Ireland
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
Evaluation of Heat Decarbonization Strategies and Their Impact on the Irish Gas Network
Dec 2021
Publication
Decarbonization of the heating sector is essential to meet the ambitious goals of the Paris Climate Agreement for 2050. However poorly insulated buildings and industrial processes with high and intermittent heating demand will still require traditional boilers that burn fuel to avoid excessive burden on electrical networks. Therefore it is important to assess the impact of residential commercial and industrial heat decarbonization strategies on the distribution and transmission gas networks. Using building energy models in EnergyPlus the progressive decarbonization of gas-fueled heating was investigated by increasing insulation in buildings and increasing the efficiency of gas boilers. Industrial heat decarbonization was evaluated through a progressive move to lowercarbon fuel sources using MATLAB. The results indicated a maximum decrease of 19.9% in natural gas utilization due to the buildings’ thermal retrofits. This coupled with a move toward the electrification of heat will reduce volumes of gas being transported through the distribution gas network. However the decarbonization of the industrial heat demand with hydrogen could result in up to a 380% increase in volumetric flow rate through the transmission network. A comparison between the decarbonization of domestic heating through gas and electrical heating is also carried out. The results indicated that gas networks can continue to play an essential role in the decarbonized energy systems of the future.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook
Feb 2022
Publication
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen the ultimate clean fuel from the Sun and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting but it is very inefficient; rather we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields and in how this can alter and boost PEC activity drawing both on experiment and non-equilibrium molecular simulation.
Green Hydrogen: A New Flexibility Source for Security Constrained Scheduling of Power Systems with Renewable Energies
Apr 2021
Publication
Green hydrogen i.e. the hydrogen generated from renewable energy sources (RES) will significantly contribute to a successful energy transition. Besides to facilitate the integration and storage of RES this promising energy carrier is well capable to efficiently link various energy sectors. By introduction of green hydrogen as a new flexibility source to power systems it is necessary to investigate its possible impacts on the generation scheduling and power system security. In this paper a security-constrained multi-period optimal power flow (SC-MPOPF) model is developed aiming to determine the optimal hourly dispatch of generators as well as power to hydrogen (P2H) units in the presence of large-scale renewable energy sources (RES). The proposed model characterizes the P2H demand flexibility in the proposed SC-MPOPF model taking into account the electrolyzer behavior reactive power support of P2H demands and hydrogen storage capability. The developed SC-MPOPF model is applied to IEEE 39-bus system and the obtained numerical results demonstrate the role of P2H flexibility on cost as well as RES's power curtailment reduction.
Cost Assessment of Alternative Fuels for Maritime Transportation in Ireland
Aug 2022
Publication
In this study we investigated the cost-effectiveness of four alternatives: Liquified Natural Gas (LNG) methanol green hydrogen and green ammonia for the case of top 20 most frequently calling ships to Irish ports in 2019 through the Net Present Value (NPV) methodology incorporating the benefits incurred through saved external carbon tax and conventional fuel costs. LNG had the highest NPV (€6166 million) followed by methanol (€1705 million) and green hydrogen (€319 million). Green ammonia utilisation (as a hydrogen carrier) looks inviable due to higher operational costs resulting from its excessive consumption (i.e. losses) during the cracking and purifying processes and its lower net calorific value. Green hydrogen remains the best option to meet future decarbonisation targets although a further reduction in its current fuel price (by 60%) or a significant increment in the proposed carbon tax rate (by 275%) will be required to improve its cost-competitiveness over LNG and methanol.
Electric-field-promoted Photo-electrochemical Production of Hydrogen from Water Splitting
Jul 2021
Publication
Given that conversion efficiencies of incident solar radiation to liquid fuels e.g. H2 are of the order of a few percent or less as quantified by ‘solar to hydrogen’ (STH) economically inexpensive and operationally straightforward ways to boost photo-electrochemcial (PEC) H2 production from solar-driven water splitting are important. In this work externally-applied static electric fields have led to enhanced H2 production in an energy-efficient manner with up to ~30–40% increase in H2 (bearing in mind fieldinput energy) in a prototype open-type solar cell featuring rutile/titania and hematite/iron-oxide (Fe2O3) respectively in contact with an alkaline aqueous medium (corresponding to respective relative increases of STH by ~12 and 16%). We have also performed non-equilibrium ab-initio molecular dynamics in both static electric and electromagnetic (e/m) fields for water in contact with a hematite/iron-oxide (0 0 1) surface observing enhanced break-up of water molecules by up to ~70% in the linear-response régime. We discuss the microscopic origin of such enhanced water-splitting based on experimental and simulation-based insights. In particular we external-field direction at the hematite surfaces and scrutinise properties of the adsorbed water molecules and OH– and H3O+ species e.g. hydrogen bonds between water-protons and the hematite surfaces’ bridging oxygen atoms as well as interactions between oxygen atoms in adsorbed water molecules and underlying iron atoms.
