China, People’s Republic
Hydrogen Production Efficiency: A Critical Factor in Integrated Planning of Distributed and Transmission System for Large-scale Centralized Offshore Wind-hydrogen System
Dec 2024
Publication
Green hydrogen plays a pivotal role in decarbonizing our energy system and achieving the Net-Zero Emissions goal by 2050. Offshore wind farms (OWFs) dedicated to green hydrogen production are currently recognized as the most feasible solution for scaling up the production of cost-effective electrolytic hydrogen. However the cost associated with distribution and transmission systems constitute a significant portion of the total cost in the large-scale wind-hydrogen system. This study pioneers the simultaneous optimization of the inter-array cable routing of OWFs and the location and capacity of offshore hydrogen production platforms (OHPPs) aiming to minimize the total cost of distribution and transmission systems. Considering the characteristics of hydrogen production efficiency this paper constructs a novel mathematical model for OHPPs across diverse wind scenarios. Subsequently we formulate the joint planning problem as a relaxed mixed-integer second-order cone programming (MISOCP) model and employ the Benders decomposition algorithm for the solution introducing three valid inequalities to expedite convergence. Through validation on real-world large-scale OWFs we demonstrate the validity and rapid convergence of our approach. Moreover we identify hydrogen production efficiency as a major bottleneck cost factor for the joint planning problem it decreases by 1.01% of total cost for every 1% increase in hydrogen production efficiency.
Research Progress of Fuel Cell Technology in Marine Applications: A Review
Apr 2025
Publication
With the increasing severity of global environmental issues and the pressure from the strict pollutant emission regulations proposed by the International Maritime Or‑ ganization (IMO) the shipping industry is seeking new types of marine power systems that can replace traditional propulsion systems. Marine fuel cells as an emerging energy technology only emit water vapor or a small amount of carbon dioxide during operation and have received widespread attention in recent years. However research on their appli‑ cation in the shipping industry is relatively limited. Therefore this paper collects relevant reports and literature on the use of fuel cells on ships over the past few decades and con‑ ducts a thorough study of typical fuel cell‑powered vessels. It summarizes and proposes current design schemes and optimization measures for marine fuel cell power systems pro‑ viding directions for further improving battery performance reducing carbon emissions and minimizing environmental pollution. Additionally this paper compares and analyzes marine fuel cells with those used in automotive aviation and locomotive applications of‑ fering insights and guidance for the development of marine fuel cells. Although hydrogen fuel cell technology has made significant progress in recent years issues still exist regard‑ ing hydrogen production storage and related safety and standardization concerns. In terms of comprehensive performance and economics it still cannot effectively compete with traditional internal combustion engines. However with the continued rapid devel‑ opment of fuel cell technology marine fuel cells are expected to become a key driver for promoting green shipping and achieving carbon neutrality goals.
Multi-scale Modeling of the Multi-phase Flow in Water Electrolyzers for Green Hydrogen Production
May 2025
Publication
Water electrolyzers play a crucial role in green hydrogen production. However their efficiency and scalability are often compromised by bubble dynamics across various scales from nanoscale to macroscale components. This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers. At the nanoscale molecular dynamics (MD) simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability. Moving to the mesoscale models such as volume of fluid (VOF) and lattice Boltzmann method (LBM) shed light on bubble transport in porous transport layers (PTLs). These insights inform innovative designs including gradient porosity and hydrophilic-hydrophobic patterning aimed at minimizing gas saturation. At the macroscale VOF simulations elucidate two-phase flow regimes within channels showing how flow field geometry and wettability affect bubble discharging. Moreover artificial intelligence (AI)-driven surrogate models expedite the optimization process allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs. By integrating these approaches we can bridge theoretical insights with experimental validation ultimately enhancing water electrolyzer performance reducing costs and advancing affordable highefficiency hydrogen production.
