Germany
Design of Fuel Cell Systems for Aviation: Representative Mission Profiles and Sensitivity Analyses
Apr 2019
Publication
The global transition to a clean and sustainable energy infrastructure does not stop at aviation. The European Commission defined a set of environmental goals for the “Flight Path 2050”: 75% CO2 reduction 90% NOx reduction and 65% perceived noise reduction. Hydrogen as an energy carrier fulfills these needs while it would also offer a tenable and flexible solution for intermittent large-scale energy storage for renewable energy networks. If hydrogen is used as an energy carrier there is no better device than a fuel cell to convert its stored chemical energy. In order to design fuel cell systems for passenger aircraft it is necessary to specify the requirements that the system has to fulfill. In this paper a statistical approach to analyze these requirements is presented which accounts for variations in the flight mission profile. Starting from a subset of flight data within the desired class (e.g. mid-range inter-European flights) a stochastic model of the random mission profile is inferred. This model allows for subsequent predictions under uncertainty as part of the aircraft design process. By using Monte Carlo-based sampling of flight mission profiles the range of necessary component sizes as well as optimal degrees of hybridization with a battery is explored and design options are evaluated. Furthermore Monte Carlo-based sensitivity analysis of performance parameters explores the potential of future technological developments. Results suggest that the improvement of the specific power of the fuel cell is the deciding factor for lowering the energy system mass. The specific energy of the battery has a low influence but acts in conjunction with the specific power of the fuel cell.
Electrofuels from Excess Renewable Electricity at High Variable Renewable Shares: Cost, Greenhouse Gas Abatement, Carbon Use and Competition
Nov 2020
Publication
Increasing shares of variable renewable electricity (VRE) generation are necessary for achieving high renewable shares in all energy sectors. This results in increased excess renewable electricity (ERE) at times when supply exceeds demand. ERE can be utilized as a low-emission energy source for sector coupling through hydrogen production via electrolysis which can be used directly or combined with a carbon source to produce electrofuels. Such fuels are crucial for the transport sector where renewable alternatives are scarce. However while ERE increases with raising VRE shares carbon emissions decrease and may become a limited resource with several usage options including carbon storage (CCS). Here we perform a model based analysis for the German case until 2050 with a general analysis for regions with a high VRE reliance. Results indicate that ERE-based electrofuels could achieve a greenhouse gas (GHG) abatement of 74 MtCO2eq yearly (46% of current German transport emissions) by displacing fossil fuels at high fuel-cell electric vehicle (FCEV) shares at a cost of 250–320 V per tCO2eq. The capital expenditure of electrolysers was found not to be crucial for the cost despite low capacity factors due to variable ERE patterns. Carbon will likely become a limiting factor when aiming for stringent climate targets and renewable electricity-based hydrocarbon electrofuels replacing fossil fuels achieve up to 70% more GHG abatement than CCS. Given (1) an unsaturated demand for renewable hydrocarbon fuels (2) a saturated renewable hydrogen demand and (3) unused ERE capacities which would otherwise be curtailed we find that carbon is better used for renewable fuel production than being stored in terms of overall GHG abatement.
Aboveground Hydrogen Storage - Assessment of the Potential Market Releveance in a Carbon-Neutral European Energy System
Mar 2024
Publication
Hydrogen storage is expected to play a crucial role in the comprehensive defossilization of energy systems. In this context the focus is typically on underground hydrogen storage (e.g. in salt caverns). However aboveground storage which is independent of geological conditions and might offer other technical advantages could provide systemic benefits and thereby gain shares in the hydrogen storage market. Against this background this paper examines the market relevance of aboveground compared to underground hydrogen storage. Using the opensource energy system model and optimization framework of Europe PyPSA-Eur the influence of geological independence storage cost relations and technical storage characteristics (i.e. efficiencies) on mentioned market relevance of aboveground hydrogen storage are investigated. Further the expectable market relevance based on current cost projections for the future is assessed. The studies show that in terms of hydrogen capacities aboveground hydrogen storage plays a considerably smaller role compared to underground hydrogen storage. Even when assuming comparatively low aboveground storage cost it will not exceed 1.7% (1.9 TWhH2LHV) of total hydrogen storage capacities in a cost-optimal European energy system. Regarding the amounts of annually stored hydrogen aboveground storage could play a larger role reaching a maximum share of 32.5% (168 TWhH2 LHV a-1) of total stored hydrogen throughout Europe. However these shares are only achievable for low cost storage in particularly suited energy system supply configurations. For higher aboveground storage costs or lower efficiencies shares drop below 10% sharply. The analysis identifies some especially influential factors for achieving higher market relevance. Besides storage costs the demand-orientation of a particular aboveground storage system (e.g. hydrogen storage at demand pressure levels) plays an essential role in market relevance. Further overall efficiency can be a beneficial factor. Still current projections of future techno-economic characteristics show that aboveground hydrogen storage is too expensive or too inefficient compared to underground storage. Therefore to achieve notable market relevance rather drastic cost reductions beyond current expectations would be needed for all assessed aboveground hydrogen storage technologies.
Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
Mar 2023
Publication
Environmental emissions global warming and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand there has been significant progress in artificial intelligence machine learning and designing data-driven intelligent controllers. These techniques have found much attention within the community and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction control energy management and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve classify and compare and future trends and directions for sustainability are discussed.
Carbon Footprint Assessment of Hydrogen and Steel
Dec 2022
Publication
Hydrogen has the potential to decarbonize a variety of energy-intensive sectors including steel production. Using the life cycle assessment (LCA) methodology the state of the art is given for current hydrogen production with a focus on the hydrogen carbon footprint. Beside the state of the art the outlook on different European scenarios up to the year 2040 is presented. A case study of the transformation of steel production from coal-based towards hydrogen- and electricity-based metallurgy is presented. Direct reduction plants with integrated electric arc furnaces enable steel production which is almost exclusively based on hydrogen and electricity or rather on electricity alone if hydrogen stems from electrolysis. Thus an integrated steel site has a demand of 4.9 kWh of electric energy per kilogram of steel. The carbon footprint of steel considering a European sustainable development scenario concerning the electricity mix is 0.75 kg CO2eq/kg steel in 2040. From a novel perspective a break-even analysis is given comparing the use of natural gas and hydrogen using different electricity mixes. The results concerning hydrogen production presented in this paper can also be transferred to application fields other than steel.
Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective
Oct 2022
Publication
Green hydrogen—a carbon-free renewable fuel—has the capability to decarbonise a variety of sectors. The generation of green hydrogen is currently restricted to water electrolysers. The use of freshwater resources and critical raw materials however limits their use. Alternative water splitting methods for green hydrogen generation via photocatalysis and photoelectrocatalysis (PEC) have been explored in the past few decades; however their commercial potential still remains unexploited due to the high hydrogen generation costs. Novel PEC-based simultaneous generation of green hydrogen and wastewater treatment/high-value product production is therefore seen as an alternative to conventional water splitting. Interestingly the organic/inorganic pollutants in wastewater and biomass favourably act as electron donors and facilitate the dual-functional process of recovering green hydrogen while oxidising the organic matter. The generation of green hydrogen through the dual-functional PEC process opens up opportunities for a “circular economy”. It further enables the end-of-life commodities to be reused recycled and resourced for a better life-cycle design while being economically viable for commercialisation. This review brings together and critically analyses the recent trends towards simultaneous wastewater treatment/biomass reforming while generating hydrogen gas by employing the PEC technology. We have briefly discussed the technical challenges associated with the tandem PEC process new avenues techno-economic feasibility and future directions towards achieving net neutrality.
Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies?
Feb 2023
Publication
Power-to-X processes where renewable energy is converted into storable liquids or gases are considered to be one of the key approaches for decarbonizing energy systems and compensating for the volatility involved in generating electricity from renewable sources. In this context the production of “green” hydrogen and hydrogen-based derivatives is being discussed and tested as a possible solution for the energy-intensive industry sector in particular. Given the sharp ongoing increases in electricity and gas prices and the need for sustainable energy supplies in production systems non-energy-intensive companies should also be taken into account when considering possible utilization paths for hydrogen. This work focuses on the following three utilization paths: “hydrogen as an energy storage system that can be reconverted into electricity” “hydrogen mobility” for company vehicles and “direct hydrogen use”. These three paths are developed modeled simulated and subsequently evaluated in terms of economic and environmental viability. Different photovoltaic system configurations are set up for the tests with nominal power ratings ranging from 300 kWp to 1000 kWp. Each system is assigned an electrolyzer with a power output ranging between 200 kW and 700 kW and a fuel cell with a power output ranging between 5 kW and 75 kW. There are also additional variations in relation to the battery storage systems within these basic configurations. Furthermore a reference variant without battery storage and hydrogen technologies is simulated for each photovoltaic system size. This means that there are ultimately 16 variants to be simulated for each utilization path. The results show that these utilization paths already constitute a reasonable alternative to fossil fuels in terms of costs in variants with a suitable energy system design. For the “hydrogen as an energy storage system” path electricity production costs of between 43 and 79 ct/kWh can be achieved with the 750 kWp photovoltaic system. The “hydrogen mobility” is associated with costs of 12 to 15 ct/km while the “direct hydrogen use” path resulted in costs of 8.2 €/kg. Environmental benefits are achieved in all three paths by replacing the German electricity mix with renewable energy sources produced on site or by substituting hydrogen for fossil fuels. The results confirm that using hydrogen as a storage medium in manufacturing companies could be economically and environmentally viable. These results also form the basis for further studies e.g. on detailed operating strategies for hydrogen technologies in scenarios involving a combination of multiple utilization paths. The work also presents the simulation-based method developed in this project which can be transferred to comparable applications in further studies.
Integration of Water Electrolysis Facilities in Power Grids: A Case Study in Northern Germany
Mar 2022
Publication
This work presents a study of the effects that integration of electrolysis facilities for Power-to-X processes have on the power grid. The novel simulation setup combines a high-resolution grid optimization model and a detailed scheduling model for alkaline water electrolysis. The utilization and congestion of power lines in northern Germany is investigated by setting different installed capacities and production strategies of the electrolysis facility. For electrolysis capacities up to 300 MW (~50 ktH2/a) local impacts on the grid are observed while higher capacities cause supra-regional impacts. Thereby impacts are defined as deviations from the average line utilization greater than 5%. In addition the minimum line congestion is determined to coincide with the dailyconstrained production strategy of the electrolysis facility. Our result show a good compromise for the integrated grid-facility operation with minimum production cost and reduced impact on the grid.
System Analysis and Requirements Derivation of a Hydrogen-electric Aircraft Powertrain
Sep 2022
Publication
In contrast to sustainable aviation fuels for use in conventional combustion engines hydrogen-electric powertrains constitute a fundamentally novel approach that requires extensive effort from various engineering disciplines. A transient system analysis has been applied to a 500 kW shaft-power-class powertrain. The model was fed with high-level system requirements to gain a fundamental understanding of the interaction between sub-systems and components. Transient effects such as delays in pressure build up heat transfer and valve operation substantially impact the safe and continuous operation of the propulsion system throughout a typical mission profile which is based on the Daher TBM850. The lumped-parameters network solver provides results quickly which are used to derive requirements for subsystems and components which support their in-depth future development. E.g. heat exchanger transfer rates and pressure drop of the motor's novel hydrogen cooling system are established. Furthermore improvements to the system architecture such as a compartmentalization of the tank are identified.
Biological CO2-Methanation: An Approach to Standardization
May 2019
Publication
Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However these studies are difficult to compare because they lack a coherent nomenclature. In this article we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis we derive system parameters providing information on the methanation system its performance the biology and cost aspects. As a result three different standards are provided as a blueprint matrix for use in academia and industry applicable to both biological and catalytic methanation. Hence this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes.
