United Kingdom
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
Integration of Underground Green Hydrogen Storage in Hybrid Energy Generation
May 2024
Publication
One of the major challenges in harnessing energy from renewable sources like wind and solar is their intermittent nature. Energy production from these sources can vary based on weather conditions and time of day making it essential to store surplus energy for later use when there is a shortfall. Energy storage systems play a crucial role in addressing this intermittency issue and ensuring a stable and reliable energy supply. Green hydrogen sourced from renewables emerges as a promising solution to meet the rising demand for sustainable energy addressing the depletion of fossil fuels and environmental crises. In the present study underground hydrogen storage in various geological formations (aquifers depleted hydrocarbon reservoirs salt caverns) is examined emphasizing the need for a detailed geological analysis and addressing potential hazards. The paper discusses challenges associated with underground hydrogen storage including the requirement for extensive studies to understand hydrogen interactions with microorganisms. It underscores the importance of the issue with a focus on reviewing the the various past and present hydrogen storage projects and sites as well as reviewing the modeling studies in this field. The paper also emphasizes the importance of incorporating hybrid energy systems into hydrogen storage to overcome limitations associated with standalone hydrogen storage systems. It further explores the past and future integrations of underground storage of green hydrogen within this dynamic energy landscape.
A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport
Aug 2023
Publication
An energy systems comparison of grid-electricity derived liquid hydrogen (LH2) and liquid ammonia (LNH3) is conducted to assess their relative potential in a low-carbon future. Under various voyage weather conditions their performance is analysed for use in cargo transport energy vectors for low-carbon electricity transport and fuel supply. The analysis relies on literature projections for technological development and grid decarbonisation towards 2050. Various voyages are investigated from regions such as North America (NA) Europe (E) and Latin America (LA) to regions projected to have a higher electricity and fuel grid carbon intensity (CI) (i.e. Asia Pacific Africa the Middle-East and the CIS). In terms of reducing the CI of electricity and fuel at the destination port use of LH2 is predicted to be favourable relative to LNH3 whereas LNH3 is favourable for low-carbon transport of cargo. As targeted by the International Maritime Organisation journeys of LNH3 cargo ships originating in NA E and LA achieve a reduction in volumetric energy efficiency design index (kg-CO2/m3 -km) of at least 70% relative to 2008 levels. The same targets can be met globally if LH2 is supplied to high CI regions for production of LNH3 for cargo transport. A future shipping system thus benefits from the use of both LH2 and LNH3 for different functions. However there are additional challenges associated with the use of LH2. Relative to LNH3 1.6 to 1.7 times the number of LH2 ships are required to deliver the same energy. Even when reliquefaction is employed their success is reliant on the avoidance of rough sea states (i.e. Beaufort Numbers >= 6) where fuel depletion rates during a voyage are impractical.
Factors Driving the Decarbonisation of Industrial Clusters: A Rapid Evidence Assessment of International Experience
Sep 2023
Publication
Reducing industrial emissions to achieve net-zero targets by the middle of the century will require profound and sustained changes to how energy intensive industries operate. Preliminary activity is now underway with governments of several developed economies starting to implement policy and providing funding to support the deployment of low carbon infrastructure into high emitting industrial clusters. While clusters appear to offer the economies of scale and institutional capacity needed to kick-start the industrial transition to date there has been little systematic assessment of the factors that may influence the success of these initiatives. Drawing from academic and grey literature this paper presents a rapid evidence assessment of the approaches being used to drive the development of low carbon industrial clusters internationally. Many projects are still at the scoping stage but it is apparent that current initiatives focus on the deployment of carbon capture technologies alongside hydrogen as a future secondary revenue stream. This model of decarbonisation funnels investment into large coastal clusters with access to low carbon electricity and tends to obscure questions about the integration of these technologies with other decarbonisation interventions such as material efficiency and electrification. The technology focus also omits the importance that a favourable location and shared history and culture appears to have played in helping progress the most advanced initiatives; factors that cannot be easily replicated elsewhere. If clusters are to kick-start the low-carbon industrial transition then greater attention is needed to the social and political dimensions of this process and to a broader range of decarbonisation interventions and cluster types than represented by current projects.
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
Nuclear Enabled Hydrogen CO-generation: Safety and Regulatory Insight
Sep 2023
Publication
National Nuclear Laboratory (NNL) is aiming to demonstrate through a research and development programme that nuclear enabled hydrogen can be used to support future clean energy systems. Demonstrating the safe operation of hydrogen facilities co-generating with a nuclear reactor will be key to enabling the deployment and success of nuclear enabled hydrogen technologies in the future. During the deployment continuity of supply will be paramount and possibly requires inter-seasonal storage. Co-generation is a means of using a source of energy in this case a nuclear reactor to efficiently produce power and thermal energy. Since a great deal of the heat energy is lost to the environment in a power plant making use of wasted energy for other useful output like the production of hydrogen and direct heating would be advantageous to plant economics and energy system flexibility. The civil nuclear industry is regulated around the world. This approach ensures that all the activities related to the production of power from nuclear and the hazards associated with ionising radiation are controlled in a manner which protects workers members of the public property and the environment. Nuclear safety assessments follow a rigorous process and are required as part of the Nuclear Site Licence. A fundamental requirement which is cited in the UK legislation is that the risks associated with all activities at the licensed site be reduced to As Low As Reasonably Practicable (ALARP). The principle places a requirement on duty holders to implement measures to reduce risk where doing so is considered reasonable and proportionate. The inclusion of risks for hazardous materials associated with the hydrogen production facilities need to be considered and this requires harmonisation of two different safety and regulatory governance regimes which have not previously interacted in this way. The safety demonstration for nuclear facilities is provided through the Safety Case.
