France
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon
Dec 2021
Publication
Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming such as electricity production industry and transportation. However although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming coal gasification). On the other hand hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar wind hydro) and nuclear energy. In this context by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol gasoline kerosene) hydrogen can be used in various applications such as transportation (aircraft boat vehicle and train) energy storage industry medicine and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Deflagration of a Large-Scale H2-Air Mixture in Open Atmosphere
Sep 2005
Publication
This paper presents a compilation of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V2 which is based on an experiment on hydrogen combustion that is first described. A list of the results requested from participants is also included. The main characteristics of the models used for the calculations are compared in a very succinct way by using tables. The comparison between results together with the experimental data when available is made through a series of graphs. The results show quite good agreement with the experimental data. The calculations have demonstrated to be sensitive to computational domain size and far field boundary condition.
Impact of Hydrogen Admixture on Combustion Processes – Part I: Theory
Jun 2020
Publication
Climate change is one of today’s most pressing global challenges. Since the emission of greenhouse gases is often closely related to the use and supply of energy the goal to avoid emissions requires a fundamental restructuring of the energy system including all parts of the technology chains from production to end-use. Natural gas is today one of the most important primary energy sources in Europe with utilization ranging from power generation and industry to appliances in the residential and commercial sector as well as mobility. As natural gas is a fossil fuel gas utilization is thus responsible for significant emissions of carbon dioxide (CO2 ) a greenhouse gas. However the transformation of the gas sector with its broad variety of technologies and end-use applications is a challenge as a fuel switch is related to changing physical properties. Today the residential and commercial sector is the biggest end user sector for natural gas in the EU both in terms of consumption and in the number of installed appliances. Natural gas is used to provide space heating as well as hot water and is used in cooking and catering appliances with in total about 200 million gas-fired residential and commercial end user appliances installed. More than 40 % of the EU gas consumption is accounted for by the residential and commercial sector. The most promising substitutes for natural gas are biogases and hydrogen. The carbon-free fuel gas hydrogen may be produced e.g. from water and renewable electricity; therefore it can be produced with a greatly lowered carbon footprint and on a very large scale. As a gaseous fuel it can be transported stored and utilised in all end-use sectors that are served by natural gas today: Power plants industry commercial appliances households and mobility. Technologies and materials however need to be suitable for the new fuel. The injection of hydrogen into existing gas distribution for example will impact all gas-using equipment in the grids since these devices are designed and optimized to operate safely efficiently and with low pollutant emissions with natural gas as fuel. The THyGA project1 focusses on all technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end user appliances with hydrogen / natural gas blends. The THyGA deliverables start with theoretical background from material science (D2.4) and combustion theory (this report) and extend to the project’s experimental campaign on hydrogen tolerance tests as well as reports on the status quo and potential future developments on rules and standards as well as mitigation strategies for coping with high levels of hydrogen admixture. By this approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies to which extent and to identify the regime in which a safe efficient and low-polluting operation is possible. As this is in many ways a question of combustion this report focuses on theoretical considerations about the impact of hydrogen admixture on combustion processes. The effects of hydrogen admixture on main gas quality properties as well as combustion temperatures laminar combustion velocities pollutant formation (CO NOx) safety-related aspects and the impact of combustion control are discussed. This overview provides a basis for subsequent steps of the project e.g. for establishing the testing program. A profound understanding of the impact on hydrogen on natural gas combustion is also essential for the development of mitigation strategies to reduce potential negative consequences of hydrogen admixture on appliances.
