the complex min‑max structure in robust optimization we leverage artificial in‑ telligence (AI) technology to generate enough scenarios from which economic scenarios and feasible scenarios are screened out. While applying a simple single‑layer framework of scenario‑based methods it also achieves both economy and robustness. Specifically first a Transformer architecture is used to predict uncertainty realizations. Then a Gener‑ ative Adversarial Network (GAN) is employed to generate enough uncertainty scenarios satisfying the actual operation. Finally based on the forecast data the economic scenar‑ ios and feasible scenarios are sequentially screened out from the large number of gener‑ ated scenarios and a balance between economy and robustness is maintained. On this ba‑ sis a multi‑energy collaborative optimization method is proposed for a hydrogen‑based multi‑energy microgrid with consideration of the coupling relationships between energy sources. The effectiveness of this method has been fully verified through numerical exper‑ iments. Data show that on the premise of ensuring scheduling feasibility the economic cost of the proposed method is 0.67% higher than that of the method considering only eco‑ nomic scenarios. It not only has a certain degree of robustness but also possesses good economic performance.
Enhancing Renewable Energy Integration via Robust Multi-Energy Dispatch: A Wind–PV–Hydrogen Storage Case Study with Spatiotemporal Uncertainty Quantification
Aug 2025
Publication
This paper addresses the challenge of renewable energy curtailment which stems from the inherent uncertainty and volatility of wind and photovoltaic (PV) generation by developing a robust model predictive control (RMPC)-based scheduling strategy for an integrated wind–PV–hydrogen storage multi-energy flow system. By building a “wind– PV–hydrogen storage–fuel cell” collaborative system the time and space complementarity of wind and PV is used to stabilize fluctuations and the electrolyzer–hydrogen production– gas storage tank–fuel cell chain is used to absorb surplus power. A multi-time scale state-space model (SSM) including power balance equation equipment constraints and opportunity constraints is established. The RMPC scheduling framework is designed taking the wind–PV joint probability scene generated by Copula and improved K-means and SSM state variables as inputs and the improved genetic algorithm is used to solve the min–max robust optimization problem to achieve closed-loop control. Validation using real-world data from Xinjiang demonstrates a 57.83% reduction in grid power fluctuations under extreme conditions and a 58.41% decrease in renewable curtailment rates markedly enhancing the local system’s capacity to utilize wind and solar energy.
Efficient and Stable N-type Sulfide Overall Water Splitting with Separated Hydrogen Production
Aug 2025
Publication
N-type sulfide semiconductors are promising photocatalysts due to their broad visible-light absorption facile synthesis and chemical diversity. However photocorrosion and limited electron transport in one-step excitation and solid-state Z-scheme systems hinder efficient overall water splitting. Liquidphase Z-schemes offer a viable alternative but sluggish mediator kinetics and interfacial side reactions impede their construction. Here we report a stable Z-scheme system integrating n-type CdS and BiVO₄ with a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ mediator achieving 10.2% apparent quantum yield at 450 nm with stoichiometric H₂/O₂ evolution. High activity reflects synergies between Pt@CrOx and Co3O4 cocatalysts on CdS and cobalt-directed facet asymmetry in BiVO₄ resulting in matched kinetics for hydrogen and oxygen evolution in a reversible mediator solution. Stability is dramatically improved through coating CdS and BiVO4 with different oxides to inhibit Fe4[Fe(CN)6]3 precipitation and deactivation by a hitherto unrecognized mechanism. Separate hydrogen and oxygen production is also demonstrated in a twocompartment reactor under visible light and ambient conditions. This work unlocks the long-sought potential of n-type sulfides for efficient durable and safe solar-driven hydrogen production.
Hydrogen Production Technologies from Water Decomposition: A Review
Mar 2025
Publication
Hydrogen is a promising energy carrier in the future which can help improve air quality and enhance energy security. Hydrogen production mainly relies on fossil fuels (natural gas and coal). Hydrogen production from fossil fuels can result in the significant emissions of carbon dioxide aggravating the global greenhouse effect. At the same time fossil fuels are non-renewable and the use of fossil fuels to produce hydrogen further exacerbates the crisis of fossil fuel shortages. Fortunately water as a carbon-free and hydrogen-rich renewable resource offers one of the best solutions to replace hydrogen production from fossil fuels through its decomposition. Furthermore hydrogen production by decomposition of water is vital for the realization of the sustainable development. In this paper we review the current mainstream technologies (electrolysis pyrolysis and photolysis) for hydrogen production by decomposing water. The principles processes advantages and disadvantages and the latest progresses of these technologies are also discussed. At last this paper provides a summary and outlook on water decomposition for hydrogen production and thinks that the yield energy efficiency and cost of hydrogen production from water decomposition are largely dependent on the development of new materials and the improvement of existing materials. Moreover utilizing renewable energy to decompose water for hydrogen production offers the possibility of achieving the hydrogen economy.
