Blue Hydrogen in the United Kingdom - A Policy & Environmental Case Study
Abstract
Blue hydrogen is one of the energy carriers to be adopted by the United Kingdom to reduce emissions to net Zero by 2050 and its use is majorly influenced by policy and technological innovations. With more than 10 blue hydrogen facilities planning productive offtake from 2025, there is an urgent need to confirm the viability of these proposed facilities to aid decarbonisation and the path to conformity to policy regulation. This study discovers that the Acorn blue hydrogen facility can produce blue hydrogen within the low carbon hydrogen standard set by the United Kingdom’s government. In this study, a detailed examination of hydrogen production techniques is conducted using lifecycle assessment (LCA) approach aimed to understand the environmental impact of producing 144 tons of hydrogen per day using Acorn hydrogen facility as a case study. This was followed on with sensitive analysis embracing steam and oxygen consumption and methane leakages, the ability of the facility meeting the low carbon hydrogen standard, economics, and the externality-priced production costs that embody the environmental impact. A gate-to-gate LCA shows that the Acorn hydrogen plant must aim at carbon capture rates of >90% to meet the set UK target of 20 gCO2e/MJLHV. The study further identifies from literature that the autothermal reforming (ATR) system with integrated carbon capture and storage (CCS) production technology as the most environmentally sustainable technology at present in comparison to commercially available options studied. This assessment helps to appraise potentially unintended causes and effects of the production of blue hydrogen that should aid future policy guidance and investments.