This is part one. Part two of this project can be found at this link
This is part one. Part two of this project can be found at this link
Identification and Monitoring of a PEM Electrolyser Based on Dynamical Modelling
Sep 2007
Publication
Hydrogen from water electrolysis associated with renewable energies is one of the most attractive solutions for the green energy storage. To improve the efficiency and the safety of such stations some technological studies are still under investigation both on methods and materials. As methods control monitoring and diagnosis algorithms are relevant tools. These methods are efficient when they use an accurate mathematical model representing the real behaviour of hydrogen production system. This work focuses on the dynamical modelling and the monitoring of Proton Exchange Membrane (PEM) electrolyser. Our contribution consists in three parts: to develop an analytical dynamical PEM electrolyser model dedicated to the control and the monitoring; to identify the model parameters and to propose adequate monitoring tools. The proposed model is deduced from physical laws and electrochemical equations and consists in a steady-state electric model coupled with a dynamical thermal model. The estimation of the model parameters is achieved using identification and data fitting techniques based on experimental measurements. Taking into account the information given by the proposed analytical model and the experimentation data (temperature T voltage U and current I) given by a PEM electrolyser composed of seven cells the model parameters are identified. After estimating the dynamical model model based diagnosis approach is used in order to monitoring the PEM electrolyser and to ensure its safety. We illustrate how our algorithm can detect and isolate faults on actuators on sensors or on electrolyser system.<br/><br/>
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Modelling of H2 Dispersion and Combustion Phenomena Using CFD Codes
Sep 2005
Publication
Computational Fluid Dynamics codes are increasingly being considered for safety assessment demonstrations in many industrial fields as tools to model accidental phenomena and to design mitigation (risk reducing) systems. Thus they naturally complement experimental programmes which may be expensive to run or difficult to set up. However to trust numerical simulations the validity of the codes must be firmly established and a certain number of error sources (user effect modelling errors discretization errors etc) reduced to the minimum. Code validation and establishment of “best practice guidelines” in the application of simulation tools to hydrogen safety assessment are some of the objectives pursued by the HYSAFE Network of Excellence. This paper will contribute to these goals by describing some of the validation efforts that CEA is making in the areas of release dispersion combustion and mitigation thereby proposing the outline of a validation matrix for hydrogen safety problems.
On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales
Sep 2005
Publication
The large eddy simulation (LES) model developed at the University of Ulster has been applied to simulate releases of 5.11 m3 liquefied hydrogen (LH2) in open atmosphere and gaseous hydrogen (GH2) in 20-m3 closed vessel. The simulations of a spill of liquefied hydrogen confirmed the advantage of LES application to reproduce experimentally observed eddy structure of hydrogen-air cloud. The inclination angle of simulated cloud is close to experimentally reported 300. The processes of two phase hydrogen release and heat transfer were simplified by inflow of gaseous hydrogen with temperature 20 K equal to boiling point. It is shown that difference in inflow conditions geometry and grid resolution affects simulation results. It is suggested that phenomenon of air condensationevaporation in the cloud in temperature range 20-90 K should be accounted for in future. The simulations reproduced well experimental data on GH2 release and transport in 20-m3 vessel during 250 min including a phenomenon of hydrogen concentration growth at the bottom of the vessel. Higher experimental hydrogen concentration at the bottom is assumed to be due to non-uniformity of temperature of vessel walls generating additional convection. The comparison of convective and diffusion terms in Navie-Stokes equations has revealed that a value of convective term is more than order of magnitude prevail over a value of turbulent diffusion term. It is assumed that the hydrogen transport to the bottom of the vessel is driven by the remaining chaotic flow velocities superimposed on stratified hydrogen concentration field. Further experiments and simulations with higher accuracy have to be performed to confirm this phenomenon. It has been demonstrated that hydrogen-air mixture became stratified in about 1 min after release was completed. However one-dimensional models are seen not capable to reproduce slow transport of hydrogen during long period of time characteristic for scenarios such as leakage in a garage.
Gaseous Hydrogen Refueling Stations: Selection Of Materials For High Pressure Hydrogen Fueling Connectors
Sep 2005
Publication
Design of hydrogen fueling components is critical for safety and reliability. Intensive usage of such components in urban public environment is expected in the near future. Any leakage of gas or failure of equipment will create potential hazards. Materials for such category of equipment must have specific mechanical characteristics including hardness (influence on the durability of the equipment and on the resistance to hydrogen) and be easy to machine. Air Liquide has developed a test program for qualifying equipment representing the present state of the art. Studies on the susceptibility of various steels to hydrogen embrittlement have been done. Test specimens were exposed to static and cyclic loads with hydrogen and an inert gas the inert gas representing a reference. Various tests are described here. As a result the importance of further development in the design and selection of appropriate materials for critical hydrogen components is required. Various options are presented and discussed.