Biological Hydrogen Methanation Systems – An Overview of Design and Efficiency
Oct 2019
Publication
The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen – produced during electrolysis – with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2) typically increasing the methane output of the biogas system by 70%. In this paper several BHM systems were researched and a compilation of such systems was synthesized facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified
What Will Fuel Transport Systems of the Future?
Nov 2011
Publication
This paper seeks to decry the notion of a single solution or “silver bullet” to replace petroleum products with renewable transport fuel. At different times different technological developments have been in vogue as the panacea for future transport needs: for quite some time hydrogen has been perceived as a transport fuel that would be all encompassing when the technology was mature. Liquid biofuels have gone from exalted to unsustainable in the last ten years. The present flavor of the month is the electric vehicle. This paper examines renewable transport fuels through a review of the literature and attempts to place an analytical perspective on a number of technologies.
Green Hydrogen Blends with Natural Gas and Its Impact on the Gas Network
Oct 2022
Publication
With increasing shares of variable and uncertain renewable generation in many power systems there is an associated increase in the importance of energy storage to help balance supply and demand. Gas networks currently store and transport energy and they have the potential to play a vital role in longer-term renewable energy storage. Gas and electricity networks are becoming more integrated with quick-responding gas-fired power plants providing a significant backup source for renewable electricity in many systems. This study investigates Ireland’s gas network and operation when a variable green hydrogen input from excess wind power is blended with natural gas. How blended hydrogen impacts a gas network’s operational variables is also assessed by modelling a quasi-transient gas flow. The modelling approach incorporates gas density and a compressibility factor in addition to the gas network’s main pressure and flow rate characteristics. With an increasing concentration of green hydrogen up to 20% in the gas network the pipeline flow rate must be increased to compensate for reduced energy quality due to the lower energy density of the blended gas. Pressure drops across the gas pipeline have been investigated using different capacities of P2H from 18 MW to 124 MW. The results show significant potential for the gas network to store and transport renewable energy as hydrogen and improve renewable energy utilisation without upgrading the gas network infrastructure.
Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen
Jun 2022
Publication
Hydrogen is considered the fuel of the future due to its cleaner nature compared to methane and gasoline. Therefore renewable hydrogen production technologies and long-term affordable and safe storage have recently attracted significant research interest. However natural underground hydrogen production and storage have received scant attention in the literature despite its great potential. As such the associated formation mechanisms geological locations and future applications remain relatively under-explored thereby requiring further investigation. In this review the global natural hydrogen formation along with reaction mechanisms (i.e. metamorphic processes pyritization and serpentinization reactions) as well as the suitable geological locations (i.e. ophiolites organic-rich sediments fault zones igneous rocks crystalline basements salt bearing strata and hydrocarbon-bearing basins) are discussed. Moreover the underground hydrogen storage mechanisms are detailed and compared with underground natural gas and CO2 storage. Techno-economic analyses of large-scale underground hydrogen storage are presented along with the current challenges and future directions.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Green Hydrogen Supply Chain Risk Analysis: A European Hard-to-abate Sectors Perspective
May 2023
Publication
Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel chemical cement and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources such as wind or solar power through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers electrolysers distribution facilities and consumers. Although there have been many studies about green hydrogen little attention has been devoted to green hydrogen supply chain risk identification and analysis especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region’s green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts’ opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.
Decarbonising City Bus Networks in Ireland with Renewable Hydrogen
Dec 2020
Publication
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production transportation and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm sizing of the electrolyser PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced transported and dispensed using this system can meet the entire current bus fuel demand for all the studied cities at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH the future operational cost of FCEBs in Belfast Cork and Dublin can be competitive with public buses fuelled by diesel especially under carbon taxes more reflective of the environmental impact of fossil fuels.
