China, People’s Republic
Dissociative Adsorption of Hydrogen in Hydrogen-Blended Natural Gas Pipelines: A First Principles and Thermodynamic Analysis
Jun 2025
Publication
This study employs first principles calculations and thermodynamic analyses to investigate the dissociative adsorption of hydrogen on the Fe(110) surface. The results show that the adsorption energies of hydrogen at different sites on the iron surface are −1.98 eV (top site) −2.63 eV (bridge site) and −2.98 eV (hollow site) with the hollow site being the most stable adsorption position. Thermodynamic analysis further reveals that under operational conditions of 25 ◦C and 12 MPa the Gibbs free energy change (∆G) for hydrogen dissociation is −1.53 eV indicating that the process is spontaneous under pipeline conditions. Moreover as temperature and pressure increase the spontaneity of the adsorption process improves thus enhancing hydrogen transport efficiency in pipelines. These findings provide a theoretical basis for optimizing hydrogen transport technology in natural gas pipelines and offer scientific support for mitigating hydrogen embrittlement improving pipeline material performance and developing future hydrogen transportation strategies and safety measures.
Capacity Configuration and Benefit Assessment of Deep-Sea Wind–Hydrogen System Considering Dynamic Hydrogen Price
Sep 2025
Publication
Against the backdrop of the global transition towards clean energy deep-sea wind-power hydrogen production integrates offshore wind with green hydrogen technology. Addressing the technical coupling complexity and the impact of uncertain hydrogen prices this paper develops a capacity optimization model. The model incorporates floating wind turbine output the technical distinctions between alkaline (ALK) electrolyzers and proton exchange membrane (PEM) electrolyzers and the synergy with energy storage. Under three hydrogen price scenarios the results demonstrate that as the price increases from 26 CNY/kg to 30 CNY/kg the optimal ALK capacity decreases from 2.92 MW to 0.29 MW while the PEM capacity increases from 3.51 MW to 5.51 MW. Correspondingly the system’s Net Present Value (NPV) exhibits an upward trend. To address the limitations of traditional methods in handling multi-dimensional benefit correlations and information ambiguity a comprehensive benefit evaluation framework encompassing economic technical environmental and social synergies was constructed. Sensitivity analysis indicates that the comprehensive benefit level falls within a relatively high-efficiency interval. The numerical characteristics an entropy value of 3.29 and a hyper-entropy of 0.85 demonstrate compact result distribution and robust stability validating the applicability and stability of the proposed offshore wind–hydrogen benefit assessment model.
Risk Assessment of Offshore Wind–Solar–Current Energy Coupling Hydrogen Production Project Based on Hybrid Weighting Method and Aggregation Operator
Oct 2025
Publication
Under the dual pressures of global climate change and energy structure transition the offshore wind–solar–current energy coupling hydrogen production (OCWPHP) system has emerged as a promising integrated energy solution. However its complex multi-energy structure and harsh marine environment introduce systemic risks that are challenging to assess comprehensively using traditional methods. To address this we develop a novel risk assessment framework based on hesitant fuzzy sets (HFS) establishing a multidimensional risk criteria system covering economic technical social political and environmental aspects. A hybrid weighting method integrating AHP entropy weighting and consensus adjustment is proposed to determine expert weights while minimizing risk information loss. Two aggregation operators—AHFOWA and AHFOWG—are applied to enhance uncertainty modeling. A case study of an OCWPHP project in the East China Sea is conducted with the overall risk level assessed as “Medium.” Comparative analysis with the classical Cumulative Prospect Theory (CPT) method shows that our approach yields a risk value of 0.4764 closely aligning with the CPT result of 0.4745 thereby confirming the feasibility and credibility of the proposed framework. This study provides both theoretical support and practical guidance for early-stage risk assessment of OCWPHP projects.