An Overview of Application-orientated Multifunctional Large-scale Stationary Battery and Hydrogen Hybrid Energy Storage System
Dec 2023
Publication
The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs such as large storage capacity in limited space frequent storage with rapid response and continuous storage without loss. Batteries with their rapid response (90%) excel in frequent short-duration energy storage. However limitations such as a selfdischarge rate (>1%) and capacity loss (~20%) restrict their use for long-duration energy storage. Hydrogen as a potential energy carrier is suitable for large-scale long-duration energy storage due to its high energy density steady state and low loss. Nevertheless it is less efficient for frequent energy storage due to its low storage efficiency (~50%). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale long-duration energy storage. To assess their applied potentials this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives offering guidance for the development of advanced energy storage systems.
A Comprehensive Review on Liquid Hydrogen Transfer Operations and Safety Considerations for Mobile Applications
Dec 2024
Publication
The adoption of liquid hydrogen (LH2) as an energy carrier presents significant opportunities for distributing large quantities of hydrogen efficiently. However ensuring safety of LH2 transfer operations requires the evo lution of suitable technologies and regulatory framework. This study offers an extensive overview of technical considerations and safety aspects pertaining to liquid hydrogen installations and mobile applications. A signif icant lack of regulations specifically tailored for LH2 transfer operations is highlighted. Additionally experi mental findings and outcomes of the modelling activities carried out in previous research are presented shedding light on the combustion and ignition behaviour of liquid hydrogen during accident scenarios. The identification of research gaps and ongoing research projects underscores the importance of continued investigation and development of this critical area.
Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks
Jan 2025
Publication
Decarbonizing heavy-duty trucks (HDTs) is both challenging and crucial for achieving carbon neutrality in the transport sector. Renewable hydrogen (H2) methanol (MeOH) and ammonia (NH3) offer potential solutions yet their economic viability and emission benefits remain largely unexplored. This study presents for the first time a comprehensive techno-economic analysis of using these three renewable fuels to decarbonize HDTs through detailed fuel and vehicle modeling. Six pathways are compared: hydrogen fuel cell electric trucks (FCET-H2) internal combustion engine trucks using MeOH (ICET-MeOH) and NH3 (ICET-NH3) as well as three indirect pathways that utilize these fuels for power generation to charge battery electric trucks (BETs). A novel “target powertrain cost” metric is introduced to assess the economic viability of FCET-H2 ICET-NH3 and ICET-MeOH relative to BETs. The results reveal that while BET pathways demonstrate higher well-to-wheel efficiencies significant opportunities exist for ICET-MeOH and ICET-NH3 in medium- and long-haul applications. Further more FCET-H2 achieves the lowest life cycle carbon emissions while ICET-MeOH and ICET-NH3 become more cost-effective as electricity costs decline. This study offers valuable insights and benchmarks for powertrain developers and policymakers addressing a critical gap in the comparative analysis of these three fuels for decarbonizing HDTs.
The Economical Repurposing Pipeliness to Hydrogen - Why Performance Testing of Representative Line Pipes is Key?
Sep 2023
Publication
The introduction of hydrogen in natural gas pipeline systems introduces integrity challenges due to the nature of interactions between hydrogen and line pipe steel materials. However not every natural gas pipeline is equal in regards to the challenges potentially posed by the repurposing to hydrogen. Existing codes and practices penalise high-grade materials on the basis of a perceived higher susceptibility to hydrogen embrittlement in regards to their increased strength. This philosophy challenges the realisation of a hydrogen economy because it puts at economical and technical risk the conversion of almost half of the natural gas transmission systems in western countries.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
The paper addresses the question whether pipe grade is actually a good proxy to strength and predictor to assess the performance of steel line pipes in hydrogen. Drivers that could affect the suitability of pipeline conversion in hydrogen from an integrity management perspective and industry experience of other hydrogen-charging applications are reviewed. In doing so the paper challenges the basis of the assumption that low-grade steels (up to X52 / L360) are automatically safer for hydrogen repurposing while at the other end of the spectrum higher-grade materials (>X52 / L360) are inevitably less suitable for hydrogen service.
Ultimately the paper discusses that materials sampling and testing of representative line pipes populations should be placed at the core of hydrogen repurposing strategies in order to safely address conversion and to maximize the hydrogen chain value. The paper addresses alternatives to make the sampling smart and cost-effective.
Review of the Status and Prospects of Fiber Optic Hydrogen Sensing Technology
Aug 2023
Publication
With the unprecedented development of green and renewable energy sources the proportion of clean hydrogen (H2 ) applications grows rapidly. Since H2 has physicochemical properties of being highly permeable and combustible high-performance H2 sensors to detect and monitor hydrogen concentration are essential. This review discusses a variety of fiber-optic-based H2 sensor technologies since the year 1984 including: interferometer technology fiber grating technology surface plasma resonance (SPR) technology micro lens technology evanescent field technology integrated optical waveguide technology direct transmission/reflection detection technology etc. These technologies have been evolving from simply pursuing high sensitivity and low detection limits (LDL) to focusing on multiple performance parameters to match various application demands such as: high temperature resistance fast response speed fast recovery speed large concentration range low cross sensitivity excellent long-term stability etc. On the basis of palladium (Pd)-sensitive material alloy metals catalysts or nanoparticles are proposed to improve the performance of fiberoptic-based H2 sensors including gold (Au) silver (Ag) platinum (Pt) zinc oxide (ZnO) titanium oxide (TiO2 ) tungsten oxide (WO3 ) Mg70Ti30 polydimethylsiloxane (PDMS) graphene oxide (GO) etc. Various microstructure processes of the side and end of optical fiber H2 sensors are also discussed in this review.