Hydrogen-powered Vessels in Green Maritime Decarbonization: Policy Drivers, Technological Frontiers and Challenges
May 2025
Publication
The global shipping industry is transitioning toward decarbonization with hydrogen-powered vessels emerging as a key solution to meet international emission reduction targets particularly the IMO’s goal of reducing emissions by 50% by 2050. As a zero-emission fuel hydrogen aligns with international regulations such as the IMO’s greenhouse gas reduction strategy the MARPOL Convention and regional policies like the EU’s Emissions Trading System. Despite regulatory support and advancements in hydrogen fuel cell technology challenges remain in hydrogen storage fuel cell integration and operational safety. Currently high-pressure gaseous hydrogen storage is the most viable option but its spatial and safety limitations must be addressed. Alternative storage methods including cryogenic liquid hydrogen organic liquid hydrogen carriers and metal hydride storage hold potential for application but still face technical and integration barriers. Overcoming these challenges requires continued innovation in vessel design fuel cell technology and storage systems supported by comprehensive safety standards and regulations. The successful commercialization of hydrogen-powered vessels will be instrumental in decarbonizing global shipping and achieving climate goals.
Study on Hydrogen Embrittlement Behavior in Heat-Affected Zone of X80 Welded Pipe
Apr 2025
Publication
Hydrogen as a clean energy source has gradually become an important choice for the energy transformation in the world. Utilizing existing natural gas pipelines for hydrogen-blended transportation is one of the most economical and effective ways to achieve large-scale hydrogen transportation. However hydrogen can easily penetrate into the pipe material during the hydrogen-blended transportation process causing damage to the properties of the pipe. The heat-affected zone (HAZ) of the weld being the weakest part of the pipeline is highly sensitive to hydrogen embrittlement. The microstructure and properties of the grains in the heat-affected zone undergoes changes during the welding process. Therefore this paper divides the HAZ of X80 welded pipes into three sub-HAZ namely the coarse-grained HAZ fine-grained HAZ and intercritical HAZ to study the hydrogen behavior. The results show that the degree of hydrogen damage in each sub-HAZ varies significantly at different strain rates. The coarse-grained HAZ has the highest hydrogen embrittlement sensitivity at low strain rates while the intercritical HAZ experiences the greatest hydrogen damage at high strain rates. By combining the microstructural differences within each sub-HAZ the plastic damage mechanism of hydrogen in each sub-HAZ is analyzed with the aim of providing a scientific basis for the feasibility of using X80 welded pipes in hydrogen-blended transportation.
Low-Carbon Economic Dispatch of Integrated Energy Systems for Electricity, Gas, and Heat Based on Deep Reinforcement Learning
Oct 2025
Publication
Under the background of “dual-carbon” the development of energy internet is an inevitable trend for China’s low-carbon energy transition. This paper proposes a hydrogen-coupled electrothermal integrated energy system (HCEH-IES) operation mode and optimizes the source-side structure of the system from the level of carbon trading policy combined with low-carbon technology taps the carbon reduction potential and improves the renewable energy consumption rate and system decarbonization level; in addition for the operation optimization problem of this electric–gas–heat integrated energy system a flexible energy system based on electric–gas–heat is proposed. Furthermore to address the operation optimization problem of the HCEH-IES a deep reinforcement learning method based on Soft Actor–Critic (SAC) is proposed. This method can adaptively learn control strategies through interactions between the intelligent agent and the energy system enabling continuous action control of the multi-energy flow system while solving the uncertainties associated with source-load fluctuations from wind power photovoltaics and multi-energy loads. Finally historical data are used to train the intelligent body and compare the scheduling strategies obtained by SAC and DDPG algorithms. The results show that the SAC-based algorithm has better economics is close to the CPLEX day-ahead optimal scheduling method and is more suitable for solving the dynamic optimal scheduling problem of integrated energy systems in real scenarios.
Combustion Process Analysis of Secondary Jet-Guided Combustion in Hydrogen Direct-Injection Engines
Oct 2025
Publication
This study investigates the effects of secondary jet-guided combustion on the combustion and emissions of a hydrogen direct-injection engine through numerical simulations. The results show that secondary jet-guided combustion which involves injecting and igniting the hydrogen jet at the end of the compression stroke significantly shortens the delay period improves combustion stability and brings the combustion center closer to the top dead center (TDC) achieving a maximum indicative thermal efficiency (ITE) of 46.55% (λ = 2.4). However this strategy results in higher NOx emissions due to high-temperature combustion. In contrast single and double injections lead to worsened combustion and reduced thermal efficiency under lean-burn conditions but with relatively lower NOx emissions. This study demonstrates that secondary jet-guided combustion can effectively enhance hydrogen engine performance by optimizing mixture stratification and flame propagation providing theoretical support for clean and efficient combustion.