Biohydrogen Production from Industrial Waste: The Role of Pretreatment Methods
Oct 2025
Publication
This study aimed to investigate the effectiveness of dark fermentation in biohydrogen production from agro-industrial wastes including apple pomace brewer’s grains molasses and potato powder subjected to different pretreatment methods. The experiments were conducted at a laboratory scale using 1000 cm3 anaerobic reactors at a temperature of 35 ◦C and anaerobic sludge as the inoculum. The highest yield of hydrogen was obtained from pre-treated apple pomace (101 cm3/g VS). Molasses a less complex substrate compared to the other raw materials produced 25% more hydrogen yield following pretreatment. Methanogens are sensitive to high temperatures and low-pH conditions. Nevertheless methane constituted 1–6% of the total biogas under these conditions. The key factor was appropriate treatment of the inoculum to limit competition from methanogens. Increasing the inoculum dose from 150 cm3/dm3 to 250 cm3/dm3 had no further effect on biogas production. The physicochemical parameters and VFA data confirmed the stability and usefulness of activated sludge as a source of microbial cultures for H2 production via dark fermentation.
Modeling and Optimization Control of SOEC with Flexible Adjustment Capabilities
Jul 2025
Publication
Due to the random fluctuations in power experienced by high-temperature green electric hydrogen production systems further deterioration of spatial distribution characteristics such as temperature voltage/current and material concentration inside the solid oxide electrolysis cell (SOEC) stack may occur. This has a negative impact on the system’s flexibility and the corresponding control capabilities. In this paper based on the SOEC electrolytic cell model a comprehensive optimization method using an adaptive incremental Kriging surrogate model is proposed. The reliability of this method is verified by accurately analyzing the dynamic performance of the SOEC and the spatial characteristics of various physical quantities. Additionally a thermal dynamic analysis is performed on the SOEC and an adaptive time-varying LPV-MPC optimization control method is established to ensure the temperature stability of the electrolysis cell stack aiming to maintain a stable efficient and sustainable SOEC operation. The simulation analysis of SOEC hydrogen production adopting a variable load operation has demonstrated the advantages of this method over conventional PID control in stabilizing the temperature of the stack. It allows for a rapid adjustment in the electrolysis voltage and current and improves electrolysis efficiency. The results highlighted that the increase in the electrolysis load increases the current density while the water vapor electrolysis voltage and H2 flow rate significantly decrease. Finally the SOEC electrolytic hydrogen production module is introduced for optimization scheduling of energy consumption in Xinjiang China. The findings not only confirmed that the SOEC can transition to the current load operating point at each scheduling period but also demonstrated higher effectiveness in stabilizing the stack temperature and improving electrolysis efficiency.
Influence of Hydrogen-Based Direct Reduction Shaft Furnace Interior Structure on Shaft Furnace Performance
Oct 2025
Publication
Hydrogen-based direct reduction of iron ore is a promising route to reduce CO2 emissions in steelmaking where uniform particle flow inside shaft furnaces is essential for efficient operation. In this study a full-scale three-dimensional Discrete Element Method (DEM) model of a shaft furnace was developed to investigate the effects of a diverter device on granular flow. By systematically varying the radial width and top/bottom diameters of the diverter particle descent velocity residence time compressive force distribution and collision energy dissipation were analyzed. The results demonstrate that introducing a diverter effectively suppresses funnel flow prolongs residence time and improves radial flow uniformity. Among the tested configurations the smaller central diameter diverter showed the most favorable performance achieving a faster and more uniform descent reduced compressive force concentration and lower collision energy dissipation. These findings highlight the critical role of diverter design in regulating particle dynamics and provide theoretical guidance for optimizing shaft furnace structures to enhance the efficiency of hydrogen-based direct reduction processes.
Research on the Optimization Decision Method for Hydrogen Load Aggregators to Participate in Peak Shaving Market
Oct 2025
Publication
Zhenya Lei,
Libo Gu,
Zhen Hu and
Tao Shi
This article takes the perspective of Hydrogen Load Aggregator (HLA) to optimize the declaration strategy of peak shaving market improve the flexible regulation capability of power system and HLA economy as the research objectives and proposes an optimization strategy method for HLA to participate in peak shaving market. Firstly an improved Convolutional Neural Networks–Long Short-Term Memory (CNN-LSTM) time series prediction model is developed to address peak shaving demand uncertainty. Secondly a bidding strategy model incorporating dynamic pricing is constructed by comprehensively considering electrolyzer regulation costs market supply–demand relationships and system constraints. Thirdly a market clearing model for peak shaving markets with HLA participation is designed through analysis of capacity contribution and marginal costs among different regulation resources. Finally the capacity allocation model is designed with the goal of minimizing the total cost of peak shaving among various stakeholders within HLA and the capacity won by HLA in the peak shaving market is reasonably allocated. Simulations conducted on a Python3.12-based experimental platform demonstrate the following: the improved CNN-LSTM model exhibits strong adaptability and robustness the bidding model effectively enhances HLA market competitiveness and the clearing model reduces system operator costs by 5.64%.
