Germany
Sequential System for Hydrogen and Methane Production from Sucrose Wastewater: Effects of Substrate Concentration and Addition of FE2+ Ions
Oct 2025
Publication
A two-stage system is used for hydrogen (H2) and methane (CH4) production from sucrose wastewater. The H2- producing reactor is operated at pH temperature (T) and hydraulic retention time (HRT) of 5.5 35 ◦C 24 h respectively. While operating conditions of 7–8 pH 35 ◦C T and 144 h HRT are used to conduct the CH4 production stage. The effects of two different parameters as sucrose concentration (5 10 and 20 g/L) and addition of ferrous ions (60 and 120 mg/L) are investigated. Both H2 and CH4 productions are increased at high sucrose concentrations. However the optimum H2 and CH4 yields of 163.2 mL-H2/g-sucrose and 211.8 mL-CH4/g-TVS are obtained at 5 g-sucrose/L. At 5 g-sucrose/L addition of Fe2+ increases the H2 yield to 192.5 and 176.2 mLH2/g-sucrose corresponding to 60 and 120 mg-Fe2+/L respectively. Higher removal efficiencies and total energy recovery are measured using the two-stage system than the single-stage reactor.
Comprehensive Experimental Assessment of NOx Emissions in Swirling Diffusion Flames of Natural Gas-hydrogen Blends
Oct 2025
Publication
In the transformation process from fossil-fuel based to carbon-neutral combustion full or partial replacement of natural gas with hydrogen is considered in numerous industrial applications. As hydrogen flames yield significantly higher NOX emissions than natural gas flames understanding what factors influence these emissions in flames of natural gas/hydrogen blends is crucial for the retrofitting process. Our work is concerned with the simplest form of industrial retrofitting where hydrogen is injected into the natural gas line without any modifications to the burner construction while keeping the burner power constant. We provide quantifications of NOX emissions with respect to changes in hydrogen content (pure natural gas to 100% hydrogen) swirl number (S=0.6 to S=1.4) excess air ratio ( = 1 to =4.5) and air preheat (ambient air to 300 ◦C). The changes were determined in small steps and over a large range. The emission data is to be used in industrial CFD for both validation and tuning therefore Laser Doppler Velocimetry was used for precise determination of the burner inlet conditions. Key findings of the investigation include that for hydrogen flames the NOX emission index [mg/kWh] is 1.2 to 3 times larger than for pure natural gas flames at similar firing conditions. The steepest increase in NOX emissions occurs above 75% volume fraction of hydrogen in the fuel. For natural gas flames NOX emissions peak at 1.3 to 1.4 excess air while the maximum for hydrogen and natural gas/hydrogen blends lays at =1.6. NOX emissions decrease slightly as the swirl number increases but this effect is minor in comparison to the effects of hydrogen content excess air ratio and air temperature.
Method for Multi-criteria and Mission-specific Component Dimensioning for Heavy-duty Fuel Cell Trucks
May 2025
Publication
Heavy-duty fuel cell trucks are a promising approach to reduce the CO2 emissions of logistic fleets. Due to their higher powertrain energy density in comparison to battery-electric trucks they are especially suited for long-haul applications while transporting high payloads. Despite these great advantages the fleet integration of such vehicles is made difficult due to high costs and limited performance in thermally critical environmental conditions. These challenges are addressed in the European Union (EU) funded project ESCALATE which aims to demonstrate high-efficiency zero-emission heavy-duty vehicle (zHDV) powertrains that provide a range of 800 km without refueling or recharging. Powertrain components and their corresponding thermal components account for a large part of the production costs. For vehicle users higher costs are only acceptable if a significantly higher benefit can be achieved. Therefore it is important to size these components for the actual vehicle mission to avoid oversizing. In this paper an optimization method which determines the optimum component sizes for a given mission scenario under consideration of multiple criteria (e.g. costs performance and range) is presented.
