Spain
A Correlation for Turbulent Combustion Speed Accounting for Instabilities and Expansion Speed in a Hydrogen-natural Gas Spark Ignition Engine
Oct 2020
Publication
An analysis of the turbulent premixed combustion speed in an internal combustion engine using natural gas hydrogen and intermediate mixtures as fuels is carried out with different air-fuel ratios and engine speeds. The combustion speed has been calculated by means of a two-zone diagnosis thermodynamic model combined with a geometric model using a spherical flame front hypothesis. 48 operating conditions have been analyzed. At each test point the pressure record of 200 cycles has been processed to calculate the cycle averaged turbulent combustion speed for each flame front radius. An expression of turbulent combustion speed has been established as a function of two parameters: the ratio between turbulence intensity and laminar combustion speed and the second parameter the ratio between the integral spatial scale and the thickness of the laminar flame front increased by instabilities. The conclusion of this initial study is that the position of the flame front has a great influence on the expression to calculate the combustion speed. A unified correlation for all positions of the flame front has been obtained by adding one correction term based on the expansion speed as a turbulence source. This unified correlation is thus valid for all experimental conditions of fuel types air–fuel ratios engine speeds and flame front positions. The correlation can be used in quasi-dimensional predictive models to determine the heat released in an ICE.
Hydrogen Production by Wastewater Alkaline Electro-Oxidation
Aug 2024
Publication
The current work presents the electro-oxidation of olive mill and biodiesel wastewaters in an alkaline medium with the aim of hydrogen production and simultaneous reduction in the organic pollution content. The process is performed at laboratory scale in an own-design single cavity electrolyzer with graphite electrodes and no membrane. The system and the procedures to generate hydrogen under ambient conditions are described. The gas flow generated is analyzed through gas chromatography. The wastewater balance in the liquid electrolyte shows a reduction in the chemical oxygen demand (COD) pointing to a decrease in the organic content. The experimental results confirm the production of hydrogen with different purity levels and the simultaneous reduction in organic contaminants. This wastewater treatment appears as a feasible process to obtain hydrogen at ambient conditions powered with renewable energy sources resulting in a more competitive hydrogen cost.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Macroeconomic and Environmental Impacts of Two Decarbonization Options for the Dutch Steel Industry: Green Relocation Versus Green Hydrogen Imports
Jun 2025
Publication
Decarbonizing the steel industry will require a shift towards renewable energy. However costs and emissions associated with the long-distance transport of renewable energy carriers may incentivize the relocation of steel production closer to renewable energy sources. This “green relocation” would affect regional economic structures and global trade patterns. Nevertheless the macroeconomic and environmental impacts of alternative industry location options remain underexplored. This study compares the impacts on value-added prices and emissions under two options for decarbonizing the Dutch steel industry: importing green hydrogen from Brazil to produce green steel in the Netherlands versus relocating production to Brazil and transporting green steel to the Netherlands. Impacts are analyzed by combining a price and a quantity model within an environmentally extended multiregional input-output (EE-MRIO) framework. Results suggest that the relocation option brings the greatest synergies between climate and economic goals at the global level as it leads to lower production costs smaller price effects and greater emissions reductions. However relocation also results in stronger distributive impacts across global regions. Higher carbon prices would be insufficient to counteract relocation incentives. This calls for policymakers in industrialized countries to systematically consider the possibility of green relocation when designing decarbonization and industrial competitiveness strategies.
Impact of Plastic Composition on the Performance of the Integrated Process of Pyrolysis and Oxidative Steam Reforming for Hydrogen Production
Aug 2025
Publication
The pyrolysis and oxidative steam reforming (P-OSR) of different types of plastics (HDPE PP PET and PS) has been carried out in a two reactor system provided with a conical spouted bed reactor (CSBR) and a fluidized bed reactor (FBR). The effect plastic composition has on the oxidative steam reforming step has been analyzed using two space time values (3.1 gcatalyst min gplastic − 1 and 12.5 gcatalyst min gplastic − 1 ) at a reforming temperature of 700 ◦C S/P ratio of 3 and ER of 0.2 (optimum conditions for autothermal reforming). The different composition of the plastics leads to differences in the yields and compositions of pyrolysis products and consequently in the performance of the oxidative steam reforming step. High conversions (> 97 %) have been achieved by using a space time of 12.5 gcat min gplastic − 1 with H2 production increasing as follows: PET ≪ PS < HDPE ≤ PP. A maximum H2 production of 25.5 wt% has been obtained by using PP which is lower than that obtained in the process of pyrolysis and in line conventional steam reforming (P-SR) of the same feedstock (34.8 wt%). The lowest H2 production (10.5 wt%) has been achieved when PET was used due to the high oxygen content of this plastic. The results obtained in this study prove that P-OSR performs very well with different feedstock thereby confirming the versatility and efficiency of this process to produce a hydrogen-rich gas.