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
May 2021
Publication
Development of probabilistic modelling tools to perform Bayesian inference and uncertainty quantification (UQ) is a challenging task for practical hydrogen-enriched and low-emission combustion systems due to the need to take into account simultaneously simulated fluid dynamics and detailed combustion chemistry. A large number of evaluations is required to calibrate models and estimate parameters using experimental data within the framework of Bayesian inference. This task is computationally prohibitive in high-fidelity and deterministic approaches such as large eddy simulation (LES) to design and optimize combustion systems. Therefore there is a need to develop methods that: (a) are suitable for Bayesian inference studies and (b) characterize a range of solutions based on the uncertainty of modelling parameters and input conditions. This paper aims to develop a computationally-efficient toolchain to address these issues for probabilistic modelling of NOx emission in hydrogen-enriched and lean-premixed combustion systems. A novel method is implemented into the toolchain using a chemical reactor network (CRN) model non-intrusive polynomial chaos expansion based on the point collocation method (NIPCE-PCM) and the Markov Chain Monte Carlo (MCMC) method. First a CRN model is generated for a combustion system burning hydrogen-enriched methane/air mixtures at high-pressure lean-premixed conditions to compute NOx emission. A set of metamodels is then developed using NIPCE-PCM as a computationally efficient alternative to the physics-based CRN model. These surrogate models and experimental data are then implemented in the MCMC method to perform a two-step Bayesian calibration to maximize the agreement between model predictions and measurements. The average standard deviations for the prediction of exit temperature and NOx emission are reduced by almost 90% using this method. The calibrated model then used with confidence for global sensitivity and reliability analysis studies which show that the volume of the main-flame zone is the most important parameter for NOx emission. The results show satisfactory performance for the developed toolchain to perform Bayesian inference and UQ studies enabling a robust and consistent process for designing and optimising low-emission combustion systems.
Solar Hydrogen for High Capacity, Dispatchable, Long-distance Energy transmission – A Case Study for Injection in the Greenstream Natural Gas Pipeline
Nov 2022
Publication
This paper presents the results of techno-economic modelling for hydrogen production from a photovoltaic battery electrolyser system (PBES) for injection into a natural gas transmission line. Mellitah in Libya connected to Gela in Italy by the Greenstream subsea gas transmission line is selected as the location for a case study. The PBES includes photovoltaic (PV) arrays battery electrolyser hydrogen compressor and large-scale hydrogen storage to maintain constant hydrogen volume fraction in the pipeline. Two PBES configurations with different large-scale storage methods are evaluated: PBESC with compressed hydrogen stored in buried pipes and PBESL with liquefied hydrogen stored in spherical tanks. Simulated hourly PV electricity generation is used to calculate the specific hourly capacity factor of a hypothetical PV array in Mellitah. This capacity factor is then used with different PV sizes for sizing the PBES. The levelised cost of delivered hydrogen (LCOHD) is used as the key techno-economic parameter to optimise the size of the PBES by equipment sizing. The costs of all equipment except the PV array and batteries are made to be a function of electrolyser size. The equipment sizes are deemed optimal if PBES meets hydrogen demand at the minimum LCOHD. The techno-economic performance of the PBES is evaluated for four scenarios of fixed and constant hydrogen volume fraction targets in the pipeline: 5% 10% 15% and 20%. The PBES can produce up to 106 kilotonnes of hydrogen per year to meet the 20% target at an LCOHD of 3.69 €/kg for compressed hydrogen storage (PBESC) and 2.81 €/kg for liquid hydrogen storage (PBESL). Storing liquid hydrogen at large-scale is significantly cheaper than gaseous hydrogen even with the inclusion of a significantly larger PV array that is required to supply additional electrcitiy for liquefaction.
Chilean National Green Hydrogen Strategy
Nov 2020
Publication
Like hydrogen Chile is small by nature and accordingly contributes just 0.3% to global greenhouse gas emissions. However we too have an outsized role to play in turning the tide on rising emissions and pursuing a low carbon path to growth and development.<br/>What we lack in size we more than make up for in potential. In the desert in the North with the highest solar irradiance on the planet and in the Patagonia in the South with strong and consistent winds we have the renewable energy potential to install 70 times the electricity generation capacity we have today. This abundant renewable energy will enable us to become the cheapest producer of green hydrogen on Earth. Our National Green Hydrogen Strategy is aimed at turning this promise into reality.<br/>The Strategy is the result of collaborative work between industry academia civil society and the public sector and is an essential piece of our carbon neutrality plan and commitment to sustainable development. It will allow us to produce and export products that are created using zero carbon fuels distinguishing our exports as clean products for end users. It will also enable us to export our renewable energy to the world in the form of green liquid hydrogen green ammonia and clean synthetic fuels.<br/>Traditionally Chile lacked fossil fuels and was forced to import the energy it required. Now the coming of age of the tiniest atom will allow us to drive deep decarbonization in our own country and throughout the world. This Strategy is the first step for Chile in embracing this promise and fulfilling its new potential.
