Finland
Green Hydrogen Supply Chain Risk Analysis: A European Hard-to-abate Sectors Perspective
May 2023
Publication
Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel chemical cement and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources such as wind or solar power through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers electrolysers distribution facilities and consumers. Although there have been many studies about green hydrogen little attention has been devoted to green hydrogen supply chain risk identification and analysis especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region’s green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts’ opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.
Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options
Nov 2022
Publication
The impact of ship emission reductions can be maximised by considering climate health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships routes and regions. Carbon-neutral fuels including low-carbon and carbon-negative fuels from biogenic or non-biogenic origin (biomass waste renewable hydrogen) could resemble current marine fuels (diesel-type methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2) methane (CH4) and nitrous oxide emissions (N2O). Additionally non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx) sulphur oxides (SOx) ammonia (NH3) formaldehyde particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations policies and investments needed to support this development.
A Review on the Kinetics of Iron Ore Reduction by Hydrogen
Dec 2021
Publication
A clean energy revolution is occurring across the world. As iron and steelmaking have a tremendous impact on the amount of CO2 emissions there is an increasing attraction towards improving the green footprint of iron and steel production. Among reducing agents hydrogen has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking processes. Although hydrogen is in great supply on earth extracting pure H2 from its compound is costly. Therefore it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the kinetics of reduction. The variables considered were temperature iron ore type (magnetite hematite goethite) H2/CO ratio porosity flow rate the concentration of diluent (He Ar N2 ) gas utility annealing before reduction and pressure. In fact increasing temperature H2/CO ratio hydrogen flow rate and hematite percentage in feed leads to a higher reduction rate. In addition the controlling kinetics models and the impact of the mentioned parameters on them investigated and compared concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide particle are the most common kinetics controlling models.
Resilience-oriented Operation of Microgrids in the Presence of Power-to-hydrogen Systems
Jul 2023
Publication
This study presents a novel framework for improving the resilience of microgrids based on the power-to-hydrogen concept and the ability of microgrids to operate independently (i.e. islanded mode). For this purpose a model is being developed for the resilient operation of microgrids in which the compressed hydrogen produced by power-to-hydrogen systems can either be used to generate electricity through fuel cells or sold to other industries. The model is a bi-objective optimization problem which minimizes the cost of operation and resilience by (i) reducing the active power exchange with the main grid (ii) reducing the ohmic power losses and (iii) increasing the amount of hydrogen stored in the tanks. A solution approach is also developed to deal with the complexity of the bi-objective model combining a goal programming approach and Generalized Benders Decomposition due to the mixed-integer nonlinear nature of the optimization problem. The results indicate that the resilience approach although increasing the operation cost does not lead to load shedding in the event of main grid failures. The study concludes that integrating distributed power-to-hydrogen systems results in significant benefits including emission reductions of up to 20 % and cost savings of up to 30 %. Additionally the integration of the decomposition method improves computational performance by 54 % compared to using commercial solvers within the GAMS software.
Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications
Jun 2021
Publication
The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane respectively appear to have the greatest potential for hydrogen production. In particular the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.
Power Balance Control and Dimensioning of a Hybrid Off-grid Energy system for a Nordic Climate Townhouse
Mar 2023
Publication
This paper investigates conversion of a Nordic oil-heated townhouse into carbon-neutral by different energy efficiency (EE) improvements and an off-grid system including solar photovoltaics (PV) wind power and battery and hydrogen energy storage systems (BESS and HESS). A heat-pump-based heating system including waste heat recovery (WHR) from the HESS and an off-grid electrical system are dimensioned for the building by applying models developed in MATLAB and Microsoft Excel to study the life cycle costs (LCC). The work uses a measured electrical load profile and the heat generation of the new heating system and the power generation are simulated by commercial software. It is shown that the EE improvements and WHR from the HESS have a positive effect on the dimensioning of the off-grid system and the LCC can be reduced by up to €2 million. With the EE improvements and WHR the component dimensioning can be reduced by 22%–41% and 13%–51% on average respectively. WHR can cover up to 57% of the building's annual heat demand and full-power dimensioning of the heat pump is not reasonable when WHR is applied. Wind power was found to be very relevant in the Nordic conditions reducing the LCC by 32%.