Multi-Time-Scale Layered Energy Management Strategy for Integrated Production, Storage, and Supply Hydrogen Refueling Stations Based on Flexible Hydrogen Load Characteristics of Ports
Mar 2025
Publication
Aiming at resolving the problem of stable and efficient operation of integrated green hydrogen production storage and supply hydrogen refueling stations at different time scales this paper proposes a multi-time-scale hierarchical energy management strategy for integrated green hydrogen production storage and supply hydrogen refueling station (HFS). The proposed energy management strategy is divided into two layers. The upper layer uses the hourly time scale to optimize the operating power of HFS equipment with the goal of minimizing the typical daily operating cost and proposes a parameter adaptive particle swarm optimization (PSA-PSO) solution algorithm that introduces Gaussian disturbance and adaptively adjusts the learning factor inertia weight and disturbance step size of the algorithm. Compared with traditional optimization algorithms it can effectively improve the ability to search for the optimal solution. The lower layer uses the minute-level time scale to suppress the randomness of renewable energy power generation and hydrogen load consumption in the operation of HFS. A solution algorithm based on stochastic model predictive control (SMPC) is proposed. The Latin hypercube sampling (LHS) and simultaneous backward reduction methods are used to generate and reduce scenarios to obtain a set of high-probability random variable scenarios and bring them into the MPC to suppress the disturbance of random variables on the system operation. Finally real operation data of a HFS in southern China are used for example analysis. The results show that the proposed energy management strategy has a good control effect in different typical scenarios.
Ways to Assess Hydrogen Production via Life Cycle Analysis
Apr 2025
Publication
As global energy demand increases and reliance on fossil fuels becomes unsustainable hydrogen presents a promising clean energy alternative due to its high energy density and potential for significant CO2 emission reductions. However current hydrogen production methods largely depend on fossil fuels contributing to considerable CO2 emissions and underscoring the need to transition to renewable energy sources and improved production technologies. Life Cycle Analysis (LCA) is essential for evaluating and optimizing hydrogen production by assessing environmental impacts such as Global Warming Potential (GWP) energy consumption toxicity and water usage. The key findings indicate that energy sources and feedstocks heavily influence the environmental impacts of hydrogen production. Hydrogen production from renewable energy sources particularly wind solar and hydropower demonstrates significantly lower environmental impacts than grid electricity and fossil fuel-based methods. Conversely hydrogen production from grid electricity primarily derived from fossil fuels shows a high GWP. Furthermore challenges related to data accuracy economic analysis integration and measuring mixed gases are discussed. Future research should focus on improving data accuracy assessing the impact of technological advancements and exploring new hydrogen production methods. Harmonizing assessment methodologies across different production pathways and standardizing functional units such as “1 kg of hydrogen produced “ are critical for enabling transparent and consistent sustainability evaluations. Techniques such as stochastic modelling and Monte Carlo simulations can improve uncertainty management and enhance the reliability of LCA results.
Research on Hydrogen Induced Cracking Behavior and Service Performance of Metal Pipeline Material
Aug 2025
Publication
This study systematically investigates the fracture behavior of X80 pipeline steel welded joints under hydrogen-induced cracking (HIC) conditions through combined experimental characterization and numerical simulation. Microstructural observations and Vickers hardness testing reveal significant heterogeneity in the base metal heat-affected zone (HAZ) and weld metal (WM) resulting in spatially non-uniform mechanical properties. A userdefined subroutine (USDFLD) was employed to assign continuous material property distributions within the finite element model accurately capturing mechanical heterogeneity and its influence on crack-tip mechanical fields and crack propagation paths. Results show that welding thermal cycles induce pronounced microstructural evolution significantly altering hardness and strength distributions which in turn affect the evolution of crack-tip stress and plastic strain fields. Crack propagation preferentially occurs toward regions of higher yield strength where limited plasticity leads to intensified cracktip stress concentration accelerating crack growth and extending propagation paths. Moreover crack growth is accompanied by local unloading near the crack tip reducing peak stress and strain compared to the initial stationary crack tip. The stress and strain field reconfiguration are primarily localized near the crack tip while the far-field mechanical response remains largely stable.