Divergent Consumer Preferences and Visions for Cooking and Heating Technologies in the United Kingdom: Make Our Homes Clean, Safe, Warm and Smart!
Aug 2023
Publication
Decarbonising the global housing stock is imperative for reaching climate change targets. In the United Kingdom hydrogen is currently being tested as a replacement fuel for natural gas which could be used to supply low-carbon energy to parts of the country. Transitioning the residential sector towards a net-zero future will call for an inclusive understanding of consumer preferences for emerging technologies. In response this paper explores consumer attitudes towards domestic cooking and heating technologies and energy appliances of the future which could include a role for hydrogen hobs and boilers in UK homes. To access qualitative evidence on this topic we conducted ten online focus groups (N = 58) with members of the UK public between February and April 2022. The study finds that existing gas users wish to preserve the best features of gas cooking such as speed responsiveness and controllability but also desire the potential safety and aesthetic benefits of electric systems principally induction hobs. Meanwhile future heating systems should ensure thermal comfort ease of use energy efficiency and smart performance while providing space savings and noise reduction alongside demonstrable green benefits. Mixed-methods multigroup analysis suggests divergence between support levels for hydrogen homes which implies a degree of consumer heterogeneity. Foremost we find that domestic hydrogen acceptance is positively associated with interest and engagement with renewable energy and fuel poverty pressures. We conclude that internalising the perspectives of consumers is critical to enabling constructive socio-technical imaginaries for low-carbon domestic energy futures.
Design of Gravimetric Primary Standards for Field-testing of Hydrogen Refuelling Stations
Apr 2020
Publication
The Federal Institute of Metrology METAS developed a Hydrogen Field Test Standard (HFTS) that can be used for field verification and calibration of hydrogen refuelling stations. The testing method is based on the gravimetric principle. The experimental design of the HFTS as well as the description of the method are presented here.
Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels
Aug 2023
Publication
Green energy is at the forefront of current policy research and engineering but some of the potential fuels require either a lot of deeper research or a lot of infrastructure before they can be implemented. In the case of hydrogen both are true. This report aims to analyse the potential of hydrogen as a future fuel source by performing a life-cycle assessment. Through this the well-to-tank phase of fuel production and the usage phase of the system have been analysed. Models have also been created for traditional fuel systems to best compare results. The results show that hydrogen has great potential to convert marine transport to operating off green fuels when powered through low-carbon energy sources which could reduce a huge percentage of the international community’s greenhouse gas emissions. Hydrogen produced through wind powered alkaline electrolysis produced emission data 5.25 g of CO2 equivalent per MJ compared to the 210 g per MJ produced by a medium efficiency diesel equivalent system a result 40 times larger. However with current infrastructure in most countries not utilising a great amount of green energy production the effects of hydrogen usage could be more dangerous than current fuel sources owing to the incredible energy requirements of hydrogen production with even grid (UK) powered electrolysis producing an emission level of 284 g per MJ which is an increase against standard diesel systems. From this the research concludes that without global infrastructure change hydrogen will remain as a potential fuel rather than a common one.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Exergy Analysis in Intensification of Sorption-enhanced Steam Methane Reforming for Clean Hydrogen Production: Comparative Study and Efficiency Optimisation
Feb 2024
Publication
Hydrogen has a key role to play in decarbonising industry and other sectors of society. It is important to develop low-carbon hydrogen production technologies that are cost-effective and energy-efficient. Sorption-enhanced steam methane reforming (SE-SMR) is a developing low-carbon (blue) hydrogen production process which enables combined hydrogen production and carbon capture. Despite a number of key benefits the process is yet to be fully realised in terms of efficiency. In this work a sorption-enhanced steam methane reforming process has been intensified via exergy analysis. Assessing the exergy efficiency of these processes is key to ensuring the effective deployment of low-carbon hydrogen production technologies. An exergy analysis was performed on an SE-SMR process and was then subsequently used to incorporate process improvements developing a process that has theoretically an extremely high CO2 capture rate of nearly 100 % whilst simultaneously demonstrating a high exergy efficiency (77.58 %) showcasing the potential of blue hydrogen as an effective tool to ensure decarbonisation in an energy-efficient manner.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
Exploiting the Ocean Thermal Energy Conversion (OTEC) Technology for Green Hydrogen Production and Storage: Exergo-economic Analysis
Nov 2024
Publication
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout a Kalina cycle is considered. In each configuration the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 ◦C by a solar collector. Energy exergy and exergo-economic studies were conducted to evaluate the cost of producing compressing and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser the mass flow ratio of hot and cold resource flows and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
Preliminary Assessment of a Hydrogen Farm Including Health and Safety and Capacity Needs
Dec 2024
Publication
The safety engineering design of hydrogen systems and infrastructure worker education and training regulatory compliance and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field of hydrogen safety engineering (HSE) to grow and mature. HSE is described as the application of engineering and scientific principles to protect the environment property and human life from the harmful effects of hydrogen-related mishaps and accidents. This paper describes a whole hydrogen farm that produces hydrogen from seawater by alkaline and proton exchange membrane electrolysers then details how the hydrogen gas will be used: some will be stored for use in a combined-cycle gas turbine some will be transferred to a liquefaction plant and the rest will be exported. Moreover this paper describes the design framework and overview for ensuring hydrogen safety through these processes (production transport storage and utilisation) which include legal requirements for hydrogen safety safety management systems and equipment for hydrogen safety. Hydrogen farms are large-scale facilities used to create store and distribute hydrogen which is usually produced by electrolysis using renewable energy sources like wind or solar power. Since hydrogen is a vital energy carrier for industries transportation and power generation these farms are crucial in assisting the global shift to clean energy. A versatile fuel with zero emissions at the point of use hydrogen is essential for reaching climate objectives and decarbonising industries that are difficult to electrify. Safety is essential in hydrogen farms because hydrogen is extremely flammable odourless invisible and also has a small molecular size meaning it is prone to leaks which if not handled appropriately might cause fires or explosions. To ensure the safe and dependable functioning of hydrogen production and storage systems stringent safety procedures are required to safeguard employees infrastructure and the surrounding environment from any mishaps.