Investigation on Cooling Effect of Water Sprays on Tunnel Fires of Hydrogen
Sep 2025
Publication
As one of the most promising renewable green energies hydrogen power is a popularly accepted option to drive automobiles. Commercial application of fuel cell vehicles has been started since 2015. More and more hydrogen safety concerns have been considered for years. Tunnels are an important part of traffic infrastructure with a mostly confined feature. A hydrogen leak followed possibly by a hydrogen fire is a potential accident scenario which can be triggered trivially by a car accident while hydrogen-powered vehicles operate in a tunnel. Water spray is recommended traditionally as a mitigation measure against tunnel fires. The interaction between water spray and hydrogen fire is studied by way of numerical simulations. By using the computer program of Fire Dynamics Simulator (FDS) tunnel fires of released hydrogen in different scales are simulated coupled with water droplet injections featured in different droplet sizes or varying mass flow rates. The cooling effect of spray on hot gases of hydrogen fires is apparently observed in the simulations. However in some circumstances the turbulence intensified by the water injection can prompt hydrogen combustion which is a negative side effect of the spray.
A Comprehensive Review of Sustainable Energy Systems in the Context of the German Energy Transition Part 2: Renewable Energy and Storage Technologies
Sep 2025
Publication
As a continuation of part 1 which examined the development status and system foundations of sustainable energy systems (SES) in the context of German energy transition this paper provides a comprehensive review of the core technologies enabling the development of SES. It covers recent advances in photovoltaic (PV) wind energy geo‑ thermal energy hydrogen and energy storage. Key trends include the evolution of high-efficiency solar and wind technologies intelligent control systems sector coupling through hydrogen integration and the diversification of electrochemical and mechanical storage solutions. Together these innovations are fostering a more flexible resil‑ ient and low-carbon energy infrastructure. The review further highlights the importance of system-level integration by linking generation conversion and storage to address the intermittency of renewable energy and support longterm decarbonization goals.
Model Predictive Supervisory Control for Multi-stack Electrolyzers Using Multilinear Modeling
Oct 2025
Publication
Offshore green hydrogen production lacks of flexible and scalable supervisory control approaches for multistack electrolyzers raising the need for extendable and high-performance solutions. This work presents a two-stage nonlinear model predictive control (MPC) method. First an MPC stage generates a discrete on-off electrolyzer switching decision through algebraic relaxation of a Boolean signal. The second MPC stage receives the stack’s on-off operation decision and optimizes hydrogen production. This is a novel approach for solving a mixed-integer nonlinear program (MINP) in multi-stack electrolyzer control applications. In order to realize the MPC the advantages of the implicit multilinear time-invariant (iMTI) model class are exploited for the first time for proton exchange membrane (PEM) electrolyzer models. A modular flexible and scalable framework in MATLAB is built. The tensor based iMTI model in canonical polyadic (CP) decomposed form breaks the curse of dimensionality and enables effective model composition for electrolyzers. Simulation results show an appropriate multilinear model representation of the nonlinear system dynamics in the operation region. A sensitivity analysis identified three numeric factors as decisive for the effectiveness of the MPC approach. The classic rule-based control methods Daisy Chain and Equal serve as reference. Over two weeks and under a wind power input profile the MPC strategy performs better regarding the objective of hydrogen production compared to the Daisy Chain (4.60 %) and Equal (0.43 %) power distribution controllers. As a side effect of the optimization a convergence of the degradation states is observed.
Magnetically Induced Convection Enhances Water Electrolysis in Microgravity
Aug 2025
Publication
Since the early days of space exploration the efficient production of oxygen and hydrogen via water electrolysis has been a central task for regenerative life-support systems. Water electrolysers are however challenged by the near-absence of buoyancy in microgravity resulting in hindered gas bubble detachment from electrodes and diminished electrolysis efficiencies. Here we show that a commercial neodymium magnet enhances water electrolysis with current density improvements of up to 240% in microgravity by exploiting the magnetic polarization of the electrolyte and the magnetohydrodynamic force. We demonstrate that these interactions enhance gas bubble detachment and displacement through magnetic convection and achieve passive gas–liquid phase separation. Two model magnetoelectrolytic cells a proton-exchange membrane electrolyser and a magnetohydrodynamic drive were designed to leverage these forces and produce oxygen and hydrogen at near-terrestrial efficiencies in microgravity. Overall this work highlights achievable lightweight low-maintenance and energy-efficient phase separation and electrolyser technologies to support future human spaceflight architectures.
