Spain
Structural Health Monitoring Techniques for Damages Detection in Hydrogen Pressure Vessels
Sep 2013
Publication
Damages due to mechanical impacts on the structural integrity of pressure vessels in composite material to store compressed hydrogen can lead to disastrous failures if they are not detected and fixed on time. A wide variety of damage modes in composites such as delamination and fiber breakage introduced by impact is difficult to be detected by conventional methods. Structural Health Monitoring (SHM) provides a system with the ability to detect and interpret adverse changes in a structure like a pressure vessel. Different types of methods will be proposed for damage detection based on comparing signals to baseline recorded from the undamaged structure. Guided wave based diagnosis method is one of the most effective used techniques due to its sensitivity to small defects. The paper pretend to identify the more adequate inspection methods to classify by smart rules based in artificial intelligence the effect of an impact on the structural integrity of the pressure vessel thus improving the level of safety.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Benchmark Exercise on Risk Assessment Methods Applied to a Virtual Hydrogen Refuelling Station
Sep 2009
Publication
A benchmarking exercise on quantitative risk assessment (QRA) methodologies has been conducted within the project HyQRA under the framework of the European Network of Excellence (NoE) HySafe. The aim of the exercise was basically twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation between nine participating partners representing a broad spectrum of background in QRA culture and history and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification. In the first step a reference case was defined: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing school shops and other vulnerable objects. All partners were requested to conduct a QRA according to their usual approach and experience. Basically participants were free to define representative release cases to apply models and frequency assessments according their own methodology and to present risk according to their usual format. To enable inter-comparison a required set of results data was prescribed like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover complete documentation of assumptions base data and references was to be reported. It was not surprising that a wide range of results was obtained both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results as the paper will show. A second phase was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public. This paper presents the results and conclusions of both stages of the exercise.
Safe Processing Route for the Synthesis of MG Based Metallic Hydrides
Sep 2009
Publication
Metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Nowadays there are several methods for the storage of hydrogen and the more conventional techniques are high-pressure tanks for gaseous hydrogen and cryogenic vessels for liquid hydrogen. However there are two main drawbacks in the storage of gaseous and liquid hydrogen. First as a fuel hydrogen in the gaseous and liquid states is very combustible and the related law imposes strict regulations on its utilization storage and transportation. Secondly even under a high pressure hydrogen gas is not dense enough for compact storage. Moreover the gas storage at high pressure involves significant safety risks. Hydrogen storage in the metal hydrides does not have such deficiencies. Metal hydrides are safe and can be easily store and transported. For that reason it should be stressed that metallic hydrides represent a safe way of storing hydrogen minimising explosion and flammability risks. Among metallic hydrides one of the most promising hydrides in terms of absorbed hydrogen content is Mg2NiH4. However it is difficult to obtain Mg2Ni by the conventional melting method because of the large difference in vapour pressure and melting point between magnesium and nickel. This paper presents an alternative and safe method for obtaining such hydride: HCS (Hydriding Combustion Synthesis). This method presents some interesting advantages over its conventional counterpart: the process is carried out at lower reaction process which means safer process and the alloy stoichiometry is closer to the nominal (Mg2Ni) which allow better hydrogen absorption behaviour. The aim of this work is to investigate the formation mechanism of this compound and to study some parameters of the process.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen - A Life Cycle Assessment Approach
Jan 2022
Publication
Shipping is a very important source of pollution worldwide. In recent years numerous actions and measures have been developed trying to reduce the levels of greenhouse gases (GHG) from the marine exhaust emissions in the fight against climate change boosting the Sustainable Development Goal 13. Following this target the action of hydrogen as energy vector makes it a suitable alternative to be used as fuel constituting a very promising energy carrier for energy transition and decarbonization in maritime transport. The objective of this study is to develop an ex-ante environmental evaluation of two promising technologies for vessels propulsion a H2 Polymeric Electrolytic Membrane Fuel Cell (PEMFC) and a H2 Internal Combustion Engine (ICE) in order to determine their viability and eligibility compared to the traditional one a diesel ICE. The applied methodology follows the Life Cycle Assessment (LCA) guidelines considering a functional unit of 1 kWh of energy produced. LCA results reveal that both alternatives have great potential to promote the energy transition particularly the H2 ICE. However as technologies readiness level is quite low it was concluded that the assessment has been conducted at a very early stage so their sustainability and environmental performance may change as they become more widely developed and deployed which can be only achieved with political and stakeholder’s involvement and collaboration.