Methane Pyrolysis for CO2-Free H2 Production: A Green Process to Overcome Renewable Energies Unsteadiness
Aug 2020
Publication
The Carbon2Chem project aims to convert exhaust gases from the steel industry into chemicals such as methanol to reduce CO2 emissions. Here H2 is required for the conversion of CO2 into methanol. Although much effort is put to produce H2 from renewables the use of fossil fuels especially natural gas seems to be fundamental in the short term. For this reason the development of clean technologies for the processing of natural gas with a low environmental impact has become a topic of utmost importance. In this context methane pyrolysis has received special attention to produce CO2-free H2.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
Assessing the Social Acceptance of Key Technologies for the German Energy Transition
Jan 2022
Publication
Background: The widespread use of sustainable energy technologies is a key element in the transformation of the energy system from fossil-based to zero-carbon. In line with this technology acceptance is of great importance as resistance from the public can slow down or hinder the construction of energy technology projects. The current study assesses the social acceptance of three energy technologies relevant for the German energy transition: stationary battery storage biofuel production plants and hydrogen fuel station. Methods: An online survey was conducted to examine the public’s general and local acceptance of energy technologies. Explored factors included general and local acceptance public concerns trust in relevant stakeholders and attitudes towards financial support. Results: The results indicate that general acceptance for all technologies is slightly higher than local acceptance. In addition we discuss which public concerns exist with regard to the respective technologies and how they are more strongly associated with local than general acceptance. Further we show that trust in stakeholders and attitudes towards fnancial support is relatively high across the technologies discussed. Conclusions: Taken together the study provides evidence for the existence of a “general–local” gap despite measuring general and local acceptance at the same level of specifcity using a public sample. In addition the collected data can provide stakeholders with an overview of worries that might need to be addressed when planning to implement a certain energy project.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
Methanol as a Renewable Energy Carrier: An Assessment of Production and Transportation Costs for Selected Global Locations
Jun 2021
Publication
The importing of renewable energy will be one part of the process of defossilizing the energy systems of countries and regions which are currently heavily dependent on the import of fossil-based energy carriers. This study investigates the possibility of importing renewable methanol comprised of hydrogen and carbon dioxide. Based on a methanol synthesis simulation model the net production costs of methanol are derived as a function of hydrogen and carbon dioxide expenses. These findings enable a comparison of the import costs of methanol and hydrogen. For this the hydrogen production and distribution costs for 2030 as reported in a recent study for four different origin/destination country combinations are considered. With the predicted hydrogen production costs of 1.35–2 €/kg and additional shipping costs methanol can be imported for 370–600 €/t if renewable or process-related carbon dioxide is available at costs of 100 €/t or below in the hydrogen-producing country. Compared to the current fossil market price of approximately 400 €/t renewable methanol could therefore become cost-competitive. Within the range of carbon dioxide prices of 30–100 €/t both hydrogen and methanol exhibit comparable energy-specific import costs of 18–30 €/GJ. Hence the additional costs for upgrading hydrogen to methanol are balanced out by the lower shipping costs of methanol compared to hydrogen. Lastly a comparison for producing methanol in the hydrogen’s origin or destination country indicates that carbon dioxide in the destination country must be 181–228 €/t less expensive than that in the origin country to balance out the more expensive shipping costs for hydrogen.
Determination of the Optimal Power Ratio between Electrolysis and Renewable Energy to Investigate the Effects on the Hydrogen Production Costs
Sep 2022
Publication
Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14% and 73% and for wind between 3.3% and 143% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore the procedures for planning and dimensioning of selected systems can be drastically simplified.
Study of Attenuation Effect of Water Droplets on Shockwaves from Hydrogen Explosion
Sep 2021
Publication
The increasing demand for renewable energy storage may position hydrogen as one of the major players in the future energy system. However to introduce such technology high level of safety must be offered. In particular for the accident scenarios with combustion or explosion of the unintendedly released hydrogen in partially or fully confined volumes such as e.g. road tunnel the effective countermeasures preventing or reducing the risk of equipment damages and person injuries should be established. A mitigation strategy could be the use of existing fire suppression system which can inject water as a spray. The shock waves resulted from hydrogen explosion could be weakened by the water droplets met on the shock path. In the presented work an attenuation effect of water droplets presence on the strength of the passing shock was studied. The analysis of the different attenuation mechanisms was performed and estimation of the effect of spray parameters such as droplet size and spray density on the shock wave was carried out. For the quantitative evaluation of the attenuation potential a numerical model for the COM3D combustion code was developed. The novel model for the droplet behavior accounting for the realistic correlations for the fluid (water) particle drag force linked with the corresponding droplet breakup model describing droplet atomization is presented. The model was validated against literature experimental data and was used for the blind simulations of the hydrogen test facility in KIT.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Apr 2023
Publication
The use of fossil fuels has caused many environmental issues including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP) fuzzy AHP (FAHP) and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy including natural gas coal biomass and water are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.
A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Apr 2024
Publication
Hydrogen is an emerging technology changing the context of heating with cleaner combustion than traditional fossil fuels. Studies indicate the potential to repurpose the existing natural gas infrastructure offering consumers a sustainable economically viable option in the future. The integration of hydrogen in combined heat and power systems could provide residential energy demand and reduce environmental emissions. However the widespread adoption of hydrogen will face several challenges such as carbon dioxide emissions from the current production methods and the need for infrastructure modification for transport and safety. Researchers indicated the viability of hydrogen in decarbonizing heat while some studies also challenged its long-term role in the future of heating. In this paper a comprehensive literature review is carried out by identifying the following key aspects which could impact the conclusion on the overall role of hydrogen in heat decarbonization: (i) a holistic view of the energy system considering factors such as renewable integration and system balancing; (ii) consumer-oriented approaches often overlook the broader benefits of hydrogen in emission reduction and grid stability; (iii) carbon capture and storage scalability is a key factor for large-scale production of low-emission blue hydrogen; (iv) technological improvements could increase the cost-effectiveness of hydrogen; (v) the role of hydrogen in enhancing resilience especially during extreme weather conditions raises the potential of hydrogen as a flexible asset in the energy infrastructure for future energy supply; and finally when considering the UK as a basis case (vi) incorporating factors such as the extensive gas network and unique climate conditions necessitates specific strategies.
Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication
Mar 2022
Publication
Green liquid hydrogen (LH2) could play an essential role as a zero-carbon aircraft fuel to reach long-term sustainable aviation. Excluding challenges such as electrolysis transportation and use of renewable energy in setting up hydrogen (H2) fuel infrastructure this paper investigates the interface between refueling systems and aircraft and the impacts on fuel distribution at the airport. Furthermore it provides an overview of key technology design decisions for LH2 refueling procedures and their effects on the turnaround times as well as on aircraft design. Based on a comparison to Jet A-1 refueling new LH2 refueling procedures are described and evaluated. Process steps under consideration are connecting/disconnecting purging chill-down and refueling. The actual refueling flow of LH2 is limited to a simplified Reynolds term of v · d = 2.35 m2/s. A mass flow rate of 20 kg/s is reached with an inner hose diameter of 152.4 mm. The previous and subsequent processes (without refueling) require 9 min with purging and 6 min without purging. For the assessment of impacts on LH2 aircraft operation process changes on the level of ground support equipment are compared to current procedures with Jet A-1. The technical challenges at the airport for refueling trucks as well as pipeline systems and dispensers are presented. In addition to the technological solutions explosion protection as applicable safety regulations are analyzed and the overall refueling process is validated. The thermodynamic properties of LH2 as a real compressible fluid are considered to derive implications for airport-side infrastructure. The advantages and disadvantages of a subcooled liquid are evaluated and cost impacts are elaborated. Behind the airport storage tank LH2 must be cooled to at least 19 K to prevent two-phase phenomena and a mass flow reduction during distribution. Implications on LH2 aircraft design are investigated by understanding the thermodynamic properties including calculation methods for the aircraft tank volume and problems such as cavitation and two-phase flows. In conclusion the work presented shows that LH2 refueling procedure is feasible compliant with the applicable explosion protection standards and hence does not impact the turnaround procedure. A turnaround time comparison shows that refueling with LH2 in most cases takes less time than with Jet A-1. The turnaround at the airport can be performed by a fuel truck or a pipeline dispenser system without generating direct losses i.e. venting to the atmosphere.
Aluminium Redox Cycle in Comparison to Pressurized Hydrogen for the Energy Supply of Multi-family Houses
Nov 2022
Publication
Power-to-X technologies that convert renewable electricity to chemically stored energy in “X” may provide a gaseous liquid or solid fuel that can be used in winter to provide both heat and electricity and thus replace fossil fuels that are currently used in many countries with cold winters. This contribution compares two options for power-to-X technologies for providing heat and electricity supply of buildings with high solar photovoltaic coverage at times of low solar availability. The option “compressed hydrogen” is based on water electrolysis that produces hydrogen on-site. This hydrogen is subsequently compressed and stored at high pressure (350 bar) for use in winter by a fuel cell. The option “aluminium redox-cycle” includes an inert electrode high temperature electrolysis process that is carried out at industrial scale. Produced aluminium is subseqeuntly transported to the site of use and converted to hydrogen and heat – and finally to electricity and heat - by aluminium-water reaction in combination with a fuel cell. Results of cost and LCA analysis show that the overall energetic efficiency of the compressed hydrogen process is slightly higher than for the aluminium redox cycle. However the aluminium redox-cycles needs far less on-site storage volume and is likely to become available at lower investment cost for the end user. Total annual cost of ownership and global warming potential of the two options are quite similar.
International Experience of Carbon Neutrality and Prospects of Key Technologies: Lessons for China
Feb 2023
Publication
Carbon neutrality (or climate neutrality) has been a global consensus and international experience exchange is essential. Given the differences in the degree of social development resource endowment and technological level each country should build a carbon-neutral plan based on its national conditions. Compared with other major developed countries (e.g. Germany the United States and Japan) China's carbon neutrality has much bigger challenges including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels. Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon near-zero carbon and negative carbon emissions. Technological innovations associated with coal oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed. Based on integrated analysis of international experience from the world's major developed countries in-depth knowledge of the current and future technologies and China's energy and ecological resources potential five lessons for the implementation of China's carbon neutrality are proposed: (1) transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern; (2) renewable power-to-X and large-scale underground energy storage; (3) integration of green hydrogen production storage transport and utilization; (4) construction of clean energy systems based on smart sector coupling (ENSYSCO); (5) improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China. This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
Risk Assessment and Mitigation Evaluation for Hydrogen Vehicles in Private Garages. Experiments and Modelling
Sep 2021
Publication
Governments and local authorities introduce new incentives and regulations for cleaner mobility as part of their environmental strategies to address energy challenges. Fuel cell electric vehicles (FCEVs) are becoming increasingly important and will extend beyond captive fleets reaching private users. Research on hydrogen safety issues is currently led in several projects in order to highlight and manage risks of FCEVs in confined spaces such as tunnels underground parkings repair garages etc. But what about private garages - that involve specific geometries volumes congestion ventilation? This study has been carried out in the framework of PRHyVATE JIP project which aims at better understanding hydrogen build-up and distribution in a private garage. The investigation went through different rates and modes of ventilation. As first step an HAZID (Hazard Identification) has been realized for a generic FCEV. This preliminary work allowed to select and prioritize accidental release scenarios to be explored experimentally with helium in a 40-m3 garage. Several configurations of release ventilation modes and congestion – in transient regime and at steady state – have been tested. Then analytical and numerical calculation approaches have been applied and adjusted to develop a simplified methodology. This methodology takes into account natural ventilation for assessment of hydrogen accumulation and mitigation means optimization. Finally a global risk evaluation – including ignition of a flammable hydrogen-air mixture – has been performed to account for the mostly feared events and to evaluate their consequences in a private garage. Thus preliminary recommendations good practices and safety features for safely parking FCEVs in private garages can be proposed.
Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa
Dec 2022
Publication
The rising demand for energy and the aim of moving away from fossil fuels and to low-carbon power have led many countries to move to alternative sources including solar energy wind geothermal energy biomass and hydrogen. Hydrogen is often considered a “missing link” in guaranteeing the energy transition providing storage and covering the volatility and intermittency of renewable energy generation. However due to potential injustice with regard to the distribution of risks benefits and costs (i.e. in regard to competing for land use) the large-scale deployment of hydrogen is a contested policy issue. This paper draws from a historical analysis of past energy projects to contribute to a more informed policy-making process toward a more just transition to the hydrogen economy. We perform a systematic literature review to identify relevant conflict factors that can influence the outcome of hydrogen energy transition projects in selected Economic Community of West African States countries namely Nigeria and Mali. To better address potential challenges policymakers must not only facilitate technology development access and market structures for hydrogen energy policies but also focus on energy access to affected communities. Further research should monitor hydrogen implementation with a special focus on societal impacts in producing countries.
Simulation of Hydrogen Mixing and Par Operation During Accidental Release in an LH2 Carrier Engine Room
Sep 2021
Publication
Next-generation LH2 carriers may use the boil-off gas from the cargo tanks as additional fuel for the engine. As a consequence hydrogen pipes will enter the room of the ship’s propulsion system and transport hydrogen to the main engine. The hydrogen distribution resulting from a postulated hydrogen leak inside the room of the propulsion system has been analyzed by means of Computational Fluid Dynamics (CFD). In a subsequent step simulations with passive auto-catalytic recombiners (PARs) were carried out in order to investigate if the recombiners can increase the safety margins during such accident scenarios. CFD enables a 3D prediction of the transient distribution with a high resolution allowing to identify local accumulation of hydrogen and consequently to identify optimal PAR positions as well as to demonstrate the efficiency of the PARs. The simulation of the unmitigated reference case reveals a strong natural circulation driven by the density difference of hydrogen and the incoming cold air from the ventilation system. Globally this natural circulation dilutes the hydrogen and removes a considerable amount from the room of the ship’s propulsion system via the ventilation ducts. However a hydrogen accumulation beyond the flammability limit is identified below the first ceiling above the leak position and the back-side wall of the engine room. Based on these findings suitable positions for recombiners were identified. The design objectives of the PAR system were on the one hand to provide both high instantaneous and integral removal rate and on the other hand to limit build-up of flammable clouds by means of depletion and PAR induced mixing processes. The simulations performed with three different PAR arrangements (variation of large and<br/>small PAR units at different positions) confirm that the PARs reduce efficiently the hydrogen<br/>accumulations.
Effect of Heat Transfer through the Release of Pipe on Simulations of Cryogenic Hydrogen Jet Fires and Hazard Distances
Sep 2021
Publication
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs) release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K pressure up to 2 MPa abs and release diameters up to 4 mm. Simulation results are compared against experimentally measured parameters as hydrogen mass flow rate flame length and radiative heat flux at several locations from the jet fire. The CFD model reproduces well experiments with reasonable engineering accuracy. Jet fire hazard distances established using three different criteria - temperature thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.
Hydrogen Research: Technology First, Society Second?
Jul 2021
Publication
Hydrogen futures are in the making right in front of our eyes and will determine socio-ecological path dependencies for decades to come. However expertise on the societal effects of the hydrogen transition is in its infancy. Future energy research needs to include the social sciences humanities and interdisciplinary studies: energy cultures have to be examined as well as power relations and anticipation processes since the need for (green) hydrogen is likely to require a massive expansion of renewable energy plants.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
A Study on Electrofuels in Aviation
Feb 2018
Publication
With the growth of aviation traffic and the demand for emission reduction alternative fuels like the so-called electrofuels could comprise a sustainable solution. Electrofuels are understood as those that use renewable energy for fuel synthesis and that are carbon-neutral with respect to greenhouse gas emission. In this study five potential electrofuels are discussed with respect to the potential application as aviation fuels being n-octane methanol methane hydrogen and ammonia and compared to conventional Jet A-1 fuel. Three important aspects are illuminated. Firstly the synthesis process of the electrofuel is described with its technological paths its energy efficiency and the maturity or research need of the production. Secondly the physico-chemical properties are compared with respect to specific energy energy density as well as those properties relevant to the combustion of the fuels i.e. autoignition delay time adiabatic flame temperature laminar flame speed and extinction strain rate. Results show that the physical and combustion properties significantly differ from jet fuel except for n-octane. The results describe how the different electrofuels perform with respect to important aspects such as fuel and air mass flow rates. In addition the results help determine mixture properties of the exhaust gas for each electrofuel. Thirdly a turbine configuration is investigated at a constant operating point to further analyze the drop-in potential of electrofuels in aircraft engines. It is found that electrofuels can generally substitute conventional kerosene-based fuels but have some downsides in the form of higher structural loads and potentially lower efficiencies. Finally a preliminary comparative evaluation matrix is developed. It contains specifically those fields for the different proposed electrofuels where special challenges and problematic points are seen that need more research for potential application. Synthetically-produced n-octane is seen as a potential candidate for a future electrofuel where even a drop-in capability is given. For the other fuels more issues need further research to allow the application as electrofuels in aviation. Specifically interesting could be the combination of hydrogen with ammonia in the far future; however the research is just at the beginning stage.