Opportunities for Emission Reduction in the Transformation of Petroleum Refining
Sep 2025
Publication
Crude oil accounts for approximately 40% of global energy consumption and the refining sector is a major contributor to greenhouse gas (GHG) emissions particularly through the production of hard-to-abate fuels such as aviation fuel and fuel oil. This study disaggregates the refinery into its key process units to identify decarbonization opportunities along the entire production chain. Units are categorized into combustion-based processes— including crude and vacuum distillation hydrogen production coking and fluid catalytic cracking—and non-combustion processes which exhibit lower emission intensities. The analysis reveals that GHG emissions can be reduced by up to 60% with currently available technologies without requiring major structural changes. Electrification residual heat recovery renewable hydrogen for desulfurization and process optimization through digital twins are identified as priority measures many of which are also economically viable in the short term. However achieving full decarbonization and alignment with net-zero targets will require the deployment of carbon capture technologies. These results highlight the significant potential for emission reduction in refineries and reinforce their strategic role in enabling the transition toward low-carbon fuels.
Thermochemical Aspects of Substituting Natural Gas by Hydrogen in Blister Copper Deoxidation
Aug 2025
Publication
This study employs computational thermodynamics to evaluate the feasibility of replacing methane with hydrogen as both burner fuel and reductant during blister copper deoxidation aiming to enhance deoxidation efficiency and reduce CO2 emissions. A comprehensive thermodynamic model was developed using FactSage 8.3 for dilute Cu–O and Cu–S–O melts containing trace impurities (Fe Ni Pb Zn) incorporating methane thermal decomposition and temperature-dependent variations in liquid copper density with oxygen and sulfur content. Model parameters were optimized against over 105 deoxidation simulation data points yielding temperature- and composition-dependent expressions for rapid density estimates. Benchmarking against existing literature models demonstrated improved accuracy. Key findings include: (1) increasing impurities contents from electronics waste recycling (Fe Ni Pb Zn) reduces oxygen activity deteriorating the deoxidation efficiency; (2) under global equilibrium methane provides greater reducing power per mole than hydrogen due to full thermal cracking but real-world mass transfer limitations render hydrogen more consistently effective up to 1200 C with methane gas needing to achieve at least 472 C to match hydrogen’s performance; (3) adiabatic flame equilibrium studies show that O2/H2 ratios of 0.5 to 1 yield liquid copper oxygen activities comparable to industrial O2/CH4 ratios of 2 to 3 supporting the direct substitution of methane with hydrogen in oxy-fuel anode furnace burners without compromising metal quality.
Energy Storage in the Energy Transition and Blue Economy: Challenges, Innovations, Future Perspectives, and Educational Pathways
Sep 2025
Publication
Transitioning to renewable energy is vital to achieving decarbonization at the global level but energy storage is still a major challenge. This review discusses the role of energy storage in the energy transition and the blue economy focusing on technological development challenges and directions. Effective storage is vital for balancing intermittent renewable energy sources like wind solar and marine energy with the power grid. The development of battery technologies hydrogen storage pumped hydro storage and emerging technologies like sodium-ion and metal-air batteries is discussed for their potential for large-scale deployment. Shortages in critical raw materials environmental impact energy loss and costs are some of the challenges to large-scale deployment. The blue economy promises opportunities for offshore energy storage notably through ocean thermal energy conversion (OTEC) and compressed air energy storage (CAES). Moreover the capacity of datadriven optimization and artificial intelligence to enhance storage efficiency is discussed. Policy interventions and economic incentives are necessary to spur the development and deployment of sustainable energy storage technology. Education and workforce training are also important in cultivating future researchers engineers and policymakers with the ability to drive energy innovation. Merging sustainability training with an interdisciplinary approach can potentially establish an efficient workforce that is capable of addressing energy issues. Future work needs to focus on higher energy density efficiency recyclability and cost-effectiveness of the storage technologies without sacrificing their environmental sustainability. The study underlines the need for converging technological economic and educational approaches to enable a sustainable and resilient energy future.
