China, People’s Republic
Catalyst, Reactor, and Purification Technology in Methanol Steam Reforming for Hydrogen Production: A Review
Aug 2025
Publication
Methanol steam reforming (MSR) represents a highly promising pathway for sustainable hydrogen production due to its favorable hydrogen-to-carbon ratio and relatively low operating temperatures. The performance of the MSR process is strongly dependent on the selection and rational design of catalysts which govern methanol conversion hydrogen selectivity and the suppression of undesired side reactions such as carbon monoxide formation. Moreover advancements in reactor configuration and thermal management strategies play a vital role in minimizing heat loss and enhancing heat and mass transfer efficiency. Effective carbon monoxide removal technologies are indispensable for obtaining high-purity hydrogen particularly for applications sensitive to CO contamination. This review systematically summarizes recent progress in catalyst development reactor design and gas purification technologies for MSR. In addition the key technical challenges and potential future directions of the MSR process are critically discussed. The insights provided herein are expected to contribute to the development of more efficient stable and scalable MSR-based hydrogen production systems.
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
Oct 2025
Publication
The hydrogen economy stands at the forefront of the global energy transition and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping topology optimization functional integration of cooling channels and the fabrication of intricate hierarchical structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer thereby improving hydrogen production storage and utilization efficiency. Furthermore AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement significantly extending operational lifespan. Collectively these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications posing a significant barrier to large-scale industrial adoption. At present the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5 reflecting laboratory-scale progress but underscoring the need for further development validation and industrial-scale demonstration before commercialization can be realized.
Numerical Analysis of Hydrogen Fingering in Underground Hydrogen Storage
Apr 2025
Publication
Underground hydrogen storage has gained interest in recent years due to the enormous demand for clean energy. Hydrogen is more diffusive than air with a smaller density and lower viscosity. These unique properties introduce distinctive hydrodynamic phenomena in hydrogen storage one of which is fingering. Fingering could induce the fluid trapped in small clusters of pores leading to a dramatic decrease in hydrogen saturation and a lower recovery rate. In this study numerical simulations are performed at the microscopic scale to understand the evolution of hydrogen saturation and the impacts of injection and withdrawal cycles. Two sets of micromodels with different porosity (0.362 and 0.426) and minimum sizes of pore throats (0.362 mm and 0.181 mm) are developed in the numerical model. A parameter analysis is then conducted to understand the influence of injection velocity (in the range of 10-2 m/s to 10-5 m/s) and porous structure on the fingering pattern followed by an image analysis to capture the evolution of the fingering pattern. Viscous fingering capillary fingering and crossover fingering are observed and identified under different boundary conditions. The fractal dimension specific area mean angle and entropy of fingers are proposed as geometric descriptors to characterize the shape of the fingering pattern. When porosity increases from 0.362 to 0.426 the saturation of hydrogen increases by 26.2%. Narrower pore throats elevate capillary resistance which hinders fluid invasion. These results underscore the importance of pore structures and the interaction between viscous and capillary forces for hydrogen recovery efficiency. This work illuminates the influence of the pore structures and the fluid properties on the immiscible displacement of hydrogen and can be further extended to optimize the injection strategy of hydrogen in underground hydrogen storage.
A Cation-exchange Membrane Direct Formate-CO2 Fuel Cell: Enabling Simultaneous Hydrogen Production and CO2 Utilization
Sep 2025
Publication
The carbon-neutral and carbon-negative energy utilization technologies have long been people pursued to realize the strategic objective of carbon neutrality. Herein we propose a cation-exchange membrane (CEM) direct formate-CO2 fuel cell that possesses the capability of simultaneously generating electricity and producing hydrogen as well as continuously transforming carbon dioxide into pure sodium bicarbonate. Using the CO2- derived formate fuel the roof-of-concept CEM direct formate-CO2 fuel cell exhibits a peak power density of 38 mW cm− 2 at 80 ◦C without the assistance of additional electrolyte. The fairly stable constant-current discharge curve along with the detected hydrogen and pure sodium bicarbonate prove the conceptual feasibility of this electricity‑hydrogen-bicarbonate co-production device. By adding alkaline electrolyte to the anode we achieved a higher peak power density of 63 mW cm− 2 at the corresponding hydrogen production rate of 0.57 mL min− 1 cm− 2 . More interestingly the concentrations of pure NaHCO3 solution can be controlled by adjusting the cathode water flow rate and fuel cell discharge current density. This work presents a theoretically feasible avenue for coupling hydrogen production and CO2 utilization.