Experimental Study on Tri-fuel Combustion Using Premixed Methane-hydrogen Mixtures Ignited by a Diesel Pilot
Apr 2021
Publication
A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion tri-fuel combustion (TF) is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction MH2) and charge-air temperature (Tair) on the ignition behavior combustion stability cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 from 0 to 60% shortens the ignition delay time (IDT) and combustion duration (based on CA90) up to 33% and 45% respectively. Thereby H2 helps to increase the indicated thermal efficiency (ITE) by as much as 10%. Furthermore to gain an insight into the combustion stability and CCV the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) methodologies are applied to estimate the combustion stability and CCV of the TF combustion process. The results reveal that the pressure oscillation can be reduced up to 4 dB/Hz and the CCV by 50% when MH2 < 60% and Tair < 55 °C. However when MH2 > 60% and Tair > 40 °C abnormal combustion and knocking are observed.
Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems
May 2018
Publication
From an environment perspective the increased penetration of wind and solar generation in power systems is remarkable. However as the intermittent renewable generation briskly grows electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.
Green Hydrogen Production for Oil Refining - Finnish Case
Jan 2023
Publication
This study investigates the production of green hydrogen for use in oil refining as specified in the draft of European union delegated act published in May 2022. The European union plans to set strict requirements of additionality and reporting regarding the criteria of renewable electricity used in hydrogen production. Alkaline electrolyzer proton exchange membrane electrolyzer and solid oxide electrolyzer are evaluated in various scenarios supplied by wind power: power purchase agreement-based scenarios and wind power investment-based scenarios. In power purchase agreement-based scenarios baseload and pay as produced power purchase agreements (with and without electricity storage) are assessed. According to results the use of 600 MW compressed air energy storage could reduce the dependency on the grid by 7% but increase the cost of green hydrogen significantly. Investment-based scenarios produce green hydrogen with a lower operation cost but higher break-even price compared to power purchase agreement-based scenarios. The cheapest green hydrogen can be achieved by alkaline electrolyzer with baseload power purchase agreement. Direct ownership of wind power is outside the operation of oil refining industry thus power purchase agreements contracting is more likely to realize.
Global Potential of Green Ammonia Based on Hybrid PV-wind Power Plants
Apr 2021
Publication
Ammonia is one of the most commonly used feedstock chemicals globally. Therefore decarbonisation of ammonia production is of high relevance towards achieving a carbon neutral energy system. This study investigates the global potential of green ammonia production from semi-flexible ammonia plants utilising a cost-optimised configuration of hybrid PV-wind power plants as well as conversion and balancing technologies. The global weather data used is on an hourly time scale and 0.45◦ × 0.45◦ spatial resolution. The results show that by 2030 solar PV would be the dominating electricity generation technology in most parts of the world and the role of batteries would be limited while no significant role is found for hydrogen-fuelled gas turbines. Green ammonia could be generated at the best sites in the world for a cost range of 440–630 345–420 300–330 and 260–290 €/tNH3 in 2020 2030 2040 and 2050 respectively for a weighted average capital cost of 7%. Comparing this to the decade-average fossil-based ammonia cost of 300–350 €/t green ammonia could become cost-competitive in niche markets by 2030 and substitute fossil-based ammonia globally at current cost levels. A possible cost decline of natural gas and consequently fossil-based ammonia could be fully neutralised by greenhouse gas emissions cost of about 75 €/tCO2 by 2040. By 2040 green ammonia in China would be lower in cost than ammonia from new coal-based plants even at the lowest coal prices and no greenhouse gas emissions cost. The difference in green ammonia production at the least-cost sites in the world’s nine major regions is less than 50 €/tNH3 by 2040. Thus ammonia shipping cost could limit intercontinental trading and favour local or regional production beyond 2040.