Ireland National Hydrogen Strategy
Jul 2023
Publication
The National Hydrogen Strategy sets out the strategic vision on the role that hydrogen will play in Ireland’s energy system looking to its long-term role as a key component of a zero-carbon economy and the short-term actions that need to be delivered over the coming years to enable the development of the hydrogen sector in Ireland.<br/>The Strategy is being developed for three primary reasons:<br/>1. Decarbonising our economy providing a solution to hard to decarbonise sectors where electrification is not feasible or cost-effective<br/>2. Enhancing our energy security through the development of an indigenous zero carbon renewable fuel which can act as an alternative to the 77% of our energy system which today relies on fossil fuel imports<br/>3. Developing industrial opportunities through the potential development of export markets for renewable hydrogen and other areas such as Sustainable Aviation Fuels<br/>The Strategy considers the needs of the entire hydrogen value chain including production end-uses transportation and storage safety regulation markets innovation and skills.<br/>It also sets out that Ireland will focus its efforts on the scale up and production of renewable ""green"" hydrogen as it supports both our decarbonisation needs and energy security needs given our vast indigenous renewable resources. Renewable hydrogen is a renewable and zero-carbon fuel that can play a key role in the ""difficult-to-decarbonise"" sectors of our economy where other solutions such as direct electrification are not feasible or cost effective.<br/>In the coming years renewable hydrogen is envisioned to play an important role as a zero-emission source of dispatchable flexible electricity as a long duration store of renewable energy in decarbonising industrial processes and as a transport fuel in sectors such as heavy goods transport maritime and aviation. The Strategy will provide clarity for stakeholders on how we expect the hydrogen economy to develop and scale up over the coming decades across the entire value chain.
Recent Challenges and Development of Technical and Technoeconomic Aspects for Hydrogen Storage, Insights at Different Scales; A State of Art Review
May 2024
Publication
The importance of the energy transition and the role of green hydrogen in facilitating this transition cannot be denied. Therefore it is crucial to pay close attention to and thoroughly understand hydrogen storage which is a critical aspect of the hydrogen supply chain. In this comprehensive review paper we have undertaken the task of categorising and evaluating various hydrogen storage technologies across three different scales. These scales include small-scale and laboratory-based methods such as metal-based hydrides physical adsorbents and liquid organic hydrogen carriers. Also we explore medium and large-scale approaches like compressed gaseous hydrogen liquid cryogenic hydrogen and cryocompressed hydrogen. Lastly we delve into very large-scale options such as salt caverns aquifers depleted gas/oil reservoirs abandoned mines and hard rock caverns. We have thoroughly examined each storage technology from technical and maturity perspectives as well as considering its techno-economic viability. It is worth noting that development has been ongoing for each storage mechanism; however numerous technical and economic challenges persist in most areas. Particularly the cost per kilogramme of hydrogen for most current technologies demands careful consideration. It is recommended that small-scale hydrogen storage technologies such as metal hydrides (e.g. MgH2 LiBH4) need ongoing research to enhance their performance. Physical adsorbents have limited capacity except for activated carbon. Some liquid organic hydrogen carriers (LCOHs) are suitable for medium-scale storage in the near term. Ammonia-borane (AB) with its high gravimetric and volumetric properties is a promising choice for medium-scale storage pending effective dehydrogenation. It shows potential as a hydrogen carrier due to its high storage capacity stability and solubility surpassing DOE targets for storage capabilities. Medium-scale storage utilising compressed gas cylinders and advancements in liquefied and cryocompressed hydrogen storage requires cost reduction measures and a strategic supply chain. Large-scale storage options include salt caverns aquifers and depleted gas/oil reservoirs with salt caverns offering pure hydrogen need further technoeconomic analysis and deployment projects to mature but storage costs are reasonable ranging mostly from €0.25/kg to €1.5/kg for location specific large-scale options.
No more items...