A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride Storage System: Modeling and Experimental Validation
Jan 2022
Publication
In this paper a gas-to-power (GtoP) system for power outages is digitally modeled and experimentally developed. The design includes a solid-state hydrogen storage system composed of TiFeMn as a hydride forming alloy (6.7 kg of alloy in five tanks) and an air-cooled fuel cell (maximum power: 1.6 kW). The hydrogen storage system is charged under room temperature and 40 bar of hydrogen pressure reaching about 110 g of hydrogen capacity. In an emergency use case of the system hydrogen is supplied to the fuel cell and the waste heat coming from the exhaust air of the fuel cell is used for the endothermic dehydrogenation reaction of the metal hydride. This GtoP system demonstrates fast stable and reliable responses providing from 149 W to 596 W under different constant as well as dynamic conditions. A comprehensive and novel simulation approach based on a network model is also applied. The developed model is validated under static and dynamic power load scenarios demonstrating excellent agreement with the experimental results.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Venting Deflagrations of Local Hydrogen-air Mixture
Oct 2015
Publication
The paper describes a lumped-parameter model for vented deflagrations of localised and layered fuel air mixtures. Theoretical model background is described to allow insight into the model development with focus on lean mixtures and overpressures significantly below 0.1 MPa for protection of low strength equipment and buildings. Phenomena leading to combustion augmentation was accounted based on conclusions of recent CFD studies. Technique to treat layered mixtures with concentration gradient is demonstrated. The model is validated against 25 vented deflagration experiments with lean non-uniform and layered hydrogen-air mixtures performed in Health and Safety Laboratory (UK) and Karlsruhe Institute of Technology (Germany).
Results of the Pre-normative Research Project PRESLHY for the Safe Use of Liquid Hydrogen
Sep 2021
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large-scale transport and storage of hydrogen with higher densities. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducted pre-normative research for the safe use of cryogenic LH2 in non-industrial settings. The central research consisted of a broad experimental program combined with analytical work modelling and simulations belonging to the three key phenomena of the accident chain: release and mixing ignition and combustion. The presented results improve the general understanding of the behavior of LH2 in accidents and provide some design guidelines and engineering tools for safer use of LH2. Recommendations for improvement of current international standards are derived.
Ab Initio Study of the Combined Effects of Alloying Elements and H on Grain Boundary Cohesion in Ferritic Steels
Mar 2019
Publication
Hydrogen enhanced decohesion is expected to play a major role in ferritic steels especially at grain boundaries. Here we address the effects of some common alloying elements C V Cr and Mn on the H segregation behaviour and the decohesion mechanism at a Σ5(310)[001] 36.9∘ grain boundary in bcc Fe using spin polarized density functional theory calculations. We find that V Cr and Mn enhance grain boundary cohesion. Furthermore all elements have an influence on the segregation energies of the interstitial elements as well as on these elements’ impact on grain boundary cohesion. V slightly promotes segregation of the cohesion enhancing element C. However none of the elements increase the cohesion enhancing effect of C and reduce the detrimental effect of H on interfacial cohesion at the same time. At an interface which is co-segregated with C H and a substitutional element C and H show only weak interaction and the highest work of separation is obtained when the substitute is Mn.
The Merit and the Context of Hydrogen Production from Water and Its Effect on Global CO2 Emission
Feb 2022
Publication
For a green economy to be possible in the near future hydrogen production from water is a sought-after alternative to fossil fuels. It is however important to put things into context with respect to global CO2 emission and the role of hydrogen in curbing it. The present world annual production of hydrogen is about 70 million metric tons of which almost 50% is used to make ammonia NH3 (that is mostly used for fertilizers) and about 15% is used for other chemicals [1]. The hydrogen produced worldwide is largely made by steam CH4 reforming (SMR) which is one of the most energy-intensive processes in the chemical industry [2]. It releases based on reaction stoichiometry 5.5 kg of CO2 per 1 kg of H2 (CH4+ 2 H2O → CO2 + 4 H2). When the process itself is taken into account in addition the production [3] becomes about 9 kg of CO2 per kg of H2 and this ratio can be as high as 12 [4]. This results in the production of about one billion tons/year of CO2. The world annual CO2 emission from fossil fuels is however much larger: it is about 36 billion tons of which roughly 25% is emitted while generating electricity and heat 20% due to transport activity and 20% from other industrial processes. Because of the link between global warming and CO2 emissions there is an increasing move towards finding alternative approaches for energy vectors and their applications.
Synthesis and Characterisation of Platinum-cobalt-manganese Ternary Alloy Catalysts Supported on Carbon Nanofibers: An Alternative Catalyst for Hydrogen Evolution Reaction
Mar 2020
Publication
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt) with a mean crystallite diameter under 10 nm were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that if pulsing current is employed compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters such as current density and pulse shape led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology structure chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1 indicating that HER takes place under the Volmer-Heyrovsky mechanismm
Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
Jan 2021
Publication
The European Union set a 2050 decarbonization target in the Paris Agreement to reduce carbon emissions by 90–95% relative to 1990 emission levels. The path toward achieving those deep decarbonization targets can take various shapes but will surely include a portfolio of economy-wide low-carbon energy technologies/options. The growth of the intermittent renewable power sources in the grid mix has helped reduce the carbon footprint of the electric power sector. Under the need for decarbonizing the electric power sector we simulated a low-carbon power system. We investigated the role of hydrogen for future electric power systems under current cost projections. The model optimizes the power generation mix economically for a given carbon constraint. The generation mix consists of intermittent renewable power sources (solar and wind) and dispatchable gas turbine and combined cycle units fuelled by natural gas with carbon capture and sequestration as well as hydrogen. We created several scenarios with battery storage options pumped hydro hydrogen storage and demand-side response (DSR). The results show that energy storage replaces power generation and pumped hydro entirely replaces battery storage under given conditions. The availability of pumped hydro storage and demand-side response reduced the total cost as well as the combination of solar photovoltaic and pumped hydro storage. Demand-side response reduces relatively costly dispatchable power generation reduces annual power generation halves the shadow carbon price and is a viable alternative to energy storage. The carbon constrain defines the generation mix and initializes the integration of hydrogen (H2). Although the model rates power to gas with hydrogen as not economically viable in this power system under the given conditions and assumptions hydrogen is important for hard-to-abate sectors and enables sector coupling in a real energy system. This study discusses the potential for hydrogen beyond this model approach and shows the differences between cost optimization models and real-world feasibility.