Trends in the Global Steel Industry: Evolutionary Projections and Defossilisation Pathways through Power-to-steel
Sep 2022
Publication
Steel production is a carbon and energy intensive activity releasing 1.9 tons of CO2 and requiring 5.17 MWh of primary energy per ton produced on average globally resulting in 9% of all anthropogenic CO2 emissions. To achieve the goals of the Paris Agreement of limiting global temperature increase to below 1.5 °C compared to pre-industrial levels the structure of the global steel production must change fundamentally. There are several technological paths towards a lower carbon intensity for steelmaking which bring with them a paradigm shift decoupling CO2 emissions from crude steel production by transitioning from traditional methods of steel production using fossil coal and fossil methane to those based on low-cost renewable electricity and green hydrogen. However the energy system consequences of fully defossilised steelmaking has not yet been examined in detail. This research examines the energy system requirements a global defossilised power-to-steel industry using a GDP-based demand model for global steel demands which projects a growth in steel demand from 1.6 Gt in 2020 to 2.4 Gt in 2100. Three scenarios are developed to investigate the emissions trajectory energy demands and economics of a high penetration of direct hydrogen reduction and electrowinning in global steel production. Results indicate that the global steel industry will see green hydrogen demands grow significantly ranging from 2809 to 4371 TWhH2 by 2050. Under the studied conditions global steel production is projected to see reductions in final thermal energy demand of between 38.3% and 57.7% and increases in total electricity demand by factors between 15.1 and 13.3 by 2050 depending on the scenario. Furthermore CO2 emissions from steelmaking can be reduced to zero.
Hydrogen Technology for Supply Chain Sustainability: The Mexican Transportation Impacts on Society
Mar 2022
Publication
This study sheds light on the Hydrogen technology in transportation for reaching the sustainability goals of societies illustrated by the case of Mexico. In terms of the affected supply chains the study explores how the packaging and distribution of a fuel-saving tool that allows the adoption of hydrogen as complementary energy for maritime transportation to improve economic and environmental performance in Mexico. This exploratory study performs interviews observations simulations and tests involving producers suppliers and users at 26 ports in Mexico. The study shows that environmental and economic performance are related to key processes in Supply Chain Management (SCM) in which packaging and distribution are critical for achieving logistics and transportation sustainability goals. Reusable packaging and the distribution of a fuel-saving tool can help decrease costs - of transport and downstream/upstream processes in SCM while at the same time increasing the environmental performance.
Seasonal Hydrogen Storage for Residential On- and Off-grid Solar Photovoltaics Prosumer Applications: Revolutionary Solution or Niche Market for the Energy Transition until 2050?
Apr 2023
Publication
Appropriate climate change mitigation requires solutions for all actors of the energy system. The residential sector is a major part of the energy system and solutions for the implementation of a seasonal hydrogen storage system in residential houses has been increasingly discussed. A global analysis of prosumer systems including seasonal hydrogen storage with water electrolyser hydrogen compressor storage tank and a fuel cell studying the role of such a seasonal household storage in the upcoming decades is not available. This study aims to close this research gap via the improved LUT-PROSUME model which models a fully micro sector coupled residential photovoltaic prosumer system with linear optimisation for 145 regions globally. The modelling of the cost development of hydrogen storage components allows for the simulation of a residential system from 2020 until 2050 in 5-year steps in hourly resolution. The systems are cost-optimised for either on– or off-grid operation in eight scenarios including battery electric vehicles which can act as an additional vehicle-to-home electricity storage for the system. Results show that implementation of seasonal hydrogen systems only occurs in least cost solutions in high latitude countries when the system is forced to run in off-grid mode. In general a solar photovoltaic plus battery system including technologies that can cover the heat demand is the most economic choice and can even achieve lower cost than a full grid supply in off-grid operation for most regions until 2050. Additional parameters including the self-consumption ratio the demand cover ratio and the heat cover ratio can therefore not be improved by seasonal storage systems if economics is the main deciding factor for a respective system. Further research opportunities and possible limitations of the system are then identified.
Towards Defossilised Steel: Supply Chain Options for a Green European Steel Industry
Mar 2023
Publication
As the European Union intensifies its response to the climate emergency increased focus has been placed on the hard-to-abate energy-intensive industries. Primary among these is the steel industry a cornerstone of the European economy and industry. With the emergence of new hydrogen-based steelmaking options particularly through hydrogen direct reduction the structure of global steel production and supply chains will transition from being based on low-cost coal resources to that based on low-cost electricity and therefore hydrogen production. This study examines the techno-economic options for three European countries of Germany Spain and Finland under five different steel supply chain configurations compared to local production. Results suggest that the high costs of hydrogen transportation make a European steelmaking supply chain cost competitive to steel produced with imported hydrogen with local production costs ranging from 465-545 €/t of crude steel (CS) and 380-494 €/tCS for 2030 and 2040 respectively. Conversely imports of hot briquetted iron and crude steel from Morocco become economically competitive with European supply chains. Given the capital and energy intensive nature of the steel industry critical investment decisions are required in this decade and this research serves to provide a deeper understanding of supply chain options for Europe.