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
Jun 2025
Publication
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy leveraging the unique geomechanical properties of salt formations—including low permeability self-healing capabilities and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage such as rapid injection and extraction capabilities cost-effectiveness compared to other storage methods (e.g. hydrogen storage in depleted oil and gas reservoirs aquifers and aboveground tanks) and minimal environmental impact. It also addresses critical challenges including hydrogen embrittlement microbial activity and regulatory fragmentation. Through global case studies best operational practices for risk mitigation in real-world applications are highlighted such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan Hubei Yunying and Henan Pingdingshan. By integrating technological innovation policy coordination and cross-sector collaboration salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy bridging the gap between renewable energy production and industrial decarbonization.
Economic and Environmental Assessment of Different Energy Storage Methods for Hybrid Energy Systems
Jul 2025
Publication
Due to the environmental impact of fossil fuels renewable energy such as wind and solar energy is rapidly developed. In energy systems energy storage units are important which can regulate the safe and stable operation of the power system. However different energy storage methods have different environmental and economic impacts in renewable energy systems. This paper proposed three different energy storage methods for hybrid energy systems containing different renewable energy including wind solar bioenergy and hydropower meanwhile. Based on Homer Pro software this paper compared and analyzed the economic and environmental results of different methods in the energy system through the case of a residential community in Baotou City. The result showed that (1) the use of batteries as energy storage in communities posed the lowest energy costs whose NPC was $197396 and LCOE was $0.159 consisting of 20 batteries 19.3 kW PV 6 wind turbines a 12.6 kW converter. (2) Lower fuel cell prices mean lower NPC and the increase in the Electric Load Scaled Average implied a decrease in LCOE and the increase of the NPC. (3) The use of fuel cells also had impacts on the environment such as resulting CO2 and SO2.
Grid Infrastructure and Renewables Integration for Singapore Energy Transition
Oct 2025
Publication
Considering rising environmental concerns and the energy transition towards sustainable energy Singapore’s power sector stands at a crucial juncture. This study explores the integration of grid infrastructure with both generated and imported renewable energy (RE) sources as a strategic pathway for the city-state’s energy transition to reach net-zero carbon emissions by 2050. Employing a combination of simulation modeling and data analysis for energy trading and advanced energy management technologies we examine the current and new grid infrastructure’s capacity to assimilate RE sources particularly solar photovoltaic and energy storage systems. The findings reveal that with strategic upgrades and smart grid technologies; Singapore’s grid can efficiently manage the variability and intermittency of RE sources. This integration is pivotal in achieving a higher penetration of renewables as well as contributing significantly to Singapore’s commitment to the Paris Agreement and sustainable development goals. While the Singapore’s power system has links to the Malay Peninsula the planned ASEAN regional interconnection might alter the grid operation in Singapore and possibly make Singapore a new green energy hub. The study also highlights the key challenges and opportunities associated with cross-border energy trade with ASEAN countries including the need for harmonized regulatory frameworks and incentives to foster public–private partnerships. The insights from this study could guide policymakers industry stakeholders and researchers offering a roadmap for a sustainable energy transition in Singapore towards meeting its 2050 carbon emission goals.
Optimal Configuration of Hydrogen Energy Storage Systems Considering the Operational Efficiency Characteristics of Multi-Stack Electrolyzers
Sep 2025
Publication
Enhancing the economics of microgrid systems and achieving a balance between energy supply and demand are critical challenges in capacity allocation research. Existing studies often neglect the optimization of electrolyzer efficiency and multi-stack operation leading to inaccurate assessments of system benefits. This paper proposes a capacity allocation model for wind-PV-hydrogen integrated microgrid systems that incorporates hydrogen production efficiency optimization. This paper analyzes the relationship between the operating efficiency of the electrolyzer and the output power regulates power generation-load mismatches through a renewable energy optimization model and establishes a double-layer optimal configuration framework. The inner layer optimizes electrolyzer power allocation across periods to maximize operational efficiency while the outer layer determines configuration to maximize daily system revenue. Based on the data from a demonstration project in Jiangsu Province China a case study is conducted to verify that the proposed method can improve system benefits and reduce hydrogen production costs.