Thermal Management of Fuel Cells in Hydrogen-Powered Unmanned Aerial Vehicles
Oct 2025
Publication
Hydrogen-powered unmanned aerial vehicles (UAVs) offer significant advantages such as environmental sustainability and extended endurance demonstrating broad application prospects. However the hydrogen fuel cells face prominent thermal management challenges during flight operations. This study established a numerical model of the fuel cell thermal management system (TMS) for a hydrogen-powered UAV. Computational fluid dynamics (CFD) simulations were subsequently performed to investigate the impact of various design parameters on cooling performance. First the cooling performance of different fan density configurations was investigated. It was found that dispersed fan placement ensures substantial airflow through the peripheral flow channels significantly enhancing temperature uniformity. Specifically the nine-fan configuration achieves an 18.5% reduction in the temperature difference compared to the four-fan layout. Additionally inlets were integrated with the fan-based cooling system. While increased external airflow lowers the minimum fuel cell temperature its impact on high-temperature zones remains limited with a temperature difference increase of more than 19% compared to configurations without inlets. Furthermore the middle inlet exhibits minimal vortex interference delivering superior thermal performance. This configuration reduces the maximum temperature and average temperature by 9.1% and 22.2% compared to the back configuration.
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
Oct 2025
Publication
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation this review focuses on practical aspects of system development including propulsion architectures system- and component-level modeling approaches and energy management strategies. Key technologies in the future are examined with emphasis on aircraft power-demand prediction multi-timescale control and thermal integrated energy management. This review aims to serve as a reference for configuration design modeling and control simulation as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role the review presents a coherent guidance scheme from architectures through modeling to energy-management control with a practical roadmap toward flight-ready deployment.
Engineering Photocatalytic Membrane Reactors for Sustainable Energy and Environmental Applications
Oct 2025
Publication
Photocatalytic membrane reactors (PMRs) which combine photocatalysis with membrane separation represent a pivotal technology for sustainable water treatment and resource recovery. Although extensive research has documented various configurations of photocatalytic-membrane hybrid processes and their potential in water treatment applications a comprehensive analysis of the interrelationships among reactor architectures intrinsic physicochemical mechanisms and overall process efficiency remains inadequately explored. This knowledge gap hinders the rational design of highly efficient and stable reactor systems—a shortcoming that this review seeks to remedy. Here we critically examine the connections between reactor configurations design principles and cutting-edge applications to outline future research directions. We analyze the evolution of reactor architectures relevantreaction kinetics and key operational parameters that inform rational design linking these fundamentals to recent advances in solar-driven hydrogen production CO2 conversion and industrial scaling. Our analysis reveals a significant disconnect between the mechanistic understanding of reactor operation and the system-level performance required for innovative applications. This gap between theory and practice is particularly evident in efforts to translate laboratory success into robust and economically feasible industrial-scale operations. We believe that PMRs willrealize theirtransformative potential in sustainable energy and environmental applications in future.
High-Efficiency, Lightweight, and Reliable Integrated Structures—The Future of Fuel Cells and Electrolyzers
Oct 2025
Publication
The high efficiency light weight and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers as key components have structures and strengths that determine the efficiency of their power generation and the hydrogen production efficiency of electrolyzers. This article summarizes the evolution of membrane electrode and electrolyzer structures and their power and efficiency in recent years highlighting the significant role of integrated structures in promoting proton transport and enhancing performance. Finally it proposes the development direction of integrating electrolyte and electrode manufacturing using phase-change methods.
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
Oct 2025
Publication
Environmental pollution caused by shipping has always received great attention from the international community. Currently due to the difficulty of fully electrifying medium- and large-scale ships the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships as well as the uncertainty of the output power of renewable energy units this paper proposes an improved design for an integrated power system for large cruise ships combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response as well as an energy storage power allocation method that considers the characteristics of energy storage devices is designed. A bi-level power capacity optimization model grounded in comprehensive scenario planning and aiming to optimize maximum return on equity is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs enhance revenue and increase the return on equity from 5.15% to 8.66%.
Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells
Oct 2025
Publication
Solid oxide electrolysis cells (SOECs) have emerged as a promising technology for efficient energy storage and CO2 utilization via H2O–CO2 co-electrolysis. While most previous studies focused on planar or tubular configurations this work investigated a novel flat tubular SOEC design using a comprehensive 3D multi-physics model developed in COMSOL Multiphysics 5.6. This model integrates charge transfer gas flow heat transfer chemical/electrochemical reactions and structural mechanics to analyze operational behavior and thermo-mechanical stress under different voltages and pressures. Simulation results indicate that increasing operating voltage leads to significant temperature and current density inhomogeneity. Furthermore elevated pressure improves electrochemical performance possibly due to increased reactant concentrations and reduced mass transfer limitations; however it also increases temperature gradients and the maximum first principal stress. These findings underscore that the design and optimization of flat tubular SOECs in H2O–CO2 co-electrolysis should take the trade-off between performance and durability into consideration.
Sustainable Hydrogen Production from Waste Plastics via Staged Chemical Looping Gasification with Iron-based Oxygen Carrier
Aug 2025
Publication
Thermo-chemical conversion of waste plastics offers a sustainable strategy for integrated waste management and clean energy generation. To address the challenges of low gas yield and rapid catalyst deactivation due to coking in conventional gasification processes an innovative three-stage chemical looping gasification (CLG) system specifically designed for enhanced hydrogen-rich syngas production was proposed in this work. A comparative analysis between conventional gasification and the staged CLG system were firstly conducted coupled with online gas analysis for mechanistic elucidation. The influence of Fe/Al molar ratios in oxygen carriers and their cyclic stability were systematically examined through multicycle experiments. Results showed that the three-stage CLG in the presence of Fe1Al2 demonstrated exceptional performance achieving 95.23 mmol/gplastic of H2 and 129.89 mmol/gplastic of syngas respectively representing 1.32-fold enhancement over conventional method. And the increased H2/CO ratio (2.68-2.75) reflected better syngas quality via water-gas shift. Remarkably the oxygen carrier maintained nearly 100% of its initial activity after 7 redox cycles attributed to the incorporation of Al2O3 effectively mitigating sintering and phase segregation through metal-support interactions. These findings establish a three-stage CLG configuration with Fe-Al oxygen carriers as an efficient platform for efficient hydrogen production from waste plastics contributing to sustainable waste valorisation and carbon-neutral energy systems.
Coordinated Operation of Alternative Fuel Vehicle-integrated Microgrid in a Coupled Power-transportation Network: A Stackelberg-Nash Game Framework
Sep 2025
Publication
With the rapid development of alternative fuel vehicles (AFVs) and renewable energy sources the increasing coordination between electric vehicles (EVs) and hydrogen vehicles (HVs) in urban coupled powertransportation networks (CPTNs) fosters optimized energy scheduling and enhanced system performance. This study proposes a two-level Stackelberg-Nash game framework for AFV-integrated microgrids in a CPTN to enhance the economic efficiency of microgrid. This framework employs a Stackelberg game model to define the leader-follower relationship between the microgrid operator and the vehicle-to-grid (V2G) aggregator. Nash equilibrium games are established to capture competitive interactions among charging stations (CSs) and among hydrogen refueling stations (HRSs). Furthermore an optimal scheduling model is proposed to minimize microgrid operation costs considering the spatiotemporal dynamics and user preferences of EVs and HVs supported by the proposed dynamic choice model. A game-theoretic pricing and incentive mechanism promotes AFV participation in V2G services enhancing the profitability of CSs and HRSs. Afterward a momentum-enhanced Stackelberg-Nash equilibrium algorithm is developed to address the bi-level optimization problem. Finally numerical simulations validate the effectiveness of the proposed method in improving economic efficiency and reducing operation costs. The proposed approach offers an effective solution for integrating large-scale AFV fleets into sustainable urban energy and transportation systems.