Energy Storage Strategy - Narrative
Feb 2023
Publication
This narrative document sets out the main rationale for hydrogen storage development at scale in the UK: - To meet net zero the UK will need considerable energy storage - Hydrogen storage will be a major and essential part of this - Physical hydrogen storage is needed in the UK - Only geological hydrogen storage can deliver at the scale needed within the timescales for net zero - Geological hydrogen storage should be supported through a viable business model now to ensure it comes online in the 2030s.
Green Hydrogen and its Unspoken Challenges for Energy Justice
Oct 2024
Publication
Green hydrogen is often promoted as a key facilitator for the clean energy transition but its implementation raises concerns around energy justice. This paper examines the socio-political and techno-economic challenges that green hydrogen projects may pose to the three tenets of energy justice: distributive procedural and recognition justice. From a socio-political perspective the risk of neocolonial resource extraction uneven distribution of benefits exclusion of local communities from decision-making and disregard for indigenous rights and cultures threaten all three justice tenets. Techno-economic factors such as water scarcity land disputes and resource-related conflicts in potential production hotspots further jeopardise distributive and recognition justice. The analysis framed by an adapted PEST model reveals that while green hydrogen holds promise for sustainable development its implementation must proactively address these justice challenges. Failure to do so could perpetuate injustices exploitation and marginalisation of vulnerable communities undermining the sustainability goals it aims to achieve. The paper highlights the need for inclusive and equitable approaches that respect local sovereignty integrate diverse stakeholders and ensure fair access and benefit-sharing. Only by centring justice considerations can the transition to green hydrogen catalyse positive social change and realise its full potential as a driver of sustainable energy systems.
National Gas FutureGrid Phase 1 Closure Report
Jul 2024
Publication
This project an essential part of the National Gas HyNTS programme endeavours to align the NTS with GB’s net zero ambitions by demonstrating the operational viability of the system with varying hydrogen blends using decommissioned assets typical of the natural gas network today ultimately aiming for 100% hydrogen conveyance. Several desktop studies were undertaken within the HyNTS programme to confirm the theoretical potential of the NTS to transport hydrogen safely and reliably. Further to these studies practical demonstration was deemed necessary to bridge the knowledge gaps and ensure the system’s transition maintains the utmost safety and reliability standards. A range of tests on decommissioned assets were conducted offline in a controlled environment to ensure robust outcomes that will ultimately start to build the safety case for a hydrogen network. The key deliverables and testing achievements of FutureGrid included: • Operational testing with natural gas and 2% 5% 20% and 100% hydrogen to verify the network’s ability to transport hydrogen and varying blends. • Standalone offline testing modules complementing evidence gathered on the main test facility. These address specific areas of concern including material permeation flange integrity asset leakage and rupture consequence which are essential for risk mitigation and safety assurance. FutureGrid is a global first facility and a critical part of National Gas’ hydrogen programme providing physical evidence of the capability of our network to transport hydrogen. It provides key evidence for hydrogen blending alongside 100% hydrogen pipelines which are planned under Project Union our Hydrogen Backbone across GB. FutureGrid is pivotal in the journey to reaching Net Zero by 2050 and is a fully operational proven technical demonstrator. FutureGrid’s repurposed assets are representative of today’s live high pressure gas network and have been subjected to testing at different blends of natural gas with hydrogen and 100% hydrogen; this was achieved with no major findings in differences in terms of how the assets interact with hydrogen. The overall project completion date was delayed from November 2023 to February 2024 due to technical issues with the newly built hydrogen re‑compressor. There were no changes made to the project costs.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Enabling Large-scale Enhanced Hydrogen Production in Deep Underground Coal Gasification in the Context of a Hydrogen Economy
Dec 2024
Publication
Underground coal gasification (UCG) is an emerging clean energy technology with significant potential for enhanced hydrogen production especially when coupled with water injection. Previous lab-scale studies have explored this potential but the mechanisms driving water-assisted hydrogen enhancement in large-scale deep UCG settings remain unclear. This study addresses this gap using numerical simulations of a large-scale deep coal model designed for hydrogen-oriented UCG. We investigated single-point and multipoint water injection stra tegies to optimize hydrogen production. Additionally we developed a retractable water injection technique to ensure sustained hydrogen output and effective cavity control. Our results indicate that the water–gas shift re action is crucial for increasing hydrogen production. Multipoint injection has been proven to be more effective than single-point injection increasing hydrogen production by 11% with an equal amount of steam. The introduction of retractable injection allows for continuous and efficient hydrogen generation with daily hydrogen production rates of approximately five times that of a conventional injection scheme and an increase in cumulative hydrogen production of approximately 105% over the same time period. Importantly the mul tipoint injection method also helped limit vertical cavity growth mitigating the risk of aquifer contamination. These findings support the potential of UCG as a low-carbon energy source in the transition to a hydrogen economy