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
Sep 2025
Publication
As a clean energy carrier hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa) greater soil porosity and larger particle sizes while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderateporosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure establishing robust risk quantification frameworks and developing effective early-warning systems thereby facilitating the practical implementation of hydrogen energy systems.
Efficiently Coupling Water Electrolysis with Solar PV for Green Hydrogen Production
Aug 2025
Publication
Solar-driven water electrolysis has emerged as a prominent technology for the production of green hydrogen facilitated by advancements in both water electrolyzers and solar cells. Nevertheless the majority of integrated solar-to-hydrogen systems still struggle to exceed 20% efficiency particularly in large-scale applications. This limitation arises from suboptimal coupling methodologies and system-level inefficiencies that have rarely been analyzed. To address these challenges this study investigates the fundamental principles of solar hydrogen production and examines key energy losses in photovoltaic-electrolyzer systems. Subsequently it systematically discusses optimization strategies across three dimensions: (1) enhancing photovoltaic (PV) system output under variable irradiance (2) tailoring electrocatalysts and electrolyzer architectures for high-performance operation and (3) minimizing coupling losses through voltage-matching technologies and energy storage devices. Finally we review existing large-scale solar hydrogen infrastructure and propose strategies to overcome barriers related to cost durability and scalability. By integrating material innovation with system engineering this work offers insights to advance solar-powered electrolysis toward industrial applications.
Liquid Hydrogen Application for Aero-Engine More-Electrical System: Current Status, Challenges and Future Prospects
Mar 2025
Publication
The integration of more-electric technologies into aero-engines has revolutionized their multi-power architectures substantially improving system maintainability and operational reliability. This advancement has established more-electric systems as a cornerstone of modern aerospace electrification research. Concurrently liquid hydrogen (LH2) emerges as a transformative solution for next-generation power generation systems particularly in enabling the transition from 100 kW to megawatt-class propulsion systems. Beyond its superior energy density LH2 demonstrates dual functionality in thermal management: it serves as both an efficient coolant for power electronics (e.g. controllers) and a cryogenic source for superconducting motor applications. This study systematically investigates the electrification pathway for LH2-fueled aero-engine multi-electric systems. First we delineate the technical framework elucidating its architectural characteristics and associated challenges. Subsequently we conduct a comprehensive analysis of three critical subsystems including LH2 storage and delivery systems cryogenic cooling systems for superconducting motors and Thermal management systems for high-power electronics. Finally we synthesize current research progress and propose strategic directions to accelerate the development of LH2-powered more-electric aero-engines addressing both technical bottlenecks and future implementation scenarios.
A Critical Review of China's Hydrogen Supply Chain and Equipment
Sep 2025
Publication
China’s dual-carbon goals have positioned hydrogen as a central pillar of its energy transition. This review examines the recent development of China’s hydrogen supply chain with particular focus on manufacturing technologies for alkaline electrolysers high-pressure cylinders and diaphragm compressors. In 2024 China produced 36.5 million tons of hydrogen of which 77 % was grey and only 1 % derived from electrolysis. Storage and transportation account for nearly 30 % of end-use costs while reliance on imported compressors increases refuelling station expenses by approximately 40 %. We identify key bottlenecks including limited electrolyser efficiency the high cost of carbon fibres for Type III/IV cylinders and insufficient domestic capacity for highreliability compressors. To address these challenges targeted advances are proposed: membrane materials with engineered hydrophilicity advanced surface modifications and hydrophilic inhibitors; liner design incorporating grooved-liner braided layers with double-fibre configurations; and a three-layer diaphragm compressor architecture. By consolidating fragmented studies this review provides the integrated manufacturing perspective on China’s hydrogen supply chain offering both scientific insights and practical guidance for accelerating costeffective large-scale low-carbon hydrogen deployment.