Research on Pricing Strategy of Shared Electro-thermal-hydrogen Energy Storage in Integrated Energy Multi-microgrid Based on Hybrid Game
May 2025
Publication
Against the backdrop of high investment costs in distributed energy storage systems this paper proposes a bi-level energy management model based on shared multi-type energy storage to enhance system economics and resource utilization efficiency. First an electricity–heat–hydrogen coupled shared storage architecture is developed incorporating hydrogen-blended gas turbines gas boilers and hydrogen loads to achieve deep coupling between the power grid and natural gas network. Then a bi-level game model is formulated with the upper-level objective of minimizing the storage operator’s cost and the lower-level objective of minimizing the cost of the integrated energy microgrid (IEM) aggregator. A cooperative game mechanism is introduced within the microgrids to support peer-to-peer energy trading. Nash bargaining theory is applied to determine benefit allocation and dynamic pricing strategies among microgrids. The model is solved using a genetic algorithm (GA) and the alternating direction method of multipliers (ADMM). Simulation results validate the proposed strategy’s effectiveness and feasibility in reducing system costs improving overall benefits and achieving fair benefit allocation.
Modeling the Pulsed Neutron Response for Natural Hydrogen Detection
Jul 2025
Publication
Hydrogen gas is a promising clean-energy vector that can alleviate the current imbalance between energy supply and demand diversify the energy portfolio and underpin the sustainable development of oil and gas resources. This study pinpoints the factors that govern hydrogen quantification by pulsed-neutron logging. Monte Carlo simulations were performed to map the spatial distribution of capture γ-rays in formations saturated with either water or hydrogen and to systematically assess the effects of pore-fluid composition hydrogen density gas saturation lithology and borehole-fluid type. The results show that the counts of capture γ-rays are litter in hydrogen-bearing formations. For lowto moderate-porosity rocks the dynamic response window for hydrogensaturated pores is approximately 10% wider than that for methane-saturated pores. Increasing hydrogen density or decreasing gas saturation raises the capture-γ ratio while narrowing the dynamic range. Changes in borehole fluid substantially affect the capture-γ ratio yet have only a minor impact on the dynamic range. Lithology imposes an additional control: serpentinite enriched in structural water generates markedly higher capture-γ ratios that may complicate the quantitative evaluation of hydrogen.
Photo(electro)catalytic Water Splitting for Hydrogen Production: Mechanism, Design, Optimization, and Economy
Jan 2025
Publication
As an energy carrier characterized by its high energy density and eco-friendliness hydrogen holds a pivotal position in energy transition. This paper elaborates on the scientific foundations and recent progress of photo- and electro-catalytic water splitting including the corresponding mechanism material design and optimization and the economy of hydrogen production. It systematically reviews the research progress in photo(electro)catalytic materials including oxides sulfides nitrides noble metals nonnoble metal and some novel photocatalysts and provides an in-depth analysis of strategies for optimizing these materials through material design component adjustment and surface modification. In particular it is pointed out that nanostructure regulation dimensional engineering defect introduction doping alloying and surface functionalization can remarkably improve the catalyst performance. The importance of adjusting reaction conditions such as pH and the addition of sacrificial agents to boost catalytic efficiency is also discussed along with a comparison of the cost-effectiveness of different hydrogen production technologies. Despite the significant scientific advancements made in photo(electro)catalytic water splitting technology this paper also highlights the challenges faced by this field including the development of more efficient and stable photo(electro)catalysts the improvement of system energy conversion efficiency cost reduction the promotion of technology industrialization and addressing environmental issues.
A Novel Site Selection Approach for Co-location of Petrol-hydrogen Fuelling Stations Using a Game Theory-based Multi-criteria Decision-making Model
Feb 2025
Publication
Proliferation of co-located petrol-hydrogen fueling stations is an effective solution for widespread deployment of hydrogen as a transportation fuel. Such combined fueling stations largely rely on existing infrastructure hence represent a low-cost option for setting up hydrogen fueling facilities. However optimizing the layout of dual petrol-hydrogen fueling stations and their rational site selection is critical for ensuring the efficient use of re sources. This paper investigates the site selection of combined hydrogen and petrol fueling stations at the ter minus of China’s "West-to-East Hydrogen Pipeline" project. A weighting model based on EWM-CRITIC-Game Theory is developed and the weight coefficients derived from game theory are used to perform the compre hensive ranking of potential sites. The combined evaluation results yield an overall ranking of A9 > A4 > A8 > A26 > A20 > A21 > A11. The effectiveness of this novel method is verified by comparing the results with those obtained from Copeland Borda Average and geometric mean methods. Considering the actual distance con straints the final site ranking is A9 > A4 > A8 > A20 > A21 > A11 > A14. This location offers optimal con ditions for infrastructure integration and hydrogen fueling service coverage. The reliability analysis indicates that the proposed game theory-based method delivers strong performance across various scenarios underscoring its reliability and versatility in consistently delivering accurate results.