Retrofitted Production of Bio-hydrogen. Large-scale Biowaste Valorization via Solar-based Gasification
Aug 2025
Publication
Hydrogen production from gasification of biowaste generates large volumes of CO2 due to endothermic biowaste decomposition. Alternatively the Sun can provide that energy. To evaluate the yield and performance of solarbased gasifiers at country scale a multi-scale approach is required. First the operation of a solar gasifier is analyzed by developing a two-phase model validated and scaled to industrial level. Next the performance and yield of such technology as a function of the radiation received is studied taking Spain as a case study. The results were promising obtaining a syngas rich in H2. However tar and char were not reduced due to insufficient temperature. Scale-up studies revealed energy losses to the environment in the industrial-scale gasifier which suggested the use of segmented heating. In turn diameters no larger than 0.8 m and biomass feeding rates below 0.85 kg/s highlight the deployment of a modular design due to particle size limitations. Finally the large-scale waste valorization showed that the gasifier can only operate in Spain in the summer months. It can run over 180 h/month and more than 250 days/year only in C´ adiz and Santa Cruz de Tenerife which also showed the highest yearly production capacities.
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
Oct 2025
Publication
This study assesses the feasibility and profitability of marine hybrid clusters combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena Chile with high and consistent wave energy resources and Ensenada Mexico with moderate and more variable wave power. Two WEC technologies Wave Dragon (WD) and Pelamis (PEL) were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture particularly in La Serena proves more profitable than for households. Ensenada’s clusters generate more surplus electricity suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions optimizing hybridization strategies and integrating consolidated industries such as aquaculture to enhance both economic and environmental benefits.
Novel Sustainability Assessment Methodology with Alternative Use Impact Accounting: Application on Use of Hydrogen in Transportation Sector
Sep 2025
Publication
This study presents the application of a new sustainability assessment methodology. It aims to improve the information that can be obtained from a sustainability assessment including the concept of alternative usage impact. To prove the effectiveness of this methodology three different hydrogen production methodologies considering its consumption in transportation sector is the case of study. The methodologies considered are Steam Methane Reform using natural gas Proton Exchange Membrane electrolysis one using grid electricity and the other study case using central tower solar power plant electricity from the PS10 facility. While separately green hydrogen is the technology with less environmental impact when considering the full system and the impact of the green hydrogen on the rest of the resources the integration of green hydrogen technology is not the most environmentally sustainable. Similar behavior is observed in the economic and technical fields. The different accounting of combinations of technologies and the impact on the resource which is not used provides the sustainability performance of the overall system. These results show that in order to account the all impacts taking place in a energy technology integration its impact on the rest of resources and uses provide more valuable information.
Dynamic Life cycle Assessment of Climate Change Impacts of Hydrogen Production from Energy Crops
Oct 2025
Publication
Life Cycle Assessments (LCAs) are predominantly conducted using a static approach which aggregates emissions over time without considering emissions timing. Additionally LCAs often assume biogenic carbon neutrality neglecting site-specific forest carbon fluxes and temporal trade-offs. This study applies both static and dynamic LCA and incorporates biogenic carbon to evaluate the climate change impact of hydrogen production. It focuses on gasification of eucalyptus woodchips cultivated on former marginal grasslands (BIO system) which avoids competition with land used for food production. A case study is presented in western Andalusia (Spain) with the aim to replace hydrogen produced via the conventional steam methane reforming (SMR) pathway (BAU system) at La Rabida ´ refinery. The CO2FIX model was used to simulate biogenic carbon fluxes providing insights into carbon sequestration dynamics and it was found that the inclusion of biogenic carbon flows from eucalyptus plantations dramatically reduced CO₂ equivalent emissions (176 % in the static approach and 369 % in the dynamic approach) primarily due to soil and belowground biomass carbon sequestration. The dynamic LCA showed significantly lower CO₂ emissions than the static LCA (106 % reduction) shifting emissions from − 1.79 kg CO₂/kg H₂ in the static approach to − 3.69 kg CO₂/kg H₂ in the dynamic approach. These findings highlight the need to integrate emission dynamics and biogenic carbon flows into LCA methodologies to support informed decision-making and the development of more effective environmental policies.