A Review on Liquid Hydrogen Fuel Systems in Aircraft Applications for Gas Turbine Engines
Oct 2024
Publication
The transition from traditional aviation fuels to low-emission alternatives such as hydrogen is a crucial step towards a sustainable future for aviation. Conventional jet fuels substantially contribute to greenhouse gas emissions and climate change. Hydrogen fuel especially "green" hydrogen offers great potential for achieving full sustainability in aviation. Hybrid/electric/fuel cell technologies may be used for shorter flights while longrange aircraft are more likely to combust hydrogen in gas turbines. Liquid hydrogen is necessary to minimize storage tank weight but the required fuel systems are at a low technology readiness level and differ significantly from Jet A-1 systems in architecture operation and performance. This paper provides an in-depth review covering the development of liquid hydrogen fuel system design concepts for gas turbines since the 1950s compares insights from key projects such as NASA studies and ENABLEH2 alongside an analysis of recent publications and patent applications and identifies the technological advancements required for achieving zeroemission targets through hydrogen-fuelled propulsion.
Local and Global Sensitivity Analysis for Railway Upgrading Between Hydrogen Fuel Cell and Electrification
Nov 2024
Publication
In the field of rail transit the UK Department of Transport stated that it will realize a comprehensive transformation of UK railways by 2050 abandoning traditional diesel trains and upgrading them to new environmentally friendly trains. The current mainstream upgrade methods are electrification and hydrogen fuel cells. Comprehensive upgrades are costly and choosing the optimal upgrade method for trams and mainline railways is critical. Without a sensitivity analysis it is difficult for us to determine the influence relationship between each parameter and cost resulting in a waste of cost when choosing a line reconstruction method. In addition by analyzing the sensitivity of different parameters to the cost the primary optimization direction can be determined to reduce the cost. Global higher-order sensitivity analysis enables quantification of parameter interactions showing non-additive effects between parameters. This paper selects the main parameters that affect the retrofit cost and analyzes the retrofit cost of the two upgrade methods in the case of trams and mainline railways through local and global sensitivity analysis methods. The results of the analysis show that given the current UK rail system it is more economical to choose electric trams and hydrogen mainline trains. For trams the speed at which the train travels has the greatest impact on the final cost. Through the sensitivity analysis this paper provides an effective data reference for the current railway upgrading and reconstruction plan and provides a theoretical basis for the next step of train parameter optimization.
Techno-economic Analysis of Underground Hydrogen Storage in Europe
Dec 2023
Publication
Hydrogen storage is crucial to developing secure renewable energy systems to meet the European Union’s 2050 carbon neutrality objectives. However a knowledge gap exists concerning the site-specific performance and economic viability of utilizing underground gas storage (UGS) sites for hydrogen storage in Europe. We compile information on European UGS sites to assess potential hydrogen storage capacity and evaluate the associated current and future costs. The total hydrogen storage potential in Europe is 349 TWh of working gas energy (WGE) with site-specific capital costs ranging from $10 million to $1 billion. Porous media and salt caverns boasting a minimum storage capacity of 0.5 TWh WGE exhibit levelized costs of $1.5 and $0.8 per kilogram of hydrogen respectively. It is estimated that future levelized costs associated with hydrogen storage can potentially decrease to as low as $0.4 per kilogram after three experience cycles. Leveraging these techno-economic considerations we identify suitable storage sites.
Offshore Green Hydrogen Production from Wind Energy: Critical Review and Perspective
Feb 2024
Publication
Hydrogen is envisaged to play a major role in decarbonizing our future energy systems. Hydrogen is ideal for storing renewable energy over longer durations strengthening energy security. It can be used to provide electricity renewable heat power long-haul transport shipping and aviation and in decarbonizing several industrial processes. The cost of green hydrogen produced from renewable via electrolysis is dominated by the cost of electricity used. Operating electrolyzers only during periods of low electricity prices will limit production capacity and underutilize high investment costs in electrolyzer plants. Hydrogen production from deep offshore wind energy is a promising solution to unlock affordable electrolytic hydrogen at scale. Deep offshore locations can result in an increased capacity factor of generated wind power to 60–70% 4–5 times that of onshore locations. Dedicated wind farms for electrolysis can use the majority >80% of the produced energy to generate economical hydrogen. In some scenarios hydrogen can be the optimal carrier to transport the generated energy onshore. This review discusses the opportunities and challenges in offshore hydrogen production using electrolysis from wind energy and seawater. This includes the impact of site selection size of the electrolyzer and direct use of seawater without deionization. The review compares overall electrolysis system efficiency cost and lifetime when operating with direct seawater feed and deionized water feed using reverse osmosis and flash evaporation systems. In the short to medium term it is advised to install a reverse osmosis plant with an ion exchanger to feed the electrolysis instead of using seawater directly.