Massive H2 Production With Nuclear Heating, Safety Approach For Coupling A VHTR With An Iodine Sulfur Process Cycle
Sep 2005
Publication
In the frame of a sustainable development investigations dealing with massive Hydrogen production by means of nuclear heating are carried out at CEA. For nuclear safety thermodynamic efficiency and waste minimization purposes the technological solution privileged is the coupling of a gas cooled Very High Temperature Reactor (VHTR) with a plant producing Hydrogen from an Iodine/Sulfur (I/S) thermochemical cycle. Each of the aforementioned facilities presents different risks resulting from the operation of a nuclear reactor (VHTR) and from a chemical plant including Hydrogen other flammable and/or explosible substances as well as toxic ones. Due to these various risks the safety approach is an important concern. Therefore this paper deals with the preliminary CEA investigations on the safety issues devoted to the whole plant focusing on the safety questions related to the coupling between the nuclear reactor and the Hydrogen production facility. Actually the H2 production process and the energy distribution network between the plants are currently at a preliminary design stage. A general safety approach is proposed based on a Defence In Depth (DID) principle permitting to analyze all the system configurations successively in normal incidental and accidental expected operating conditions. More precisely the dynamic answer of an installation to a perturbation affecting the other one during the previous conditions as well as the potential aggressions of the chemical plant towards the nuclear reactor have to be considered. The methodology presented in this paper is intended to help the designer to take into account the coupling safety constraints and to provide some recommendations on the global architecture of both plants especially on their coupling system. As a result the design of a VHTR combined to a H2 production process will require an iterative process between design and safety requirements.
Determination Of Hazardous Zones For A Generic Hydrogen Station – A Case Study
Sep 2007
Publication
A method for determination of hazardous zones for hydrogen installations has been studied. This work has been carried out within the NoE HySafe. The method is based on the Italian Method outlined in Guide 31-30(2004) Guide 31–35(2001) Guide 31-35/A(2001) and Guide 31-35/A; V1(2003). Hazardous zones for a “generic hydrogen refuelling station”(HRS) are assessed based on this method. The method is consistent with the EU directive 1999/92/EC “Safety and Health Protection of Workers potentially at risk from explosive atmospheres” which is the basis for determination of hazardous zones in Europe. This regulation is focused on protection of workers and is relevant for hydrogen installations such as hydrogen refuelling stations repair shops and other stationary installations where some type of work operations will be involved. The method is also based on the IEC standard and European norm IEC/EN60079-10 “Electrical apparatus for explosive gas atmospheres. Part 10 Classification of hazardous areas”. This is a widely acknowledged international standard/norm and it is accepted/approved by Fire and Safety Authorities in Europe and also internationally. Results from the HySafe work and other studies relevant for hydrogen and hydrogen installations have been included in the case study. Sensitivity studies have been carried out to examine the effect of varying equipment failure frequencies and leak sizes as well as environmental condition (ventilation obstacles etc.). The discharge and gas dispersion calculations in the Italian Method are based on simple mathematical formulas. However in this work also CFD (Computational Fluid Dynamics) and other simpler numerical tools have been used to quantitatively estimate the effect of ventilation and of different release locations on the size of the flammable gas cloud. Concentration limits for hydrogen to be used as basis for the extent of the hazardous zones in different situations are discussed.
HySafe European Network of Excellence on Hydrogen Safety
Sep 2005
Publication
Introduction and commercialisation of hydrogen as an energy carrier of the future make great demands on all aspects of safety. Safety is a critical issue for innovations as it influences the economic attractiveness and public acceptance of any new idea or product. However research and safety expertise related to hydrogen is quite fragmented in Europe. The vision of a significant increased use of hydrogen as an energy carrier in Europe could not go ahead without strengthening and merging this expertise. This was the reason for the European Commission to support the launch on the first of March 2004 of a so-called Network of Excellence (NoE) on hydrogen safety: HySafe.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
Compatibility of Metallic Materials with Hydrogen Review of the Present Knowledge
Sep 2007
Publication
In this document after a review of the accidents/incidents are described the different interactions between hydrogen gas and the most commonly used materials including the influence of "internal" and "external" hydrogen the phenomena occurring in all ranges of temperatures and pressures and Hydrogen Embrittlement (HE) created by gaseous hydrogen. The principle of all the test methods used to investigate this phenomenon are presented and discussed. The advantages and disadvantages of each method will be explained. The document also covers the influence of all the parameters related to HE including the ones related to the material itself the ones related to the design and manufacture of the equipment and the ones related to the hydrogen itself (pressure temperature purity etc). Finally recommendations to avoid repetition of accidents/incidents mentioned before are proposed.