Combining Babool Wood-derived Producer Gas and Hydrogen with Biodiesel as Efficienct Strategies for Dual-fuel Diesel Engine in Advancing Sustainable Energy
Sep 2025
Publication
The present investigation aims to provide a comparative assessment of using hydrogen-enriched wood waste-derived producer gas (PG) for a dual-fuel diesel engine fueled with a 20% Jatropha biodiesel/80% diesel blend (BD20) with the traditional mode. The experiments were conducted at 23°bTDC of injection timing 240 bar of injection pressure 17.5:1 of compression ratio and 1500 rpm of engine speed under various engine loads. Gas carburetor induction (GCI) port injection (PI) and inlet manifold injection (IMI) methods were used to supply H2-enriched PG while B20 is directly injected into the combustion chamber. Among all the combinations the IMI method provided the highest brake thermal efficiency of 30.91% the lowest CO emission of 0.08% and smoke opacity discharge of 49.26 HSU while NOx emission reached 1744.32 ppm which was lower than that of the PI mode. Furthermore the IMI method recorded the highest heat release rate of 91.17 J/°CA and peak cylinder pressure of 83.29 bar reflecting superior combustion quality. Finally using the IMI method for H2-enriched PG in dual-fuel diesel engines could improve combustion efficiency reduce greenhouse gas emissions and improve fuel economy showing that the combination of BD20 with H2-enriched PG offers a cleaner more sustainable and economically viable technology.
From Grey to "Green": Modelling the Non-energy Uses of Hydrogen for the EU Energy Transition
Jun 2025
Publication
Hydrogen (H2) used as feedstock (i.e. as raw material) in chemicals refineries and steel is currently produced from fossil fuels thus leading to significant carbon dioxide (CO2) emissions. As these hard-to-abate sectors have limited electrification alternatives H2 produced by electrolysis offers a potential option for decarbonising them. Existing modelling analyses to date provide limited insights due to their predominant use of sector-specific static non-recursive and non-open models. This paper advances research by presenting a dynamic recursive open-access energy model using System Dynamics to study long-term systemic and environmental impacts of transitioning from fossil-based methods to electrolytic H2 production for industrial feedstock. The regional model adopts a bottom-up approach and is applied to the EU across five innovative decarbonisation scenarios including varying technological transition speeds and a paradigm-shift scenario (Degrowth). Our results indicate that assuming continued H2 demand trends and large-scale electrolytic H2 deployment by 2030 grid decarbonisation in the EU must accelerate to ensure green H2 for industrial feedstock emits less CO2 than fossil fuel methods doubling the current pace. Otherwise electrolytic H2 won’t offer clear CO2 reduction benefits until 2040. The most effective CO2 emission mitigation occurs in growth-oriented ambitious decarbonisation (− 91 %) and Degrowth (− 97 %) scenarios. From a sectoral perspective H2 use in steel industry achieves significantly greater decarbonisation (− 97 %). However meeting electricity demand for electrolytic H2 (700–1180 TWh in 2050 for 14–22.5 Mtons) in growth-oriented scenarios would require 25 %–42 % of the EU’s current electricity generation exceeding current renewable capacity and placing significant pressure on future power system development.
Emerging Application of Solid Oxide Electrolysis Cells in Hydrogen Production: A Comprehensive Analytic Review and Life Cycle Assessment
Aug 2025
Publication
This paper provides a comprehensive analytical review and life cycle assessment (LCA) of solid oxide electrolysis cells (SOECs) for hydrogen production. As the global energy landscape shifts toward cleaner and more sustainable solutions SOECs offer a promising pathway for hydrogen generation by utilizing water as a feedstock. Despite their potential challenges in efficiency economic viability and technological barriers remain. This review explores the evolution of SOECs highlighting key advancements and innovations over time and examines their operational principles efficiency factors and classification by operational temperature range. It further addresses critical technological challenges and potential breakthroughs alongside an indepth assessment of economic feasibility covering production cost comparisons hydrogen storage capacity and plant viability and an LCA evaluating environmental impacts and sustainability. The findings underscore SOECs’ progress and their crucial role in advancing hydrogen production while pointing to the need for further research to overcome existing limitations and enhance commercial viability.