Hydrogen Transport to Fracture Sites in Metals and Alloys Multiphysics Modelling
Sep 2017
Publication
Generalised continuum model of hydrogen transport to fracture loci is developed for the purposes of analysis of the hydrogenous environment assisted fracture (HEAF). The model combines the notions of the theories of gas flow surface science and diffusion and trapping in stressed solids. Derived flux and balance equations describe the species migration across different states (gas adsorbed specie at the gas-metal interface interstitial solute in metal bulk) and a variety of corresponding sites of energy minimums along the potential relief for hydrogen in a system. The model accounts for the local kinetics of hydrogen interchange between the closest dissimilar neighbour sites and for the nonlocal interaction of hydrogen trapping in definite positions with the species wandering in their farer surroundings. In particular situations certain balance equations of the model may degenerate into equilibrium constraints as well as some terms in the generalised equations may be insignificant. A series of known theories of hydrogen transport in material-environment system can be recovered then as particular limit cases of the generalised model. Presented theory can help clarifying the advantages and limitations of particularised models so that appropriate one may be chosen for the analysis of a particular HEAF case.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
Hydrogen Assisted Fracture of 30MnB5 High Strength Steel: A Case Study
Nov 2020
Publication
When steel components fail in service due to the intervention of hydrogen assisted cracking discussion of the root cause arises. The failure is frequently blamed on component design working conditions the manufacturing process or the raw material. This work studies the influence of quench and tempering and hot-dip galvanizing on the hydrogen embrittlement behavior of a high strength steel. Slow strain rate tensile testing has been employed to assess this influence. Two sets of specimens have been tested both in air and immersed in synthetic seawater at three process steps: in the delivery condition of the raw material after heat treatment and after heat treatment plus hot-dip galvanizing. One of the specimen sets has been tested without further manipulation and the other set has been tested after applying a hydrogen effusion treatment. The outcome for this case study is that fracture risk issues only arise due to hydrogen re-embrittlement in wet service.
Safety Aspects in the Production and Separation of Hydrogen from Biomass
Sep 2011
Publication
Tecnalia is working in the development of gasification technology for the production of hydrogen from biomass. Biomass is an abundant and disperse renewable energy source that can be important for the production of hydrogen. The development of hydrogen system from biomass requires multifaceted studies on hydrogen production systems hydrogen separation methods and hydrogen safety aspects. Steam gasification of biomass produces a syngas with high hydrogen content but this syngas requires a post-treatment to clean and to separate the hydrogen. As a result of this analysis Tecnalia has defined a global process for the production cleaning enrichment and separation of hydrogen from the syngas produced from biomass gasification. But besides the technical aspects safety considerations affecting all the described processes have been identified. For that reason it is being developed a procedure to establish the technical requirements and the recommended practices to ensure the highest level of safety in the production and handing of hydrogen.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking
Jan 2022
Publication
The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes.
Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts
Jan 2022
Publication
The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change) the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system. However extending the use of hydrogen as an energy vector must still overcome challenging issues with the key issues being related to its storage. Cryogenic or pressurized storage is relatively expensive technically complex and presents important safety concerns. As a promising alternative the use of organic hydrogen carriers has been suggested in recent years. The ideal carrier will be an organic compound with a low melting point and low viscosity with a significant number of unsaturated carbon–carbon bonds in addition to being easy to hydrogenate and dehydrogenate. These properties allow us to store and transport hydrogen in infrastructures designed for liquid fuels thus facilitating the replacement of fossil fuels by hydrogen
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of the art review InsHyde activities expanded into experimental and simulation work. Dispersion experiments were performed using hydrogen and helium at the INERIS gallery facility to evaluate short and long term dispersion patterns in garage like settings. A new facility (GARAGE) was built at CEA and dispersion experiments were performed there using helium to evaluate hydrogen dispersion under highly controlled conditions. In parallel combustion experiments were performed by FZK to evaluate the maximum amount of hydrogen that could be safely ignited indoors. The combustion experiments were extended later on by KI at their test site by considering the ignition of larger amounts of hydrogen in obstructed environments outdoors. An evaluation of the performance of commercial hydrogen detectors as well as inter-lab calibration work was jointly performed by JRC INERIS and BAM. Simulation work was as intensive as the experimental work with participation from most of the partners. It included pre-test simulations validation of the available CFD codes against previously performed experiments with significant CFD code inter-comparisons as well as CFD application to investigate specific realistic scenarios. Additionally an evaluation of permeation issues was performed by VOLVO CEA NCSRD and UU by combining theoretical computational and experimental approaches with the results being presented to key automotive regulations and standards groups. Finally the InsHyde project concluded with a public document providing initial guidance on the use of hydrogen in confined spaces.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas electrochemically pre-charged and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables such as the applied current density the electrolyte composition and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Statistics, Lessons Learned and Recommendations from Analysis of HIAD 2.0 Database
Mar 2022
Publication
The manuscript firstly describes the data collection and validation process for the European Hydrogen Incidents and Accidents Database (HIAD 2.0) a public repository tool collecting systematic data on hydrogen-related incidents and near-misses. This is followed by an overview of HIAD 2.0 which currently contains 706 events. Subsequently the approaches and procedures followed by the authors to derive lessons learned and formulate recommendations from the events are described. The lessons learned have been divided into four categories including system design; system manufacturing installation and modification; human factors and emergency response. An overarching lesson learned is that minor events which occurred simultaneously could still result in serious consequences echoing James Reason's Swiss Cheese theory. Recommendations were formulated in relation to the established safety principles adapted for hydrogen by the European Hydrogen Safety Panel considering operational modes industrial sectors and human factors. This work provide an important contribution to the safety of systems involving hydrogen benefitting technical safety engineers emergency responders and emergency services. The lesson learned and the discussion derived from the statistics can also be used in training and risk assessment studies being of equal importance to promote and assist the development of sound safety culture in organisations.
No more items...