The Impact of Hydrogen on Mechanical Properties; A New In Situ Nanoindentation Testing Method
Feb 2019
Publication
We have designed a new method for electrochemical hydrogen charging which allows us to charge very thin coarse-grained specimens from the bottom and perform nanomechanical testing on the top. As the average grain diameter is larger than the thickness of the sample this setup allows us to efficiently evaluate the mechanical properties of multiple single crystals with similar electrochemical conditions. Another important advantage is that the top surface is not affected by corrosion by the electrolyte. The nanoindentation results show that hydrogen reduces the activation energy for homogenous dislocation nucleation by approximately 15–20% in a (001) grain. The elastic modulus also was observed to be reduced by the same amount. The hardness increased by approximately 4% as determined by load-displacement curves and residual imprint analysis.
Hydrogen-assisted Cracking of GMA Welded 960 & A Grade High-strength Steels
Jan 2020
Publication
High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas-metal arc welding process. Furthermore diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results lower critical stress (LCS) for complete fracture critical implant stress (σkrit) for crack initiation and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g LCS is 605 MPa and 817 MPa for S960QL and S960MC respectively. EI is 0.30 and 0.46 for S960QL and S960MC respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL.
Economic Optima for Buffers in Direct Reduction Steelmaking Under Increasing Shares of Renewable Hydrogen
Oct 2021
Publication
While current climate targets demand substantial reductions in greenhouse gas (GHG) emissions the potentials to further reduce carbon dioxide emissions in traditional primary steel-making are limited. One possible solution that is receiving increasing attention is the direct reduction (DR) technology operated either with renewable hydrogen (H2) from electrolysis or with conventional natural gas (NG). DR technology makes it possible to decouple steel and hydrogen production by temporarily using overcapacities to produce and store intermediary products during periods of low renewable electricity prices or by switching between H2 and NG. This paper aims to explore the impact of this decoupling on overall costs and the corresponding dimensioning of production and storage capacities. An optimization model is developed to determine the least-cost operation based on perfect-foresight. This model can determine the minimum costs for optimal production and storage capacities under various assumptions considering fluctuating H2 and NG prices and increasing H2 shares. The model is applied to a case study for Germany and covers the current situation the medium term until 2030 and the long term until 2050. Under the assumptions made the role of using direct reduced iron (DRI) storage as a buffer seems less relevant. DRI mainly serves as long-term storage for several weeks similar to usual balancing storage capacities. Storing H2 on the contrary is used for short-term fluctuations and could balance H2 demand in the hourly range until 2050. From an economic perspective DRI production using NG tends to be cheaper than using H2 in the short term and potential savings from the flexible operation with storages are small at first. However in the long term until 2050 NG and H2 could achieve similar total costs if buffers are used. Otherwise temporarily occurring electricity price spikes imply substantial increases in total costs if high shares of H2 need to be achieved.
Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers Through 2070
Mar 2020
Publication
Jeffrey Rissman,
Chris Bataille,
Eric Masanet,
Nate Aden,
William R. Morrow III,
Nan Zhou,
Neal Elliott,
Rebecca Dell,
Niko Heeren,
Brigitta Huckestein,
Joe Cresko,
Sabbie A. Miller,
Joyashree Roy,
Paul Fennell,
Betty Cremmins,
Thomas Koch Blank,
David Hone,
Ellen D. Williams,
Stephane de la Rue du Can,
Bill Sisson,
Mike Williams,
John Katzenberger,
Dallas Burtraw,
Girish Sethi,
He Ping,
David Danielson,
Hongyou Lu,
Tom Lorber,
Jens Dinkel and
Jonas Helseth
Fully decarbonizing global industry is essential to achieving climate stabilization and reaching net zero greenhouse gas emissions by 2050–2070 is necessary to limit global warming to 2 °C. This paper assembles and evaluates technical and policy interventions both on the supply side and on the demand side. It identifies measures that employed together can achieve net zero industrial emissions in the required timeframe. Key supply-side technologies include energy efficiency (especially at the system level) carbon capture electrification and zero-carbon hydrogen as a heat source and chemical feedstock. There are also promising technologies specific to each of the three top-emitting industries: cement iron & steel and chemicals & plastics. These include cement admixtures and alternative chemistries several technological routes for zero-carbon steelmaking and novel chemical catalysts and separation technologies. Crucial demand-side approaches include material-efficient design reductions in material waste substituting low-carbon for high-carbon materials and circular economy interventions (such as improving product longevity reusability ease of refurbishment and recyclability). Strategic well-designed policy can accelerate innovation and provide incentives for technology deployment. High-value policies include carbon pricing with border adjustments or other price signals; robust government support for research development and deployment; and energy efficiency or emissions standards. These core policies should be supported by labeling and government procurement of low-carbon products data collection and disclosure requirements and recycling incentives. In implementing these policies care must be taken to ensure a just transition for displaced workers and affected communities. Similarly decarbonization must complement the human and economic development of low- and middle-income countries.
Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity
May 2021
Publication
LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies (2) electricity mix in countries is rapidly changing year after year (3) the electricity mix is strongly fluctuating on an hourly and daily basis which requires time-based allocation approaches and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%) (b) in LCA a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy (c) time-based allocation rules for renewables are required to cope with periods of overproduction (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems and (e) there is an urgent need for a new LCI database based on measured emission data continuously kept up-to-date transparent and open access.
Transient Reversible Solid Oxide Cell Reactor Operation – Experimentally Validated Modeling and Analysis
Oct 2018
Publication
A reversible solid oxide cell (rSOC) reactor can operate efficiently in both electrolysis mode and in fuel cell mode. The bidirectional operability enables rSOC reactors to play a central role as an efficient energy conversion system for energy storage and sector coupling for a renewable energy driven society. A combined system for electrolysis and fuel cell operation can result in complex system configurations that should be able to switch between the two modes as quickly as possible. This can lead to temperature profiles within the reactor that can potentially lead to the failure of the reactor and eventually the system. Hence the behavior of the reactor during the mode switch should be analyzed and optimal transition strategies should be taken into account during the process system design stage. In this paper a one dimensional transient reversible solid oxide cell model was built and experimentally validated using a commercially available reactor. A simple hydrogen based system model was built employing the validated reactor model to study reactor behavior during the mode switch. The simple design leads to a system efficiency of 49% in fuel cell operation and 87% in electrolysis operation where the electrolysis process is slightly endothermic. Three transient operation strategies were studied. It is shown that the voltage response to transient operation is very fast provided the reactant flows are changed equally fast. A possible solution to ensure a safe mode switch by controlling the reactant inlet temperatures is presented. By keeping the rate of change of reactant inlet temperatures five to ten times slower than the mode switch a safe transition can be ensured.