Blue Hydrogen in the United Kingdom - A Policy & Environmental Case Study
Feb 2025
Publication
Blue hydrogen is one of the energy carriers to be adopted by the United Kingdom to reduce emissions to net Zero by 2050 and its use is majorly influenced by policy and technological innovations. With more than 10 blue hydrogen facilities planning productive offtake from 2025 there is an urgent need to confirm the viability of these proposed facilities to aid decarbonisation and the path to conformity to policy regulation. This study discovers that the Acorn blue hydrogen facility can produce blue hydrogen within the low carbon hydrogen standard set by the United Kingdom’s government. In this study a detailed examination of hydrogen production techniques is conducted using lifecycle assessment (LCA) approach aimed to understand the environmental impact of producing 144 tons of hydrogen per day using Acorn hydrogen facility as a case study. This was followed on with sensitive analysis embracing steam and oxygen consumption and methane leakages the ability of the facility meeting the low carbon hydrogen standard economics and the externality-priced production costs that embody the environmental impact. A gate-to-gate LCA shows that the Acorn hydrogen plant must aim at carbon capture rates of >90% to meet the set UK target of 20 gCO2e/MJLHV. The study further identifies from literature that the autothermal reforming (ATR) system with integrated carbon capture and storage (CCS) production technology as the most environmentally sustainable technology at present in comparison to commercially available options studied. This assessment helps to appraise potentially unintended causes and effects of the production of blue hydrogen that should aid future policy guidance and investments.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
‘Greening’ an Oil Exporting Country: A Hydrogen, Wind and Gas Turbine Case Study
Feb 2024
Publication
In the quest for achieving decarbonisation it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya a major oil exporter that can diversify its energy revenue sources is used as the case study. However the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity hydrogen and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled integrated and analysed to conduct this study. The developed analytical model considers a variety of factors including consumption in different sectors geographical data weather patterns wind potential and consumption trends amongst others. When gaps and inconsistencies were encountered reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level assuming a 2% growth rate and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results important qualitative and quantitative insights emerge with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers for the first time a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario energy requirements were based on replacing fossil fuels with renewable sources. In contrast the second scenario included maintaining energy exports at levels like the past substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20529 or 34199 km2 of land for wind turbine installations (for self-sufficiency and exports) and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research investment and political agenda regarding the journey to achieving decarbonisation for a country.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
Green Hydrogen Production and Liquefaction Using Offshore Wind Power, Liquid Air, and LNG Cold Energy
Sep 2023
Publication
Coastal regions have abundant off-shore wind energy resources and surrounding areas have large-scale liquefied natural gas (LNG) receiving stations. From the engineering perspectives there are limitations in unstable off-shore wind energy and fluctuating LNG loads. This article offers a new energy scheme to combine these 2 energy units which uses surplus wind energy to produce hydrogen and use LNG cold energy to liquefy and store hydrogen. In addition in order to improve the efficiency of utilizing LNG cold energy and reduce electricity consumption for liquid hydrogen (LH2) production at coastal regions this article introduces the liquid air energy storage (LAES) technology as the intermediate stage which can stably store the cold energy from LNG gasification. A new scheme for LNG-LAES-LH2 hybrid LH2 production is built. The case study is based on a real LNG receiving station at Hainan province China and this article presents the design of hydrogen production/liquefaction process and carries out the optimizations at key nodes and proves the feasibility using specific energy consumption and exergy analysis. In a 100 MW system the liquid air storage round-trip efficiency is 71.0% and the specific energy consumption is 0.189 kWh/kg and the liquid hydrogen specific energy consumption is 7.87 kWh/kg and the exergy efficiency is 46.44%. Meanwhile the corresponding techno-economic model is built and for a LNGLAES-LH2 system with LH2 daily production 140.4 tons the shortest dynamic payback period is 9.56 years. Overall this novel hybrid energy scheme can produce green hydrogen using a more efficient and economical method and also can make full use of surplus off-shore wind energy and coastal LNG cold energy.