The Trans-critical Process Control of Hydrogen Based on a Flow Distribution Method for Enhancement of Heat Transfer
Aug 2025
Publication
The heat transfer performance of the thermal management system plays a crucial role in the hydrogen-powered aviation engine cycle. As an exceptional fuel the thermophysical parameters of hydrogen change drastically with temperature in the trans-critical state. While previous studies on heat transfer enhancement mainly focused on changing the geometrical structure few studies have been conducted on realizing heat transfer enhancement based on the properties of the fluid itself. Utilizing the drastic changes in thermophysical parameters of hydrogen in the trans-critical state to achieve heat transfer enhancement could greatly contribute to the thermal management system of the hydrogen-powered cycle. In this study a trans-critical process control method for heat transfer enhancement based on multidirectional impact flow distribution is proposed. The distributions and variation patterns of temperature density specific heat capacity and equivalent thermal conductivity along the flow directions were investigated the flow and heat transfer performance of the channel optimized by the proposed method was numerically simulated and the control of the trans-critical process and the mechanism of heat transfer enhancement were analyzed. The effects of the key design parameters such as flow distribution ratio number and spacing of gaps on the flow and heat transfer performance of the heat transfer unit were comparatively analyzed by taking various factors into account and finally a relatively optimal combination of key design parameters was obtained.
Numerical Investigation on the Diffusion and Ventilation Characteristics of Hydrogen-Blended Natural Gas Leakage in Indoor Spaces
Oct 2025
Publication
The blending of hydrogen significantly impacts the diffusion and safety characteristics of natural gas within indoor environments. This study employs ANSYS Fluent 2021 R1 to numerically investigate the diffusion and ventilation characteristics of hydrogen-blended natural gas (HBNG) leakage in indoor spaces. A physical and mathematical model of gas leakage from pipelines is established to study hazardous areas flammable regions ventilation characteristics alarm response times safe ventilation rates and the concentration distribution of leaked gas. The effects of hydrogen blending ratio (HBR) ventilation conditions and space dimensions on leakage diffusion and safety are analyzed. Results indicate that HBNG leakage forms vertical concentration stratification in indoor spaces with ventilation height being negatively correlated with gas concentration and flammable regions. In the indoor space conditions of this study by improving ventilation conditions the hazardous area can be reduced by up to 92.67%. Increasing HBR substantially expands risk zones—with pure hydrogen producing risk volumes over five times greater than natural gas. Mechanical ventilation significantly enhances indoor safety. Safe ventilation rates escalate with hydrogen content providing quantitative safety criteria for HBNG implementation. The results underscore the critical influence of HBR and ventilation strategy on risk assessment providing essential insights for the safe indoor deployment of HBNG.
Study on the Thermodynamic Behavior of Large Volume Liquid Hydrogen Bottle Under the Coupling of Different Motion States and Operational Parameters
Oct 2025
Publication
To investigate the variations in the thermodynamic behavior of large-volume liquid hydrogen tanks under different influencing factors a numerical model for liquid hydrogen tanks was developed. The changes in thermodynamic behavior in vehicle-mounted liquid hydrogen bottles under different motion states different operational pressures and different insulation thicknesses and their mutual coupling scenarios were studied. The results show that the movement makes the phase state in the liquid hydrogen bottle more uniform the pressure drop rate faster and the temperature lower: the heating rate in the liquid hydrogen bottle at 0.85 MPa operational pressure is lower than that at 0.5 MPa and 1.2 MPa. When the operational pressure is coupled with the motion state the influence of the motion state on the thermodynamic behavior of the fluid is dominant: the temperature near the wall rises rapidly. The temperature near the tank wall rises rapidly; however as the thickness of the insulation layer increases both the heating rate inside the liquid hydrogen tank and the temperature difference within the tank gradually tend to stabilize and become uniform.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
A Comprehensive Review of Green Hydrogen Technology: Electrolysis Methods, Topologies and Control Strategies, Applications
Oct 2025
Publication
As a pivotal clean energy carrier for achieving carbon neutrality green hydrogen technology has attracted growing global attention. This review systematically examines four mainstream water electrolysis technologies—alkaline electrolysis proton exchange membrane electrolysis solid oxide electrolysis and anion exchange membrane electrolysis—analyzing their fundamental principles material challenges and development trends. It further classifies and compares power electronic converter topologies including non-isolated and isolated DC–DC converters as well as AC–DC converter architectures and summarizes advanced control strategies such as dynamic power regulation and fault-tolerant operation aimed at enhancing system efficiency and stability. A holistic “electrolyzer–power converter–control strategy” integration framework is proposed to provide tailored technological solutions for diverse application scenarios. Finally the challenges and future prospects of green hydrogen across the energy transportation and industrial sectors are discussed underscoring its potential to accelerate the global transition toward a sustainable low-carbon energy system.
No more items...