Exploration of Processability Limitations of Fiber Placement and Thickness Stacking Optimization of Thermoplastic Composite Hydrogen Storage Cylinders for Hydrogen-powered Aircraft
Dec 2024
Publication
Hydrogen-powered aircraft as a cutting-edge exploration of clean-energy air transportation have more stringent requirements for lightweight hydrogen storage equipment due to the limitations of aircraft weight and volume. Composite hydrogen storage cylinders have become one of the preferred solutions for hydrogen storage systems in hydrogen-powered aircraft due to their light weight and high strength. However during the automated placement of high-stiffness thermoplastic composites (T700/PEEK) fibers can buckle or fracture in the header section. As the header radius decreases the overlap of adjacent tows increases resulting in buildup in the thickness of the polar pores which contradicts the lightweight requirements. To solve this problem this paper derives the trajectory algorithm as a manufacturing process limitation when thermoplastic fiber bundles are laid without wrinkles and the effect of different ellipsoid ratios of head profile changes on the overlap of fiber bundles is investigated. The larger the ellipsoid ratio of the prolate ellipsoid is the smaller overlap of gaps generated by neighboring fiber bundles is and the overlap at the pole holes is also smaller whereas the change of the oblate ellipsoid is not significant. The prolate ellipsoid has more application and research value than the oblate ellipsoid in terms of processability which is of great exploration significance for the design and fabrication of thermoplastic composite hydrogen storage cylinders for hydrogen-powered aircraft.
The Energy Management Strategies for Fuel Cell Electric Vehicles: An Overview and Future Directions
Sep 2025
Publication
The rapid development of fuel cell electric vehicles (FCEVs) has highlighted the critical importance of optimizing energy management strategies to improve vehicle performance energy efficiency durability and reduce hydrogen consumption and operational costs. However existing approaches often face limitations in real-time applicability adaptability to varying driving conditions and computational efficiency. This paper aims to provide a comprehensive review of the current state of FCEV energy management strategies systematically classifying methods and evaluating their technical principles advantages and practical limitations. Key techniques including optimization-based methods (dynamic programming model predictive control) and machine learning-based approaches (reinforcement learning deep neural networks) are analyzed and compared in terms of energy distribution efficiency computational demand system complexity and real-time performance. The review also addresses emerging technologies such as artificial intelligence vehicle-to-everything (V2X) communication and multi-energy collaborative control. The outcomes highlight the main bottlenecks in current strategies their engineering applicability and potential for improvement. This study provides theoretical guidance and practical reference for the design implementation and advancement of intelligent and adaptive energy management systems in FCEVs contributing to the broader goal of efficient and low-carbon vehicle operation.
The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures
Oct 2025
Publication
To mitigate explosion hazards arising from hydrogen leakage and subsequent mixing with air the injection of inert gases can substantially diminish explosion risk. However prevailing research has predominantly characterized inert gas dilution effects on explosion behavior under quiescent conditions largely neglecting the turbulence-mediated explosion enhancement inherent to dynamic mixing scenarios. A comprehensive investigation was conducted on the combustion behavior of 30% 50% and 70% H2-air mixtures subjected to jet-induced (CO2 N2 He) turbulent flow incorporating quantitative characterization of both the evolving turbulent flow field and flame front dynamics. Research has demonstrated that both an increased H2 concentration and a higher jet medium molecular weight increase the turbulence intensity: the former reduces the mixture molecular weight to accelerate diffusion whereas the latter results in more pronounced disturbances from heavier molecules. In addition when CO2 serves as the jet medium a critical flame radius threshold emerges where the flame propagation velocity decreases below this threshold because CO2 dilution effects suppress combustion whereas exceeding it leads to enhanced propagation as initial disturbances become the dominant factor. Furthermore at reduced H2 concentrations (30–50%) flow disturbances induce flame front wrinkling while preserving the spherical geometry; conversely at 70% H2 substantial flame deformation occurs because of the inverse correlation between the laminar burning velocity and flame instability governing this transition. Through systematic quantitative analysis this study elucidates the evolutionary patterns of both turbulent fields and flame fronts offering groundbreaking perspectives on H2 combustion and explosion propagation in turbulent environments.
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
Jul 2025
Publication
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25 50 100 mm) transient release duration dispersion patterns and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile increased wind velocities (>10 m/s) accelerate hydrogen dilution reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications.