Multi-criteria Site Selection Workflow for Geological Storage of Hydrogen in Depleted Gas Fields: A Case for the UK
Oct 2023
Publication
Underground hydrogen storage (UHS) plays a critical role in ensuring the stability and security of the future clean energy supply. However the efficiency and reliability of UHS technology depend heavily on the careful and criteria-driven selection of suitable storage sites. This study presents a hybrid multi-criteria decision-making framework integrating the Analytical Hierarchy Process (AHP) and Preference Ranking Organisation Method for Enrichment of Evaluations (PROMETHEE) to identify and select the best hydrogen storage sites among depleted gas reservoirs in the UK. To achieve this a new set of site selection criteria is proposed in light of the technical and economic aspects of UHS including location reservoir rock quality and tectonic characteristics maximum achievable hydrogen well deliverability rate working gas capacity cushion gas volume requirement distance to future potential hydrogen clusters and access to intermittent renewable energy sources (RESs). The framework is implemented to rank 71 reservoirs based on their potential and suitability for UHS. Firstly the reservoirs are thoroughly evaluated for each proposed criterion and then the AHP-PROMETHEE technique is employed to prioritise the criteria and rank the storage sites. The study reveals that the total calculated working gas capacity based on single-well plateau withdrawal rates is around 881 TWh across all evaluated reservoirs. The maximum well deliverability rates for hydrogen withdrawal are found to vary considerably among the sites; however 22 % are estimated to have deliverability rates exceeding 100 sm3 /d and 63 % are located within a distance of 100 km from a major hydrogen cluster. Moreover 70 % have access to nearby RESs developments with an estimated cumulative RESs capacity of approximately 181 GW. The results highlight the efficacy of the proposed multicriteria site selection framework. The top five highest-ranked sites for UHS based on the evaluated criteria are the Cygnus Hamilton Saltfleetby Corvette and Hatfield Moors gas fields. The insights provided by this study can contribute to informed decision-making sustainable development and the overall progress of future UHS projects within the UK and globally.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
Detailed Assessment of Dispersion for High-pressure H2 in Multi-fuel Environment
Sep 2023
Publication
The MultHyFuel project notably aims to produce the data missing for usable risk analysis and mitigation activity for Hydrogen Refuelling Stations (HRS) in a multi-fuel context. In this framework realistic releases of hydrogen that could occur in representative multi-fuel forecourts were studied. These releases can occur inside or outside fuel dispensers and they can interact with a complex environment notably made of parked cars and trucks. This paper is focused on the most critical scenarios that were addressed by a sub-group through the use of Computational Fluid Dynamics (CFD) modelling. Once the corresponding source terms for hydrogen releases were known two stages are followed:<br/>♦ Model Validation – to evaluate the CFD models selected by the task partners and to evaluate their performance through comparison to experimental data.<br/>♦ Realistic Release Modelling – to perform demonstration simulations of a range of critical scenarios.<br/>The CFD models selected for the Model Validation have been tested against measured data for a set of experiments involving hydrogen releases. Each experiment accounts for physical features that are encountered in the realistic cases. The selected experiments include an under-expanded hydrogen jet discharging into the open atmosphere with no obstacles or through an array of obstacles. Additionally a very different set-up was studied with buoyancy-driven releases inside a naturally ventilated enclosure. The results of the Model Validation exercise show that the models produce acceptable solutions when compared to measured data and give confidence in the ability of the models and the modellers to capture the behaviour of the realistic releases adequately. The Realistic Release Modelling phase will provide estimation of the flammable gas cloud volume for a set of critical scenarios and will be described at the second stage.
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
Assessment of Hydrogen Gas Turbine-fuel Cell Powerplant for Rotorcraft
Jul 2023
Publication
Conventional turboshaft engines are high power density movers suffering from low efficiency at part power operation and producing significant emissions. This paper presents a design exploration and feasibility assessment of a hybrid hydrogen-fueled powerplant for Urban Air Mobility (UAM) rotorcraft. A multi-disciplinary approach is devised comprising models for rotorcraft performance tank and subsystems sizing and engine performance. The respective trade-offs between payload-range and mission level performance are quantified for kerosene-fueled and hybrid hydrogen tilt-rotor variants. The effects of gas turbine scaling and fuel cell pressurization are evaluated for different hybridization degrees. Gas turbine scaling with hybridization (towards the fuel cell) results in up to 21% benefit in energy consumption relative to the non-scaled case with the benefits being more pronounced at high hybridization degrees. Pressurizing the fuel cell has shown significant potential as cell efficiency can increase up to 10% when pressurized to 6 bar which translates to a 6% increase in overall efficiency. The results indicate that current fuel cells (1 kW/kg) combined with current hydrogen tank technology severely limit the payload range capability of the tilt-rotor. However for advanced fuel cell technology (2.5 kW/kg) and low ranges hybrid powerplant show the potential to reduce energy consumption and reduce emissions footprint.
Computational Predictions of Hydrogen-assisted Fatigue Crack Growth
May 2024
Publication
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue stress-assisted hydrogen diffusion and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered spanning multiple load ratios H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data taking as input only mechanical and hydrogen transport material properties the material’s fatigue characteristics (from a single test in air) and the sensitivity of fracture toughness to hydrogen content. Furthermore the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Erosive Effects of Hydrogen Jet Fires on Tunnel Structural Materials
Sep 2023
Publication
This paper presents work undertaken as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. This test programme investigated erosive effects of an ignited high pressure hydrogen jet impinging onto tunnel structural materials specifically concrete as used for tunnel linings and asphalt road surfacing for the road itself. The chosen test conditions mimicked a high-pressure release (700 bar) from an FCH car as a result of activation of the thermal pressure relief device (TPRD) on the fuel tank. These devices typically have a release opening of 2 mm and thus a nozzle diameter of approximately 2 mm was used. The resultant releases were ignited using a propane pilot light and test samples were placed in the jet path at varying standoff distances from the release nozzle.<br/>An initial characterization test of a free unimpeded ignited jet demonstrated a rapid and intense temperature increase up to 1650 °C lasting in the order of 3 - 5 minutes for that fuel inventory (4 kg hydrogen). Five tests were carried out where the ignited jet was impinged onto five structural samples. It was found that erosion occurred in the concrete samples where no fire mitigation namely addition of polypropylene fibres was applied. The road-surface sample was found to become molten but did not progress to combustion.<br/>Post-test material analysis including compressive strength and thermal conductivity measurements was carried out on some of the concrete samples to investigate whether structural deformities had occurred within the sample microstructure. The results suggested that the erosive damage caused by the hydrogen jet was mostly superficial and as such did not present an increased fire risk to the structural integrity to that of conventional hydrocarbon fires i.e. those that would result from petrol or diesel fuel tank releases. In terms of fire resistance standards it is suggested that current fire mitigation strategies and structural testing standards would be adequate for hydrogen vehicles on the road network.