Hydrogen Refueling Stations: Safe Filling Procedures
Sep 2005
Publication
Safety is a high priority for a hydrogen refueling station. Here we propose a method to safely refuel a vehicle at optimised speed of filling with minimum information about it. Actually we identify two major risks during a vehicle refuelling: over filling and overheating. These two risks depend on the temperature increase in the tank during refuelling. But the inside temperature is a difficult information to get from the station point of view. It assumes a temperature sensor in a representative place of the tank and an additional connection between the vehicle and the station for data exchange. The refuelling control may not depend on this parameter only. Therefore out objective was to effectively control the filling particularly to avoid the two identified risks independently of optional and safety redundant information from the vehicle. For that purpose we defined a maximum filling pressure which corresponds to the most severe following conditions: if the maximum temperature is reached in the tank or if the maximum capacity is reached in the tank. This maximum pressure depends on a few filling parameters which are easily available. The method and its practical applications are depicted.
Processes of the Formation of Large Unconfined Clouds Following a Massive Spillage of Liquid Hydrogen on the Ground
Sep 2007
Publication
Because of hydrogen low volumetric energy content under its gaseous form transport and storage of liquid hydrogen will certainly play a major role in any future hydrogen economy. One of the obstacles to the expected development use of hydrogen is the poor state of knowledge on explosion risks in the event of an extensive spillage. INERIS set up a large-scale experiment to study the mechanisms of the formation of the gas cloud resulting from such a spillage and the associated mixing process and turbulence effects. Dispersion tests have been performed with cryogenic helium presenting similar dispersion characteristics than liquid hydrogen (buoyancy). Flowrates up to 3 kg/s have been investigated and the instrumentation allowed the observation and quantification of bouyancy effects including internal turbulence. Those results constitute an originals et of data which can be used as a basis for the development of dispersion software and reinterpretation of other existing databases ([10 11])
Testing Safety of Hydrogen Components
Sep 2007
Publication
Hydrogen as a new and ecologic energy source is tempting though it creates the challenge of ensuring the safe use of hydrogen for all future consumers. Making sure that a hydrogen vehicle can be simply and safely used by anyone while performing as expected requires that the car be light with built-in safety features. This is achieved by combining high pressure composite cylinders with strict test procedures. Composite cylinders of up to 150 L operated to a maximum of 700 bar are required for vehicle applications. Air Liquide has developed test benches to hydraulically cycle such cylinders at 1400 bar and up to 3500 bar for burst tests. These tests are performed under controlled temperature conditions at ambient and extreme temperatures in order to simulate cylinder aging. Components in gas service such as valves hoses and other pressure devices are tested up to 1400 bars with hydrogen to simulate actual usage conditions. Hydrogen is used as a testing gas instead of nitrogen which is commonly used for such tests because hydrogen interacts with materials (e.g. hydrogen embrittlement) and because hydrogen has a special thermodynamic behaviour ( pressure drop velocity heat exchange…)
Hydrogen – Analysis
Jun 2020
Publication
Hydrogen technologies maintained strong momentum in 2019 awakening keen interest among policy makers. It was a record year for electrolysis capacity becoming operational and several significant announcements were made for upcoming years. The fuel cell electric vehicle market almost doubled owing to outstanding expansion in China Japan and Korea. However low-carbon production capacity remained relatively constant and is still off track with the SDS. More efforts are needed to: scale up to reduce costs; replace high-carbon with low-carbon hydrogen in current applications; and expand hydrogen use to new applications.
Link to Document on IEA Website
Link to Document on IEA Website
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study
Jan 2022
Publication
This paper presents an optimization modeling approach to support strategic planning for designing hydrogen supply chain (HSC) networks. The energy source for hydrogen production is proposed to be electricity generated at Mexican sugar factories. This study considers the utilization of existing infrastructure in strategic areas of the country which brings several advantages in terms of possible solutions. This study aims to evaluate the economic and environmental implications of using biomass wastes for energy generation and its integration to the national energy grid where the problem is addressed as a mixed-integer linear program (MILP) adopting maximization of annual profit and minimization of greenhouse gas emissions as optimization criteria. Input data is provided by sugar companies and the national transport and energy information platform and were represented by probability distributions to consider variability in key parameters. Independent solutions show similarities in terms of resource utilization while also significant differences regarding economic and environmental indicators. Multi-objective optimization was performed by a genetic algorithm (GA). The optimal HSC network configuration is selected using a multi-criteria decision technique i.e. TOPSIS. An uncertainty analysis is performed and main economic indicators are estimated by investment assessment. Main results show the trade-off interactions between the HSC elements and optimization criteria. The average internal rate of return (IRR) is estimated to be 21.5% and average payback period is 5.02 years.
No more items...