United Kingdom
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
Jun 2025
Publication
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies the review establishes compelling issues challenges and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy and in particular for solar and wind as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps cost hurdles and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification energy security and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains.
Polymers and Composites for Hydrogen Economy: A Perspective
Oct 2025
Publication
This paper provides authors’ perspective on the current advances and challenges in utilising polymers and composites in hydrogen economy. It has originated from ‘Polymers and Composites for Hydrogen Economy’ symposium organised in March 2025 at the University of Warwick. This paper presents views from the event and thus provides a perspective from academia and industry on the ongoing advances and challenges for those materials in hydrogen applications.
Solar Enabled Pathway to Large-scale Green Hydrogen Production and Storage: A Framework for Oman's Advancing Renewable Energy Goals
Aug 2025
Publication
The utilisation of renewable energy sources for hydrogen production is increasingly vital for ensuring the long-term sustainability of global energy systems. Currently the Sultanate of Oman is actively integrating renewable energy particularly through the deployment of solar photovoltaic (PV) systems as part of its ambitious targets for the forthcoming decades. Also Oman has target to achieve 1 million tonnes of green-H2 production annually. Leveraging Oman's abundant solar resources to produce green hydrogen and promote the clean transportation industry could significantly boost the country's sustainable energy sector. This paper outlines a standalone bifacial solar-powered system designed for large-scale green hydrogen (H2) production and storage to operate both a hydrogen refuelling station and an electric vehicle charging station in Sohar Oman. Using HOMER software three scenarios: PV/Hydrogen/Battery PV/Hydrogen PV/Battery systems were compared from a techno-economic perspective. Also the night-time operation (Battery/Hydrogen) was investigated. Varying cost of electricity were obtained depending on the system from $3.91/kWh to $0.0000565kWh while the bifacial PV/Hydrogen/Battery system emerged as the most efficient option boasting a unit cost of electricity (COE) of $3.91/kWh and a levelized cost of hydrogen (LCOH) value of $6.63/kg with net present cost 199M. This system aligns well with Oman's 2030 objectives with the capacity to generate 1 million tonnes of green-H2 annually. Additionally the findings show that the surplus electricity from the system could potentially cover over 30% of Oman's total energy consumption with zero harmful emissions. The implementation of this system promises to enhance Oman's economic and transportation industries by promoting the adoption of electric and fuel cell vehicles while reducing reliance on traditional energy sources.
Low to Near-zero CO2 Production of Hydrogen from Fossil Fuels: Critical Role of Microwave-initiated Catalysis
Apr 2025
Publication
Presently there is no single clear route for the near-term production of the huge volumes of CO2-free hydrogen necessary for the global transition to any type of hydrogen economy. All conventional routes to produce hydrogen from hydrocarbon fossil fuels (notably natural gas) involve the production—and hence the emission—of CO2 most notably in the steam methane reforming (SMR) process. Our recent studies have highlighted another route; namely the critical role played by the microwave-initiated catalytic pyrolysis decomposition or deconstruction of fossil hydrocarbon fuels to produce hydrogen with low to near-zero CO2 emissions together with high-value solid nanoscale carbonaceous materials. These innovations have been applied firstly to wax then methane crude oil diesel then biomass and most recently Saudi Arabian light crude oil as well as plastics waste. Microwave catalysis has therefore now emerged as a highly effective route for the rapid and effective production of hydrogen and high-value carbon nanomaterials co-products in many cases accompanied by low to near-zero CO2 emissions. Underpinning all of these advances has been the important concept from solid state physics of the so-called Size-Induced-Metal-Insulator Transition (SIMIT) in mesoscale or mesoscopic particles of catalysts. The mesoscale refers to a range of physical scale in-between the micro- and the macro-scale of matter (Huang W Li J and Edwards PP 2018 Mesoscience: exploring the common principle at mesoscale Natl. Sci. Rev. 5 321-326 (doi:10.1093/nsr/nwx083)). We highlight here that the actual physical size of the mesoscopic catalyst particles located close to the SIMIT is the primary cause of their enhanced microwave absorption and rapid heating of particles to initiate the catalytic—and highly selective—breaking of carbon–hydrogen bonds in fossil hydrocarbons and plastics to produce clean hydrogen and nanoscale carbonaceous materials. Importantly also since the surrounding ‘bath’ of hydrocarbons is cooler than the microwave-heated catalytic particles themselves the produced neutral hydrogen molecule can quickly diffuse from the active sites. This important feature of microwave heating thereby minimizes undesirable side reactions a common feature of conventional thermal heating in heterogeneous catalysis. The low to near-zero CO2 production of hydrogen via microwave-initiated decomposition or cracking of abundant hydrocarbon fossil fuels may be an interim viable alternative to the conventional widely-used SMR that a highly efficient process but unfortunately associated with the emission of vast quantities of CO2. Microwave-initiated catalytic decomposition also opens up the intriguing possibility of using distributed methane in the current natural gas structure to produce hydrogen and high-value solid carbon at either central or distributed sites. That approach will lessen many of the safety and environmental concerns associated with transporting hydrogen using the existing natural gas infrastructure. When completely optimized microwave-initiated catalytic decomposition of methane (and indeed all hydrocarbon sources) will produce no aerial carbon (CO2) and only solid carbon as a co-product. Furthermore reaction conditions can surely be optimized to target the production of high-quality synthetic graphite as the major carbon-product; that material of considerable importance as the anode material for lithium-ion batteries. Even without aiming for such products derived from the solid carbon co-product it is of course far easier to capture solid carbon rather than capturing gaseous CO2 at either the central or distributed sites. Through microwave-initiated catalytic pyrolysis this decarbonization of fossil fuels can now become the potent source of sustainable hydrogen and high-value carbon nanomaterials.