Environmental and Economic Assessment of Large-scale Hydrogen Supply Chains across Europe: LOHC vs Other Hydrogen Technologies
Oct 2025
Publication
The transition to decarbonized energy systems positions hydrogen as a critical vector for achieving climate neutrality yet its large-scale transportation and storage remain key challenges. This study presents a comprehensive life cycle assessment (LCA) and economic analysis of large-scale H2 supply chains evaluating the liquid organic hydrogen carrier (LOHC) system based on benzyltoluene/perhydro-benzyltoluene (H0-BT/H12-BT) against conventional technologies: compressed gaseous hydrogen (CGH2) liquid hydrogen (LH2) and liquid ammonia (LNH3). The analysis includes multiple H2 transportation scenarios across Europe considering the steps: conditioning sea transportation post-processing and land distribution by truck or pipeline. Environmentally LOHC currently faces higher environmental impacts than CGH2 driven by energy-intensive dehydrogenation process. Truck-based distribution further amplifies impacts particularly over long distances while pipeline-based distribution significantly reduces the environmental burdens where infrastructure exists. Sensitivity analysis reveals that using H2 for dehydrogenation heat lowers process-level impacts but increases overall supply chain impacts questioning its net environmental benefit. Economically LOHC remains competitive despite high dehydrogenation costs benefiting from low sea transportation expenses compatibility with existing fossil fuel infrastructure and potential for future CAPEX and OPEX improvements. While CGH2 outperforms LH2 and LNH3 avoiding energy-intensive liquefaction and cracking its storage requirements add considerable costs. For land distribution LOHC trucks are optimal at lower capacities whereas repurposed natural gas pipelines favour CGH2 at higher scale reducing costs by up to 84 %. Despite current trade-offs the scalability flexibility and synergies with existing infrastructure position LOHC as a promising solution for long-distance H2 transport contingent on technological maturation to mitigate dehydrogenation impacts.
Opportunities and Challenges of Latent Thermal Energy Usage in the Hydrogen Economy
Aug 2025
Publication
Hydrogen plays a key role in decarbonising hard-to-abate sectors like aviation steel and shipping. However producing pure hydrogen requires significant energy to break chemical bonds from its sources such as gas and water. Ideally the energy used for this process should match the energy output from hydrogen but in reality energy losses occur at various stages of the hydrogen economy—production packaging delivery and use. This results in needing more energy to operate the hydrogen economy than it can ultimately provide. To address this passive power sources like latent thermal energy storage systems can help reduce costs and improve efficiency. These systems can enable passive cooling or electricity generation from waste heat cutting down on the extra energy needed for compression liquefaction and distribution. This study explores integrating latent thermal energy storage into all stages of the hydrogen economy offering a cost and sizing approach for such systems. The integration could reduce costs close the waste-heat recycling loop and support green hydrogen production for achieving NetZero by 2050.
Experimental and Numerical Analysis of Hydrogen-Induced Effects in ASTM A131 and A36 Steels for Naval Fuel Systems
Oct 2025
Publication
Hydrogen embrittlement (HE) can degrade the mechanical integrity of steel pipes increasing failure risks in naval fuel systems. This study assesses HE effects on ASTM A131 and A36 steels through tensile testing and numerical modeling. Tests conducted with varying exposure times to hydrogen revealed that A131 outperformed A36 in terms of mechanical strength. However both materials experienced property degradation after six hours. After nine hours a transient increase in strength occurred due to temporary microstructural hardening though the overall trend remained a decline. The maximum reductions in ultimate tensile strength and toughness were 19% and 47% for A131 and 39% and 61% for A36 respectively. Additionally microstructural analysis revealed the presence of inclusions intergranular decohesion and micro-crack in specimens exposed for longer periods. Finally a combined GTN-PLNIH numerical model was implemented demonstrating its effectiveness in predicting the mechanical behavior of structures exposed to hydrogen.
No more items...