A Game Theory Approach in Hydrogen Supply Chain Resilience: Focus on Pricing, Sourcing, and Transmission Security
Jun 2025
Publication
This study examines the pricing and assesses resilience methods in hydrogen supply chains by thoroughly analyzing two main disruption scenarios. The model examines a scenario in which a hydrogen production company depends on a Renewable Power plant (RP) for its electricity supply. Ensuring a steady and efficient hydrogen supply chain is crucial but outages at renewable power sources provide substantial obstacles to sustainability and operational continuity. Therefore in the event of disruptions at the RP the company has two options for maintaining resilience: either sourcing electricity from a Fossil fuel Power plant (FP) through a grid network to continue hydrogen production or purchasing hydrogen directly from another company and utilizing third-party transportation for delivery. Using a game theoretic approach we examine how different methods affect demand satisfaction cost implications and environmental sustainability. The study employs sensitivity analysis to evaluate the impact of different disruption probabilities on each scenario. In addition a unique sensitivity analysis is performed to examine the resilience of transmission security to withstand disruptions. This study evaluates how investments in security measures affect the strength and stability of the supply chain in various scenarios of disruption. Our research suggests that the first scenario offers greater reliability and cost-effectiveness along with a higher resilience rate compared to the second scenario. Furthermore the examination of the environmental impact shows that the first scenario has a smaller amount of CO2 emissions per kg of hydrogen. This study offers important insights for supply chain managers to optimize resilience measures hence improving reliability reducing costs and minimizing environmental effects.
Working with Uncertainty in Life cycle Costing: New Approach Applied to the Case Study on Proton Exchange Membrane Water Electrolysis
Jul 2025
Publication
Hydrogen recognized as a critical energy source requires green production methods such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility but traditional LCC analyses often provide a single cost outcome which limits their applicability across diverse regional contexts. To address these challenges a Python-based tool is developed in this paper integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data producing a range of outcomes rather than a single deterministic result thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC accounting for 95% of the variance in LCC while iridium membrane materials and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
Green Energy and Steel Imports Reduce Europe's Net-zero Infrastructure Needs
Jun 2025
Publication
Importing renewable energy to Europe may offer many potential benefits including reduced energy costs lower pressure on infrastructure development and less land use within Europe. However open questions remain: on the achievable cost reductions how much should be imported whether the energy vector should be electricity hydrogen or derivatives like ammonia or steel and their impact on Europe’s infrastructure needs. This study integrates a global energy supply chain model with a European energy system model to explore net-zero emission scenarios with varying import volumes costs and vectors. We find system cost reductions of 1-10% within import cost variations of ± 20% with diminishing returns for larger import volumes and a preference for methanol steel and hydrogen imports. Keeping some domestic power-to-X production is beneficial for integrating variable renewables leveraging local carbon sources and power-to-X waste heat. Our findings highlight the need for coordinating import strategies with infrastructure policy and reveal maneuvering space for incorporating non-cost decision factors.
Country Risk Impacts on Export Costs of Green Hydrogen and its Synthetic Downstream Products from the Middle East and North Africa
May 2025
Publication
Green hydrogen produced from renewable energy sources such as wind and solar is increasingly recognized as a critical enabler of the global energy transition and the decarbonization of industrial and transport sectors. The successful adoption of green hydrogen and its derivatives is closely linked to production costs which can vary substantially between countries depending not only on resource potential but also on country-specific financing conditions. These differences arise from country-specific risk factors that affect the costs of capital ultimately influencing investment decisions. However comprehensive assessments that integrate these risks with future cost projections for renewable energy green hydrogen and its synthetic downstream products are lacking. Using the Middle East and North Africa (MENA) as an example this study introduces a novel approach that allows to incorporate mainly qualitative country-specific investment risks into quantitative analyses such as costpotential and energy modelling. Our methodology calculates weighted average costs of capital (WACC) for 17 MENA countries under different risk scenarios providing a more nuanced assessment compared to traditional models that use uniform cost of capital assumptions. The results indicate significant variations in WACC such as between 4.67% in the United Arab Emirates and 24.84% in Yemen or Syria in the business-as-usual scenario. The incorporation of country-specific capital cost scenarios in quantitative analysis is demonstrated by modelling the cost-potential of Fischer-Tropsch (FT) fuels. The results show that countryspecific investment risks significantly impact costs. For instance by 2050 the starting LCOFs in high-risk scenarios can be up to 180% higher than in lowerrisk contexts. This underlines that while renewable energy potential and its cost are important it are the country-specific risk factors—captured through WACC—that have a greater influence in determining the competitiveness of exports and consequently the overall development of the renewable energy green hydrogen and synthetic fuel sectors.