Numerical Investigation of Transmission and Sealing Characteristics of Salt Rock, Limestone, and Sandstone for Hydrogen Underground Energy Storage in Ontario, Canada
Feb 2025
Publication
With the accelerating global transition to clean energy underground hydrogen storage (UHS) has gained significant attention as a flexible and renewable energy storage technology. Ontario Canada as a pioneer in energy transition offers substantial underground storage potential with its geological conditions of salt limestone and sandstone providing diverse options for hydrogen storage. However the hydrogen transport characteristics of different rock media significantly affect the feasibility and safety of energy storage projects warranting in-depth research. This study simulates the hydrogen flow and transport characteristics in typical energy storage digital rock core models (salt rock limestone and sandstone) from Ontario using the improved quartet structure generation set (I-QSGS) and the lattice Boltzmann method (LBM). The study systematically investigates the distribution of flow velocity fields directional characteristics and permeability differences covering the impact of hydraulic changes on storage capacity and the mesoscopic flow behavior of hydrogen in porous media. The results show that salt rock due to its dense structure has the lowest permeability and airtightness with extremely low hydrogen transport velocity that is minimally affected by pressure differences. The microfracture structure of limestone provides uneven transport pathways exhibiting moderate permeability and fracture-dominated transport characteristics. Sandstone with its higher porosity and good connectivity has a significantly higher transport rate compared to the other two media showing local high-velocity preferential flow paths. Directional analysis reveals that salt rock and sandstone exhibit significant anisotropy while limestone’s transport characteristics are more uniform. Based on these findings salt rock with its superior sealing ability demonstrates the best hydrogen storage performance while limestone and sandstone also exhibit potential for storage under specific conditions though further optimization and validation are required. This study provides a theoretical basis for site selection and operational parameter optimization for underground hydrogen storage in Ontario and offers valuable insights for energy storage projects in similar geological settings globally.
Enhancing Hydrogen Production from Chlorella sp. Biomass by Pre-Hydrolysis with Simultaneous Saccharification and Fermentation (PSSF)
Mar 2019
Publication
Simultaneous saccharification and fermentation (SSF) and pre-hydrolysis with SSF (PSSF) were used to produce hydrogen from the biomass of Chlorella sp. SSF was conducted using an enzyme mixture consisting of 80 filter paper unit (FPU) g-biomass−1 of cellulase 92 U g-biomass−1 of amylase and 120 U g-biomass−1 of glucoamylase at 35 ◦C for 108 h. This yielded 170 mL-H2 g-volatile-solids−1 (VS) with a productivity of 1.6 mL-H2 g-VS−1 h −1 . Pre-hydrolyzing the biomass at 50 ◦C for 12 h resulted in the production of 1.8 g/L of reducing sugars leading to a hydrogen yield (HY) of 172 mL-H2 g-VS−1 . Using PSSF the fermentation time was shortened by 36 h in which a productivity of 2.4 mL-H2 g-VS−1 h −1 was attained. To the best of our knowledge the present study is the first report on the use of SSF and PSSF for hydrogen production from microalgal biomass and the HY obtained in the study is by far the highest yield reported. Our results indicate that PSSF is a promising process for hydrogen production from microalgal biomass.
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
Jul 2025
Publication
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production storage refueling and consumption technologies we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP which achieves 49.67% renewable energy contribution and an annual reduction of 22000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency multi-tier hydrogen storage systems and fuel cell applications for vehicles and power generation. Despite these achievements challenges such as high production costs infrastructure scalability and data integration gaps persist. The study underscores the importance of policy support technological innovation and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals.
Risk Analysis of Hydrogen Leakage at Hydrogen Producing and Refuelling Integrated Station
Feb 2025
Publication
Hydrogen energy is considered the most promising clean energy in the 21st century so hydrogen refuelling stations (HRSs) are crucial facilities for storage and supply. HRSs might experience hydrogen leakage (HL) incidents during their operation. Hydrogen-producing and refuelling integrated stations (HPRISs) could make thermal risks even more prominent than those of HRSs. Considering HL as the target in the HPRIS through the method of fault tree analysis (FTA) and analytic hierarchy process (AHP) the importance degree and probability importance were appraised to obtain indicators for the weight of accident level. In addition the influence of HL from storage tanks under ambient wind conditions was analysed using the specific model. Based upon risk analysis of FTA AHP and ALOHA preventive measures were obtained. Through an evaluation of importance degree and probability importance it was concluded that misoperation material ageing inadequate maintenance and improper design were four dominant factors contributing to accidents. Furthermore four crucial factors contributing to accidents were identified by the analysis of the weight of the HL event with AHP: heat misoperation inadequate maintenance and valve failure. Combining the causal analysis of FTA with the expert weights from AHP enables the identification of additional crucial factors in risk. The extent of the hazard increased with wind speed and yet wind direction did not distinctly affect the extent of the risk. However this did affect the direction in which the risk spreads. It is extremely vital to rationally plan upwind and downwind buildings or structures equipment and facilities. The available findings of the research could provide theoretical guidance for the applications and promotion of hydrogen energy in China as well as for the proactive safety and feasible emergency management of HPRISs.
No more items...