Physics-Informed Co-Optimization of Fuel-Cell Flying Vehicle Propulsion and Control Systems with Onboard Catalysis
Oct 2025
Publication
Fuel-cell flying vehicles suffer from limited endurance while ammonia decomposed onboard to supply hydrogen offers a carbon-free high-density solution to extend flight missions. However the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end this paper introduces a novel optimization paradigm termed physics-informed gradient-enhanced multi-objective optimization (PIGEMO) to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition powertrain sizing and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PIGEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results.
Hydrogen Barrier Coatings: Application and Assessment
Sep 2025
Publication
Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogenrich environments. This review critically explores hydrogen barrier coatings (HBCs) polymeric metallic ceramic and composite their application and assessment focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized highlighting the pressing need for durable scalable and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production storage and transport infrastructure.
Hydrogen Production Intensification by Energy Demand Management in High-Temperature Electrolysis
Aug 2025
Publication
Solid oxide electrolysers (SOEs) can decarbonise H2 supply when powered by renewable electricity but remain constrained by high electrical demand and integration penalties. Our objective is to minimise the electrical (Pel) and thermal (Qth) energy demand per mole of H2 by jointly tuning cell temperature steam fraction steam utilisation pressure and current density. Compared with prior single-variable or thermo-neutral-constrained studies we develop and validate a steady-state process-level optimisation framework that couples an Aspen Plus SOE model with electrochemical post-processing and heat caused by ohmic resistance recovery. A Box–Behnken design explores five key operating parameters to capture synergies and trade-offs between Qth and Pel energy inputs. Single-objective optimisation yields Pel = 170.1 kJ mol⁻¹ H2 a 41.4% reduction versus literature baselines. Multi-objective optimisation using an equal-weighted composite desirability function aggregating thermal and electrical demands further reduces Pel by 21.2% while balancing thermal input 4–8% lower than single-objective baselines at moderate temperature (~781 °C) and pressure (~17.5 bar). Findings demonstrate a clear process intensification advantage over previous studies by simultaneously leveraging operating parameter synergies and heat-integration. However results are bounded by steady-state perfectly mixed isothermal assumptions. The identified operating windows are mechanistically grounded targets that warrant stack-scale and plantlevel validation.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
Oct 2025
Publication
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters including power density efficiency emissions and integration challenges aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type thermal management systems (TMS) lightweight electric machines and power electronics and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges it presents its technical hurdles especially related to combustion dynamics NOx emissions and contrail formation. Advanced combustor designs such as micromix staged and lean premixed systems are being explored to mitigate these challenges. Finally the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed demonstrating the potential to improve specific fuel consumption by up to 13%.
Techno-Economic Assessment of Carbon-Neutral Ammonia Fuel for Ships from Renewable Wind Energy
Oct 2025
Publication
Climate change is fuelled by the continued growth of global carbon emissions with the widespread use of fossil fuels being the main driver. To achieve a decarbonisation transition of the energy mix the development of clean and renewable fuels has become crucial. Ammonia is seen as an important option for decarbonisation in the transport and energy sectors due to its zero-carbon emission potential and renewable energy compatibility. However the high energy consumption and carbon emissions of the conventional Haber– Bosch method limit its sustainability. A green ammonia synthesis system was designed using ECLIPSE and Excel simulations in the study. Results show that at a recirculation ratio of 70% the system’s annual total energy consumption is 426.22 GWh with annual ammonia production reaching 8342.78 t. The optimal system configuration comprises seven 12 MW offshore wind turbines integrated with a 460 MWh lithium battery and 240 t of hydrogen storage capacity. At this configuration the LCOE is approximately £5956.58/t. It shows that incorporating renewable energy can significantly reduce greenhouse gas emissions but further optimisation of energy storage configurations and reaction conditions is needed to lower costs. This research provides a reference for the industrial application of green ammonia in the transportation sector.
No more items...