Synergy of Carbon Capture, Waste Heat Recovery and Hydrogen Production for Industrial Decarbonisation
May 2024
Publication
Industry is the biggest sector of energy consumption and greenhouse gas emissions whose decarbonisation is essential to achieve the Sustainable Development Goals. Carbon capture energy efficiency improvement and hydrogen are among the main strategies for industrial decarbonization. However novel approaches are needed to address the key requirements and differences between sectors to ensure they can work together to well integrate industrial decarbonisation with heat CO2 and hydrogen. The emerging Calcium Looping (CaL) is attracting interest in designing CO2-involved chemical processes for heat capture and storage. The reversibility relatively high-temperature (600 to 900 ◦C) and high energy capacity output as well as carbon capture function make CaL well-fit for CO2 capture and utilisation and waste heat recovery from industrial flue gases. Meanwhile methane dry reforming (MDR) is a promising technology to produce blue hydrogen via the consumption of two major greenhouse gases i.e. CO2 and CH4. It has great potential to combine the two technologies to achieve insitu CO2 utilization with multiple benefits. In this paper progresses on the reaction conditions and performance of CaL for CO2 capture and industrial waste heat recovery as well as MDR were screened. Secondly recent approaches to CaL-MDR synergy have been reviewed to identify the advantages. The major challenges in such a synergistic process include MDR catalyst deactivation CaL sorbents sintering and system integration. Thirdly the paper outlooks future work to explore a rational design of a multi-function system for the proposed synergistic process.
Forecasting the Development of Clean Energy Vehicles in Large Cities: A System Dynamics Perspective
Jan 2024
Publication
Clean energy vehicles (CEVs) e.g. battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are being adopted gradually to substitute for internal combustion engine vehicles (ICEVs) around the world. The fueling infrastructure is one of the key drivers for the development of the CEV market. When the government develops funding policies to support the fueling infrastructure development for FCEVs and BEVs it has to assess the effectiveness of different policy options and identify the optimal policy combination which is very challenging in transportation research. In this paper we develop a system dynamics model to study the feedback mechanism between the fueling infrastructure funding policies and the medium- to long-term diffusion of FCEVs and BEVs and the competition between FCEVs and BEVs based on relevant policy and market data in Guangzhou China. The results of the modeling analysis are as follows. (1) Funding hydrogen refueling stations and public charging piles has positive implications for achieving the substitution of CEVs for ICEVs. (2) Adjusting the funding ratio of hydrogen refueling stations and public charging piles or increasing the funding budget and extending the funding cycle does not have a significant impact on the overall substitution of CEVs for ICEVs but only impacts the relative competitive advantage between FCEVs and BEVs. (3) An equal share of funding for hydrogen refueling stations and public charging piles would have better strategic value for future net-zero-emissions urban transportation. (4) Making a moderate-level full investment in hydrogen refueling stations coupled with hydrogen refueling subsidies can provide the ideal conditions for FCEV diffusion.
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Mechanistic Evaluation of the Reservoir Engineering Performance for the Underground Hydrogen Storage in a Deep North Sea Aquifer
Jul 2023
Publication
Underground hydrogen storage (UHS) in aquifers salt caverns and depleted hydrocarbon reservoirs allows for the storage of larger volumes of H2 compared to surface storage in vessels. In this work we investigate the impact of aquifer-related mechanisms and parameters on the performance of UHS in an associated North Sea aquifer using 3D numerical compositional simulations. Simulation results revealed that the aquifer's permeability heterogeneity has a significant impact on the H2 recovery efficiency where a more homogenous rock would lead to improved H2 productivity. The inclusion of relative permeability hysteresis resulted in a drop in the H2 injectivity and recovery due to H2 discontinuity inside the aquifer which leads to residual H2 during the withdrawal periods. In contrast the effects of hydrogen solubility and hydrogen diffusion were negligible when studied each in isolation from other factors. Hence it is essential to properly account for hysteresis and heterogeneity when evaluating UHS in aquifers.
Techno-economic Assessment of Liquid Carrier Methods for Intercontinental Shipping of Hydrogen: A Case Study
Nov 2024
Publication
As global economies seek to transition to low-carbon energy systems to achieve net zero targets hydrogen has potential to play a key role to decarbonise sectors that are unsuited to electrification or where long-term energy storage is required. Hydrogen can also assist in enabling decentralized renewable power generation to satisfy higher electricity demand to match the scale-up of electrified technologies. In this context suitable transport storage and distribution networks will be essential to connect hydrogen generation and utilisation sites. This paper presents a techno-economic impact evaluation of international marine hydrogen transportation between Canada and the Netherlands comparing liquid hydrogen ammonia and a dibenzyl toluene liquid organic hydrogen carrier (LOHC) as potential transport vectors. Economic costs energy consumption and losses in each phase of the transportation system were analysed for each vector. Based on the devised scenarios our model suggests levelised costs of hydrogen of 6.35–9.49 $2022/kgH2 and pathway efficiencies of 55.6–71.9%. While liquid hydrogen was identified as the most cost-competitive carrier sensitivity analysis revealed a merit order for system optimisation strategies based upon which LOHC could outperform both liquid hydrogen and ammonia in the future.
No more items...