Plasma-Assisted Hydrogen Production: Technologies, Challenges, and Future Prospects
Apr 2025
Publication
As global demand for clean energy continues to rise hydrogen as an ideal energy carrier plays a crucial role in the energy transition. Traditional hydrogen production methods predominantly rely on fossil fuels leading to environmental pollution and energy inefficiency. In contrast plasma-assisted hydrogen production as an emerging technology has gained significant attention due to its high efficiency environmental friendliness and flexibility. Plasma technology generates high-energy electrons or ions by exciting gas molecules which under specific conditions effectively decompose water vapor or hydrocarbon gases to produce hydrogen. This review systematically summarizes the basic principles technological routes research progress and potential applications of plasmaassisted hydrogen production. It focuses on various plasma-based hydrogen production methods such as water vapor decomposition hydrocarbon cracking arc discharge and microwave discharge highlighting their advantages and challenges. Additionally it addresses key issues facing plasma-assisted hydrogen production including energy efficiency improvement reactor stability and cost optimization and discusses the future prospects of these technologies. With ongoing advancements plasma-assisted hydrogen production is expected to become a mainstream technology for hydrogen production contributing to global goals of zero carbon emissions and sustainable energy development.
Hydrogen-Blended Natural Gas Leakage and Diffusion Characteristics Simulation and Ventilation Strategy in Utility Tunnels
Aug 2025
Publication
To ensure the safe and reliable operation of hydrogen-blended natural gas (HBNG) pipelines in urban utility tunnels this study conducted a comprehensive CFD simulation of the leakage and diffusion characteristics of HBNG in confined underground environments. Utilizing ANSYS CFD software (2024R1) a three-dimensional physical model of a utility tunnel was developed to investigate the influence of key parameters such as leak sizes (4 mm 6 mm and 8 mm)—selected based on common small-orifice defects in utility tunnel pipelines (e.g. corrosion-induced pinholes and minor mechanical damage) and hydrogen blending ratios (HBR) ranging from 0% to 20%—a range aligned with current global HBNG demonstration projects (e.g. China’s “Medium-Term and Long-Term Plan for Hydrogen Energy Industry Development”) and ISO standards prioritizing 20% as a technically feasible upper limit for existing infrastructure on HBNG diffusion behavior. The study also evaluated the adequacy of current accident ventilation standards. The findings show that as leak orifice size increases the diffusion range of HBNG expands significantly with a 31.5% increase in diffusion distance and an 18.5% reduction in alarm time as the orifice diameter grows from 4 mm to 8 mm. Furthermore hydrogen blending accelerates gas diffusion with each 5% increase in HBR shortening the alarm time by approximately 1.6 s and increasing equilibrium concentrations by 0.4% vol. The current ventilation standard (12 h−1 ) was found to be insufficient to suppress concentrations below the 1% safety threshold when the HBR exceeds 5% or the orifice diameter exceeds 4 mm—thresholds derived from simulations showing that under 12 h−1 ventilation equilibrium concentrations exceed the 1% safety threshold under these conditions. To address these gaps this study proposes an adaptive ventilation strategy that uses variable-frequency drives to adjust ventilation rates in real time based on sensor feedback of gas concentrations ensuring alignment with leakage conditions thereby ensuring enhanced safety. These results provide crucial theoretical insights for the safe design of HBNG pipelines and ventilation optimization in utility tunnels.
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
Oct 2025
Publication
Hydrogen serves as a key clean-energy carrier with the main hurdles lying in safe efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH) as a high-density method of storage and transportation presents cryogenic insulation as its key technical issues. In LH storage tanks the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials methods and design approaches related to hydrogen storage. First it summarizes adsorbents used in liquid hydrogen storage tanks including cryogenic adsorbents metal oxides zeolite molecular sieves and non-volatile compounds. Second it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks analyzing key challenges faced in practical applications and corresponding countermeasures. Finally it proposes research prospects for exploring novel adsorbents and developing integrated systems.