Future Costs of Hydrogen: A Quantitative Review
Mar 2024
Publication
Hydrogen is the key energy carrier of the future. Numerous industrial processes incorporate hydrogen in their transformation towards climate neutrality. To date the high cost of producing hydrogen from renewable sources has been a major barrier to its widespread adoption. Inspired by these two aspects many researchers have published cost predictions for hydrogen. This review provides an overview of the extant literature of more than 7000 publications in the last two decades concerned with the topic. After removing articles that do not provide explicit hydrogen production cost projections for the 2020 to 2050 time horizon 89 articles remain and are analyzed in detail. The review identifies 832 cost forecast data points among these studies and categorizes the data points according to various parameters such as production region production process and publication year of the study. Through a linear regression a main trajectory for the development of hydrogen production costs can be derived. The costs of hydrogen from electrolysis are reduced on the basis of this trajectory starting from the reference 5.3 V per kg in 2020 to 4.4 V per kg in 2030 and to 2.7 V per kg in 2050. The costs for natural gas-based hydrogen are almost constant on a globally aggregated basis. There are also major regional and processrelated differences. In 2050 Asia has the lowest average costs of the regions analyzed at 1.8 V per kg and production by alkaline electrolysis with average costs of 2.0 V per kg appears to be the most costeffective electrolysis technology. Although studies show a high degree of variation it is evident from this review that the trend within certain investigation parameters is well defined. Therefore researchers and practitioners can use this review to set up further analyses that depend on future hydrogen costs.
Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany
Jul 2017
Publication
“Linking the power and transport sectors—Part 1” describes the general principle of “sector coupling” (SC) develops a working definition intended of the concept to be of utility to the international scientific community contains a literature review that provides an overview of relevant scientific papers on this topic and conducts a rudimentary analysis of the linking of the power and transport sectors on a worldwide EU and German level. The aim of this follow-on paper is to outline an approach to the modelling of SC. Therefore a study of Germany as a case study was conducted. This study assumes a high share of renewable energy sources (RES) contributing to the grid and significant proportion of fuel cell vehicles (FCVs) in the year 2050 along with a dedicated hydrogen pipeline grid to meet hydrogen demand. To construct a model of this nature the model environment “METIS” (models for energy transformation and integration systems) we developed will be described in more detail in this paper. Within this framework a detailed model of the power and transport sector in Germany will be presented in this paper and the rationale behind its assumptions described. Furthermore an intensive result analysis for the power surplus utilization of electrolysis hydrogen pipeline and economic considerations has been conducted to show the potential outcomes of modelling SC. It is hoped that this will serve as a basis for researchers to apply this framework in future to models and analysis with an international focus.
Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service
Sep 2021
Publication
For achieving Net Zero-aims hydrogen is an indispensable component probably the main component. For the usage of hydrogen a wide acceptance is necessary which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13."
Cost-optimized Design Point and Operating Strategy of Polymer Electrolyte Membrane Electrolyzers
Nov 2022
Publication
Green hydrogen is a key solution for reducing CO2 emissions in various industrial applications but high production costs continue to hinder its market penetration today. Better competitiveness is linked to lower investment costs and higher efficiency of the conversion technologies among which polymer electrolyte membrane electrolysis seems to be attractive. Although new manufacturing techniques and materials can help achieve these goals a less frequently investigated approach is the optimization of the design point and operating strategy of electrolyzers. This means in particular that the questions of how often a system should be operated and which cell voltage should be applied must be answered. As existing techno-economic models feature gaps which means that these questions cannot be adequately answered a modified model is introduced here. In this model different technical parameters are implemented and correlated to each other in order to simulate the lowest possible levelized cost of hydrogen and extract the required designs and strategies from this. In each case investigated the recommended cost-based cell voltage that should be applied to the system is surprisingly low compared to the assumptions made in previous publications. Depending on the case the cell voltage is in a range between 1.6 V and 1.8 V with an annual operation of 2000e8000 h. The wide range of results clearly indicate how individual the design and operation must be but with efficiency gains of several percent the effect of optimization will be indispensable in the future.
Thermodynamic and Ecological Preselection of Synthetic Fuel Intermediates from Biogas at Farm Sites
Jan 2020
Publication
Background: Synthetic fuels based on renewable hydrogen and CO2 are a currently highly discussed piece of the puzzle to defossilize the transport sector. In this regard CO2 can play a positive role in shaping a sustainable future. Large potentials are available as a product of biogas production however occurring in small scales and in thin spatial distributions. This work aims to evaluate suitable synthetic fuel products to be produced at farm sites.<br/>Methods: A thermodynamic analysis to assess the energetic efficiency of synthesis pathways and a qualitative assessment of product handling issues is carried out.<br/>Results: Regarding the technical and safety-related advantages in storage liquid products are the superior option for fuel production at decentralized sites. Due to the economy of scale multi-stage synthesis processes lose economic performance with rising complexity. A method was shown which covers a principle sketch of all necessary reaction separation steps and all compression and heat exchanger units. The figures showed that methanol and butanol are the most suitable candidates in contrast to OME3-5 for implementation in existing transportation and fuel systems. These results were underpin by a Gibbs energy analysis.<br/>Conclusions: As long as safety regulations are met and the farm can guarantee safe storage and transport farm-site production for all intermediates can be realized technically. Ultimately this work points out that the process must be kept as simple as possible favoring methanol production at farm site and its further processing to more complicated fuels in large units for several fuel pathways.
No more items...