Numerical Study on Hydrogen–Gasoline Dual-Fuel Spark Ignition Engine
Nov 2022
Publication
Hydrogen as a suitable and clean energy carrier has been long considered a primary fuel or in combination with other conventional fuels such as gasoline and diesel. Since the density of hydrogen is very low in port fuel-injection configuration the engine’s volumetric efficiency reduces due to the replacement of hydrogen by intake air. Therefore hydrogen direct in-cylinder injection (injection after the intake valve closes) can be a suitable solution for hydrogen utilization in spark ignition (SI) engines. In this study the effects of hydrogen direct injection with different hydrogen energy shares (HES) on the performance and emissions characteristics of a gasoline port-injection SI engine are investigated based on reactive computational fluid dynamics. Three different injection timings of hydrogen together with five different HES are applied at low and full load on a hydrogen– gasoline dual-fuel SI engine. The results show that retarded hydrogen injection timing increases the concentration of hydrogen near the spark plug resulting in areas with higher average temperatures which led to NOX emission deterioration at −120 Crank angle degree After Top Dead Center (CAD aTDC) start of injection (SOI) compared to the other modes. At −120 CAD aTDC SOI for 50% HES the amount of NOX was 26% higher than −140 CAD aTDC SOI. In the meanwhile an advanced hydrogen injection timing formed a homogeneous mixture of hydrogen which decreased the HC and soot concentration so that −140 CAD aTDC SOI implied the lowest amount of HC and soot. Moreover with the increase in the amount of HES the concentrations of CO CO2 and soot were reduced. Having the HES by 50% at −140 CAD aTDC SOI the concentrations of particulate matter (PM) CO and CO2 were reduced by 96.3% 90% and 46% respectively. However due to more complete combustion and an elevated combustion average temperature the amount of NOX emission increased drastically.
Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review
Oct 2022
Publication
This study is a systematic analysis of selected research articles about power-to-X (P2X)- related processes. The relevance of this resides in the fact that most of the world’s energy is produced using fossil fuels which has led to a huge amount of greenhouse gas emissions that are the source of global warming. One of the most supported actions against such a phenomenon is to employ renewable energy resources some of which are intermittent such as solar and wind. This brings the need for large-scale longer-period energy storage solutions. In this sense the P2X process chain could play this role: renewable energy can be converted into storable hydrogen chemicals and fuels via electrolysis and subsequent synthesis with CO2. The main contribution of this study is to provide a systematic articulation of advanced data-driven methods and latest technologies such as the Internet of Things (IoT) big data analytics and machine learning for the efficient operation of P2X-related processes. We summarize our findings into different working architectures and illustrate them with a numerical result that employs a machine learning model using historic data to define operational parameters for a given P2X process.
Techno-economic Feasibility of Road Transport of Hydrogen Using Liquid Organic Hydrogen Carriers
Sep 2020
Publication
The cost of storing and transporting hydrogen have been one of the main challenges for the realization of the hydrogen economy. Liquid organic hydrogen carriers (LOHC) are a promising novel solution to tackle these challenges. In this paper we compare the LOHC concept to compressed gas truck delivery and on-site production of hydrogen via water electrolysis. As a case study we consider transportation of by-product hydrogen from chlor-alkali and chlorate plants to a single industrial customer which was considered to have the greatest potential for the LOHC technology to enter the markets. The results show that the LOHC delivery chain could significantly improve the economics of long distance road transport. For economic feasibility the most critical parameters identified are the heat supply method for releasing hydrogen at the end-user site and the investment costs for LOHC reactors.
The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production
Oct 2016
Publication
This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG) and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition yield and thermal demand were validated and showed conformity with reported experimental results and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput supercritical water refining temperature nature of desirable coproducts downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 ◦C conversion temperature allowed higher gross syngas and CHP production. However mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case at 450 ◦C reactor temperature 18 wt. % solid content and presence of downstream indirect production recorded 66.5% 66.2% and 57.2% energetic fuel-equivalent and exergetic efficiencies respectively
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark problems for non-reacting and reacting cases. Next the method is applied to study the performance of methanol production in a 2D fixed-bed reactor under a range of parameters. It is found that methanol yield enhances with pressure catalyst loading reactant ratio and packing density. The yield diminishes with temperature at adiabatic conditions while it shows non-monotonic change for the studied isothermal cases. Overall the staggered and the random catalyst configurations are found to outperform the in-line system.
No more items...