Optimization Scheduling of Hydrogen-Integrated Energy Systems Considering Multi-Timescale Carbon Trading Mechanisms
Mar 2025
Publication
Amidst the escalating global challenges presented by climate change carbon trading mechanisms have become critical tools for driving reductions in carbon emissions and optimizing energy systems. However existing carbon trading models constrained by fixed settlement cycles face difficulties in addressing the scheduling needs of energy systems that operate across multiple time scales. To address this challenge this paper proposes an optimal scheduling methodology for hydrogen-encompassing integrated energy systems that incorporates a multi-time-scale carbon trading mechanism. The proposed approach dynamically optimizes the scheduling and conversion of hydrogen energy electricity thermal energy and other energy forms by flexibly adjusting the carbon trading cycle. It accounts for fluctuations in energy demand and carbon emissions occurring both before and during the operational day. In the day-ahead scheduling phase a tiered carbon transaction cost model is employed to optimize the initial scheduling framework. During the day scheduling phase real-time data are utilized to dynamically adjust carbon quotas and emission ranges further refining the system’s operational strategy. Through the analysis of typical case studies this method demonstrates significant benefits in reducing carbon emission costs enhancing energy efficiency and improving system flexibility.
Chemical Kinetics Properties and the Influences of Different Hydrogen Blending Ratios on Reactions of Natural Gas
Dec 2022
Publication
Hydrogen is blended with natural gas to form hydrogenated natural gas (HCNG) which is a new efficient and clean energy. CHEMKIN-PRO 19.0 software was combined with the GRI-Mech 3.0 mechanism to evaluate the capacity of H2 blending in reducing CO and CO2 emissions. Influences of H2 blending on combustion reactions of the CH4-air mixture were investigated. The results showed that the main reactants and products (CH4 CO and CO2) decreased in gradient with increasing H2 blending ratio accompanied by a shorter reaction duration and a faster reaction rate. After adding H2 important key radicals H O and OH increase significantly so that the combustion reactions become more violent. Sensitivity analysis reveals that among relevant elementary reactions of CO and CO2 R38 (with its promotional effect) and R158 (with its inhibitory effect) show the greatest sensitivity. As the H2 concentration increases the sensitivity of the two reactions (separately with promotional and inhibitory effects) decreases. Blending H2 in the natural gas can improve the combustion rate and reduce the generation of emissions CO and CO2 which is of important significance for realizing low-carbon goals and reducing air pollution.
A Review of the Enhancement of Bio-Hydrogen Generation by Chemicals Addition
Apr 2019
Publication
Bio-hydrogen production (BHP) produced from renewable bio-resources is an attractive route for green energy production due to its compelling advantages of relative high efficiency cost-effectiveness and lower ecological impact. This study reviewed different BHP pathways and the most important enzymes involved in these pathways to identify technological gaps and effective approaches for process intensification in industrial applications. Among the various approaches reviewed in this study a particular focus was set on the latest methods of chemicals/metal addition for improving hydrogen generation during dark fermentation (DF) processes; the up-to-date findings of different chemicals/metal addition methods have been quantitatively evaluated and thoroughly compared in this paper. A new efficiency evaluation criterion is also proposed allowing different BHP processes to be compared with greater simplicity and validity
Prediction and Optimization of the Long-Term Fatigue Life of a Composite Hydrogen Storage Vessel Under Random Vibration
Feb 2025
Publication
A composite hydrogen storage vessel (CHSV) is one key component of the hydrogen fuel cell vehicle which always suffers random vibration during transportation resulting in fatigue failure and a reduction in service life. In this paper firstly the free and constrained modes of CHSV are experimentally studied and numerically simulated. Subsequently the random vibration simulation of CHSV is carried out to predict the stress distribution while Steinberg’s method and Dirlik’s method are used to predict the fatigue life of CHSV based on the results of stress distribution. In the end the optimization of ply parameters of the composite winding layer was conducted to improve the stress distribution and fatigue life of CHSV. The results show that the vibration pattern and frequency of the free and constrained modes of CHSV obtained from the experiment tests and the numerical predictions show a good agreement. The maximum difference in the value of the vibration frequency of the free and constrained modes of CHSV from the FEA and experiment tests are respectively 8.9% and 8.0% verifying the accuracy of the finite element model of CHSV. There is no obvious difference between the fatigue life of the winding layer and the inner liner calculated by Steinberg’s method and Dirlik’s method indicating the accuracy of FEA of fatigue life in the software Fe-safe. Without the optimization the maximum stresses of the winding layer and the inner liner are found to be near the head section by 469.4 MPa and 173.0 MPa respectively and the numbers of life cycles of the winding layer and the inner liner obtained based on the Dirlik’s method are around 1.66 × 106 and 3.06 × 106 respectively. Through the optimization of ply parameters of the composite winding layer the maximum stresses of the winding layer and the inner liner are reduced by 66% and 85% respectively while the numbers of life cycles of the winding layer and the inner liner both are increased to 1 × 107 (high cycle fatigue life standard). The results of the study provide theoretical guidance for the design and optimization of CHSV under random vibration.