Synergies Between Green Hydrogen and Renewable Energy in South Africa
Aug 2025
Publication
South Africa has excellent conditions for renewable energy generation making it well placed to produce green hydrogen for both domestic use and export. In building a green hydrogen economy around export markets it will face competition from countries with equivalent or better resources and/or that are located closer to export markets (e.g. in North Africa and the Middle East) or have lower capital costs (developed markets like Australia and Canada). South Africa however has an extensive energy system with unserved electricity demand. The ability to trade electricity with the national grid (feeding into the grid during times of peak dedicated renewable energy supply and extracting from the grid during times of low dedicated renewable energy availability) could reduce the cost of producing green hydrogen by as much as 10–25 %. This paper explores the opportunity for South African green hydrogen producers presented by the electricity supply crisis that has been ongoing since 2007. It highlights the potential for a mutually reinforcing growth cycle between renewable energy and green hydrogen to be established which will contribute not only to the mitigation of greenhouse gas emissions but to the local economy and broader society.
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
Oct 2025
Publication
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater being naturally available and minimally treated presents a potential sustainable alternative. In this work a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater in some cases yielded comparable or marginally superior efficiency compared to deionized water attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation.
A Comparative Study of Alternative Polymer Binders for the Hydrogen Evolution Reaction
Aug 2025
Publication
Given the economic industrial and environmental value of green dihydrogen (H2) optimization of water electrolysis as a means of producing H2 is essential. Binders are a crucial component of electrocatalysts yet they remain largely underdeveloped with a significant lack of standardization in the field. Therefore targeted research into the development of alternative binder systems is essential for advancing performance and consistency. Binders essentially act as the key to regulating the electrode (support)–catalyst–electrolyte interfacial junctions and contribute to the overall reactivity of the electrocatalyst assembly. Therefore alternative binders were explored with a focus on cost efficiency and environmental compatibility striving to achieve desirable activity and stability. Herein the alkaline hydrogen evolution reaction (HER) was investigated and the sluggish water dissociation step was targeted. Controlled hydrophilic poly(vinyl alcohol)-based hydrogel binders were designed for this application. Three hydrogel binders were evaluated without incorporated electrocatalysts namely PVA145 PVA145-blend-bPEI1.8 and PVA145-blend-PPy. Interestingly the study revealed that the hydrophilicity of the binders exhibited an enhancing effect on the observed activity resulting in improved performance compared to the commercial binder Nafion™. Notably the PVA145 system stands out with an overpotential of 224 mV at−10 mA·cm−2 (geometric) in 1.0 M KOH compared to the 238 mV exhibited by Nafion™. Inclusion of Pt as active material in PVA145 as binder exhibited a synergistic increase in performance achieving a mass activity of 1.174 A.cm−2.mg−1 Pt in comparison to Nafion™’s 0.344 A.cm−2.mg−1 Pt measured at−150 mV vs RHE. Our research aimed to contribute to the development of cost-effective and efficient binder systems stressing the necessity to challenge the dominance of the commercially available binders.
Process Integration and Exergy-based Assessment of High-temperature Solid Oxide Electrolysis Configurations
Sep 2025
Publication
Solid oxide electrolysis (SOEL) is considered an efficient option for largely emission-free hydrogen production and thus for supporting the decarbonization of the process industry. The thermodynamic advantages of high-temperature operation can be utilized particularly when heat integration from subsequent processes is realized. As the produced hydrogen is usually required at a higher pressure level the operating pressure of the electrolysis is a relevant design parameter. The study compares pressurized and near-atmospheric designs of 126 MW SOEL systems with and without the integration of process heat from a downstream ammonia synthesis and the inefficiencies that occur in the processes. Furthermore process improvements by sweep-air utilization are investigated. Pinch analysis is applied to determine the potential of internal heat recovery and the minimum external heating and cooling demand. It is shown that pressurized SOEL operation does not necessarily decrease the overall power consumption for compression due to the high power requirement of the sweep-air compressor. The exergetic efficiencies of the standalone SOEL processes achieve similar values of = 81 %. Results further show that integrating the heat of reaction from ammonia synthesis can replace almost the entire electrically supplied thermal energy thereby improving the overall exergetic efficiency by up to 3.5 percentage points. However the exergetic efficiency strongly depends on the applied air ratio. The highest exergetic efficiency of 86 % can be achieved by employing sweep-air utilization with an expander. The results demonstrate that integrating downstream process heat and applying sweep-air utilization can significantly enhance overall efficiency and thus reduce external energy requirements.