An Electron-hole Rich Dual-site Nickel Catalyst for Efficient Photocatalytic Overall Water Splitting
Mar 2023
Publication
Photocatalysis offers an attractive strategy to upgrade H2O to renewable fuel H2. However current photocatalytic hydrogen production technology often relies on additional sacrificial agents and noble metal cocatalysts and there are limited photocatalysts possessing overall water splitting performance on their own. Here we successfully construct an efficient catalytic system to realize overall water splitting where hole-rich nickel phosphides (Ni2P) with polymeric carbon-oxygen semiconductor (PCOS) is the site for oxygen generation and electron-rich Ni2P with nickel sulfide (NiS) serves as the other site for producing H2. The electron-hole rich Ni2P based photocatalyst exhibits fast kinetics and a low thermodynamic energy barrier for overall water splitting with stoichiometric 2:1 hydrogen to oxygen ratio (150.7 μmol h−1 H2 and 70.2 μmol h−1 O2 produced per 100 mg photocatalyst) in a neutral solution. Density functional theory calculations show that the co-loading in Ni2P and its hybridization with PCOS or NiS can effectively regulate the electronic structures of the surface active sites alter the reaction pathway reduce the reaction energy barrier boost the overall water splitting activity. In comparison with reported literatures such photocatalyst represents the excellent performance among all reported transition-metal oxides and/or transition-metal sulfides and is even superior to noble metal catalyst.
Research on DC Power Supply for Electrolytic Water to Hydrogen Based on Renewable Energy
Nov 2022
Publication
Hydrogen production from electrolytic water based on Renewable Energy has been found as a vital method for the local consumption of new energy and the utilization of hydrogen energy. In this paper the hydrogen production power supply matching the working characteristics of electrolytic water production was investigated. Through the analysis of the correlation between the electrolysis current and temperature of the proton exchange membrane electrolyzer and the electrolyzer port voltage energy efficiency and hydrogen production speed it was concluded that the hydrogen production power supply should be characterized by low output current ripple high output current and wide range voltage output. To meet the requirements of the system of hydrogen production from electrolytic water based on new energy a hydrogen production power supply scheme was proposed based on Y which is the type three is the phase staggered parallel LLC topology. In the proposed scheme the cavity with three is the phase staggered parallel output is resonated to meet the operating characteristics (high current and low ripple) of the electrolyzer and pulse frequency control is adopted to achieve resonant soft in the switching operation and increase conversion efficiency. Lastly a simulation model and a 6kW experimental prototype were built to verify the rationality and feasibility of the proposed scheme.
Explosion Characteristics and Overpressure Prediction of Hydrogen-doped Natural Gas under Ambient Turbulence Conditions
Jul 2025
Publication
Explosions of combustible gases under ambient turbulence exhibit complex flame propagation and overpressure evolution characteristics posing challenges to explosion safety assessments. In this study explosion behaviors of hydrogen-doped natural gas under various wind speeds were investigated using a small-scale experimental system. The results show that when the wind speed does not exceed 2 m/s ambient turbulence promotes flame acceleration and overpressure enhancement with the maximum overpressure increased by 20.7% compared to the no-wind condition. However when the wind speed exceeds 2 m/s turbulence suppresses flame propagation leading to a reduction in maximum overpressure by up to 50.5%. Under early-stage turbulent disturbances the flame front exhibits instability from the ignition stage resulting in a continuous transition from laminar to turbulent combustion without a distinct critical instability radius. Furthermore a modified overpressure prediction model is proposed by incorporating a flame wrinkling factor into the Thomas model and adopting a dimensionless distance treatment from the TNO multi-energy model. The proposed model achieves a root mean square error of 0.140 kPa under various wind speed conditions demonstrating good predictive accuracy.
No more items...