Economic Viability and Environmental Efficiency Analysis of Hydrogen Production Processes for the Decarbonization of Energy Systems
Aug 2019
Publication
The widespread penetration of hydrogen in mainstream energy systems requires hydrogen production processes to be economically competent and environmentally efficient. Hydrogen if produced efficiently can play a pivotal role in decarbonizing the global energy systems. Therefore this study develops a framework which evaluates hydrogen production processes and quantifies deficiencies for improvement. The framework integrates slack-based data envelopment analysis (DEA) with fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS). The proposed framework is applied to prioritize the most efficient and sustainable hydrogen production in Pakistan. Eleven hydrogen production alternatives were analyzed under five criteria including capital cost feedstock cost O&M cost hydrogen production and CO2 emission. FAHP obtained the initial weights of criteria while FTOPSIS determined the ultimate weights of criteria for each alternative. Finally slack-based DEA computed the efficiency of alternatives. Among the 11 three alternatives (wind electrolysis PV electrolysis and biomass gasification) were found to be fully efficient and therefore can be considered as sustainable options for hydrogen production in Pakistan. The rest of the eight alternatives achieved poor efficiency scores and thus are not recommended.
Analysis of Carbon Emissions and Carbon Reduction Benefits of Green Hydrogen and Its Derivatives Based on the Full Life Cycle
Oct 2025
Publication
Under the constraints of the “dual carbon” goals accurately depicting the full life cycle carbon footprint of green hydrogen and its derivatives and quantifying the potential for emission reduction is a prerequisite for hydrogen energy policy and investment decisions. This paper constructs a unified life cycle model covering the entire process from “wind and solar power generation–electrolysis of water to producing hydrogen-synthesis of methanol/ammonia-terminal transportation” and includes the manufacturing stage of key front-end equipment and the negative carbon effect of CO2 capture within a single system boundary and also presents an empirical analysis. The results show that the full life cycle carbon emissions of wind power hydrogen production and photovoltaic hydrogen production are 1.43 kgCO2/kgH2 and 3.17 kgCO2/kgH2 respectively both lower than the 4.9 kg threshold for renewable hydrogen in China. Green hydrogen synthesis of methanol achieves a net negative emission of −0.83 kgCO2/kgCH3OH and the emission of green hydrogen synthesis of ammonia is 0.57 kgCO2/kgNH3. At the same time it is predicted that green hydrogen green ammonia and green methanol can contribute approximately 1766 66.62 and 30 million tons of CO2 emission reduction respectively by 2060 providing a quantitative basis for the large-scale layout and policy formulation of the hydrogen energy industry.
Study on the Spatial and Temporal Evolution of Hydrogen-Blended Natural Gas Leakage and Flare-Up in the Typical Semi-Open Space
Apr 2025
Publication
Numerical simulations reveal the combustion dynamics of hydrogen-blended natural gas (H-BNG) in semi-open spaces. In the typical semi-open space scenario increasing the hydrogen blending ratio from 0% to 60% elevates peak internal pressure by 107% (259.3 kPa → 526.0 kPa) while reducing pressure rise time by 56.5% (95.8 ms → 41.7 ms). A vent size paradox emerges: 0.5 m openings generate 574.6 kPa internal overpressure whereas 2 m openings produce 36.7 kPa external overpressure. Flame propagation exhibits stabilized velocity decay (836 m/s → 154 m/s 81.6% reduction) at hydrogen concentrations ≥30% within 2–8 m distances. In street-front restaurant scenarios 80% H-BNG leaks reach alarm concentration (0.8 m height) within 120 s with sensor response times ranging from 21.6 s (proximal) to 40.2 s (distal). Forced ventilation reduces hazard duration by 8.6% (151 s → 138 s) while door status shows negligible impact on deflagration consequences (412 kPa closed vs. 409 kPa open) maintaining consistent 20.5 m hazard radius at 20 kPa overpressure threshold. These findings provide crucial theoretical insights and practical guidance for the prevention and management of H-BNG leakage and explosion incidents.