Increasing Public Acceptance of Fuel Cell Vehicles in Germany: A Perspective on Pioneer Users
Jun 2025
Publication
Fuel cell vehicles (FCVs) represent an intriguing alternative to battery electric vehicles (BEVs). While the acceptance of BEVs has been widely discussed acceptance-based recommendations for promoting adoption of FCVs remain ambiguous. This paper aims to improve our understanding by reporting results from a pioneer study based on the standardized Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). The sample consists of n1 = 258 registered customers of H2mobility in Germany. For effect control another n2 = 294 participant sample was drawn from the baseline population. Data were analyzed using SmartPLS 4 and importance-performance mapping (IPMA). Results demonstrate that FCV acceptance primarily relies on Perceived Usefulness Perceived Conditions and Normative Influence while surprisingly hypotheses involving Perceived Risk and Green Attitude are rejected. Finally a discussion reveals ways to increase the level of public acceptance. Three practical strategies emerge. For future acceptance analyses the authors suggest incorporating the young concept of ‘societal readiness’.
Alternative Fuels in Aero Engine Performance Calculations
Oct 2025
Publication
This paper presents a method for gas turbine performance calculations with alternative fuels with a particular focus on their use in aircraft engines. The effects of various alternative aviation fuels on fuel consumption CO2 emissions and contrail formation are examined in a comparative study. We use the GasTurb performance software and calculate heat release and hot section gas properties using a chemical equilibrium solver. Fuels with complex compositions are included in the calculation via surrogates of a limited number of known species that mimic the relevant properties of the real fuel. An automated method is used for the fuel surrogate formulation. We compare the results of this rigorous approach with the simplified approach of calculating the heat release using an alternative fuel’s heating value while still using the gas properties of conventional Jet A-1. The results show that the latter approach systematically overpredicts fuel consumption by up to 0.2% for aromaticsfree synthetic kerosene (e.g. “biofuels”). Overall aircraft engines running on alternative fuels tend to be more fuel efficient due to their often higher hydrogen contents and thus fuel heating values. We find reductions in fuel consumption of up to 2.8% during cruise when using aromatics-free synthetic kerosene. We further assess how alternative fuels affect contrail formation based on the Schmidt-Appleman criterion. Contrails can form 200 m lower under cruise conditions when burning aromatics-free synthetic kerosene instead of Jet A-1 with identical thrust requirements and under the same atmospheric conditions mainly due to their higher hydrogen content. In summary we present a flexible yet easy-to-use method for studying fuel effects in performance calculations that avoids small but systematic errors by rigorously calculating the heat release and hot section gas properties for each fuel.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Catalytic Hydrogen Combustion as Heat Source for the Dehydrogenation of Liquid Organic Hydrogen Carriers using a Novel Compact Autothermal Reactor
Sep 2025
Publication
The experimental performance of an autothermal hydrogen release unit comprising a perhydro benzyltoluene (H12-BT) dehydrogenation chamber and a catalytic hydrogen combustion (CHC) chamber in thermal contact is discussed. In detail the applied set-up comprised a multi-tubular CHC heating based on seven parallel tubes with the reactor shell containing a commercial dehydrogenation catalyst. In this way the CHC heated the endothermal LOHC dehydrogenation using a part of the hydrogen generated in the dehydrogenation. The proposed heating concept for autothermal LOHC dehydrogenation offers several advantages over state-of-the-art heating concepts including minimized space consumption high efficiency and zero NOx emissions. During performance tests the process reached a minimum hydrogen combustion fraction of 37 % while the minimum heat requirement for the dehydrogenation reaction for industrial scale plants is 33 %. The reactor orientation (vertical vs horizontal) and the flow configuration (counter-current vs. co-current) showed very little influence on the performance demonstrating the robustness of the proposed reactor design.
No more items...