Bi-Level Sustainability Planning for Integrated Energy Systems Considering Hydrogen Utilization and the Bilateral Response of Supply and Demand
Aug 2025
Publication
Under the background of “double carbon” and sustainable development aimed at the problem of resource capacity planning in the integrated energy system (IES) at improving the economy of system planning operation and renewable energy (RE) consumption and at reducing carbon emissions this paper proposes a multi-objective bi-level sustainability planning method for IES considering the bilateral response of supply and demand and hydrogen utilization. Firstly the multi-energy flow in the IES is analyzed constructing the system energy flow framework studying the support ability of hydrogen utilization and the bilateral response of supply and demand to system energy conservation emission reduction and sustainable development. Secondly a multi-objective bi-level planning model for IES is constructed with the purpose of optimizing economy RE consumption and carbon emission. The non-dominated sorting genetic algorithm II (NSGA-II) and commercial solver Gurobi are used to solve the model and through the simulation verify the model’s effectiveness. Finally the planning results show that after introducing the hydrogen fuel cells hydrogen storage tank and bilateral response the total costs and carbon emissions decreased by 29.17% and 77.12% while the RE consumption rate increased by 16.75%. After introducing the multi-objective planning method considering the system economy RE consumption and carbon emissions the system total cost increased by 0.34% the consumption rate of RE increased by 0.6% and the carbon emissions decreased by 43.61t which effectively provides reference for resource planning and sustainable development of IES.
Efficiency Measurement and Trend Analysis of the Hydrogen Energy Industry Chain in China
Apr 2025
Publication
Hydrogen energy characterized by its abundant resources green and lowcarbon attributes and wide-ranging applications is a critical energy source for achieving carbon peaking and carbon neutrality goals. The operational efficiency of the hydrogen energy industrial chain is pivotal in determining the security of its supply chain and its contribution to China’s energy transition. This study investigates the efficiency of China’s hydrogen energy industrial chain by selecting 30 listed companies primarily engaged in hydrogen energy as the research sample. A three-stage data envelopment analysis (DEA) model is applied to assess the industry’s comprehensive technical efficiency pure technical efficiency and scale efficiency. Additionally kernel density estimation is utilized to analyze efficiency trends over time. Key factors influencing efficiency are identified and targeted recommendations are provided to enhance the performance and sustainability of the hydrogen energy industrial chain. These findings offer valuable insights to support the development and resilience of China’s hydrogen energy industry
The Hydrogen Trade-Off: Optimizing Decarbonization Pathways for Urban Integrated Energy Systems
Aug 2025
Publication
Rapid socio-economic development has made energy application and environmental issues increasingly prominent. Hydrogen energy clean eco-friendly and highly synergistic with renewable energy has become a global research focus. This study using the EnergyPLAN model that includes the electricity transportation and industrial sectors takes Jinan City as the research object and explores how hydrogen penetration changes affect the decarbonization path of the urban integrated energy system under four scenarios. It evaluates the four hydrogen scenarios with the entropy weight method and technique placing them in an order of preference according to their similarity to the ideal solution considering comprehensive indicators like cost carbon emissions and sustainability. Results show the China Hydrogen Alliance potential scenario has better CO2 emission reduction potential and unit emission reduction cost reducing them by 7.98% and 29.39% respectively. In a comprehensive evaluation it ranks first with a score of 0.5961 meaning it is closest to the ideal scenario when cost environmental and sustainability indicators are comprehensively considered. The Climate Response Pioneer scenario follows with 0.4039 indicating that higher hydrogen penetration in terminal energy is not necessarily the most ideal solution. Instead appropriate hydrogen penetration scenarios should be selected based on the actual situation of different energy systems.
No more items...