Korea, Republic of
CFD Modeling on Natural and Forced Ventilation During Hydrogen Leaks in a Pressure Regulator Process of a Residential Area
Mar 2022
Publication
Hydrogen fuel cells have been installed in more than 100 facilities and numerous homes in Ulsan hydrogen town in the Republic of Korea. Despite the advantages of hydrogen accidents can still occur near residential areas. Thus appropriate risk mitigation plans should be established. In this study a computational fluid dynamics (CFD) model of natural and forced ventilation is presented as an emergency response to hydrogen leakages in pressure regulator equipment housing. The CFD model is developed and investigated using three vent configurations: UP CROSS and UP-DOWN. The simulation results indicate that the UPDOWN configuration achieves the lowest internal hydrogen concentration out of the three. In addition the relationship between the total vent size and internal hydrogen concentration is determined. A vent size of 12% of the floor area has the lowest hydrogen concentration. The use of nitrogen for forced ventilation during emergencies is proposed to ensure that the hydrogen concentration of the released gas is less than one-fourth of the lower flammability 2 / 25 limit of hydrogen. Compared to natural ventilation the time required to reach safe conditions is decreased when nitrogen forced ventilation is used.
Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain
Oct 2022
Publication
Hydrogen energy one of the energy sources of the future represents a substantial issue which affects the industries and national technologies that will develop in the future. In order to utilize hydrogen energy a hydrogen supply chain is required so that hydrogen can be processed and transported to vehicles. It is helpful for technology and policy development to analyze technologies necessary to charge the hydrogen energy generated into vehicles through the supply chain to discover technologies with high potential for future development. The purpose of this paper is to identify promising technologies required in storing transporting and charging vehicles generated by the hydrogen fuel supply chain. Afterward the promising technologies identified are expected to help researchers set a direction in researching technologies and developing related policies. Therefore we provide technology information that can be used promisingly in the future so that researchers in the related field can utilize it effectively. In this paper data analysis is performed using related patents and research papers for technical analysis. Promising technologies that will be the core of the hydrogen fuel supply chain in the future were identified using the published patents and research paper database (DB) in Korea the United States Europe China and Japan. A text mining technique was applied to preprocess data and then a generic topographic map (GTM) analysis discovered promising technologies. Then a technology roadmap was identified by analyzing the promising technology derived from patents and research papers in parallel. In this study through the analysis of patents and research papers related to the hydrogen supply chain the development status of hydrogen storage/transport/charging technology was analyzed and promising technologies with high potential for future development were found. The technology roadmap derived from the analysis can help researchers in the field of hydrogen research establish policies and research technologies.
Impact of Polymers on Magnesium-Based Hydrogen Storage Systems
Jun 2022
Publication
In the present scenario much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production storage and utilization). Comparatively considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density storage conditions/parameters and safety. In material-based HSS a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials Mg-based hydrides (Mg–H) showed considerable benefits such as low density hydrogen uptake and reversibility. However the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts like the inclusion of catalysts that have been made for Mg–H to alter the thermodynamic-related issues. Still those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg–H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg–H from contaminating (air and moisture). In this review the impact of different polymers (carboxymethyl cellulose polystyrene polyimide polypyrrole polyvinylpyrrolidone polyvinylidene fluoride polymethylpentene and poly(methyl methacrylate)) with Mg–H systems has been systematically reviewed. In polymer-encapsulated Mg–H the polymers act as a barrier for the reaction between Mg–H and O2/H2O selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus the H2 uptake amount and sorption kinetics improved considerably in Mg–H.
The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel
Apr 2019
Publication
Hydrogen embrittlement (HE) of metals has remained a mystery in materials science for more than a century. To try to clarify this mystery tensile tests were conducted at room temperature (RT) on a 316 stainless steel (SS) in air and hydrogen of 70 MPa. With an aim to directly observe the effect of hydrogen on ordering of 316 SS during deformation electron diffraction patterns and images were obtained from thin foils made by a focused ion beam from the fracture surfaces of the tensile specimens. To prove lattice contraction by ordering a 40% CW 316 SS specimen was thermally aged at 400 °C to incur ordering and its lattice contraction by ordering was determined using neutron diffraction by measuring its lattice parameters before and after aging. We demonstrate that atomic ordering is promoted by hydrogen leading to formation of short-range order and a high number of planar dislocations in the 316 SS and causing its anisotropic lattice contraction. Hence hydrogen embrittlement of metals is controlled by hydrogen-enhanced ordering during RT deformation in hydrogen. Hydrogen-enhanced ordering will cause the ordered metals to be more resistant to HE than the disordered ones which is evidenced by the previous observations where furnace-cooled metals with order are more resistant to HE than water-quenched or cold worked metals with disorder. This finding strongly supports our proposal that strain-induced martensite is a disordered phase.
Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas
May 2020
Publication
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source replacing traditional fossil-fuel-based energy systems. In particular the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen economy and aggressive investment in hydrogen refuelling infrastructure is essential to make large-scale adoption of HFCVs possible. In this study we address the problem of effectively designing a hydrogen supply network for refuelling HFCVs in urban areas relatively far from a large hydrogen production site such as a petrochemical complex. In these urban areas where mass supply of hydrogen is not possible hydrogen can be supplied by reforming city gas. In this case building distributed hydrogen production bases that extract large amounts of hydrogen from liquefied petroleum gas (LPG) or compressed natural gas (CNG) and then supply hydrogen to nearby hydrogen stations may be a cost-effective option for establishing a hydrogen refuelling infrastructure in the early stage of the hydrogen economy. Therefore an optimization model is proposed for effectively deciding when and where to build hydrogen production bases and hydrogen refuelling stations in an urban area. Then a case study of the southeastern area of Seoul known as a commercial and residential center is discussed. A variety of scenarios for the design parameters of the hydrogen supply network are analyzed based on the target of the adoption of HFCVs in Seoul by 2030. The proposed optimization model can be effectively used for determining the time and sites for building hydrogen production bases and hydrogen refuelling stations.
Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System
Nov 2020
Publication
Korea Atomic Energy Research Institute (KAERI) established a multi-dimensional hydrogen analysis system to evaluate hydrogen release distribution and combustion in the containment of a Nuclear Power Plant (NPP) using MAAP GASFLOW and COM3D. In particular KAERI developed an analysis methodology for a hydrogen flame acceleration on the basis of the COM3D validation results against measured data of the hydrogen combustion tests in the ENACCEF and THAI facilities. The proposed analysis methodology accurately predicted the peak overpressure with an error range of approximately ±10% using the Kawanabe model used for a turbulent flame speed in the COM3D. KAERI performed a hydrogen flame acceleration analysis using the multi-dimensional hydrogen analysis system for a severe accident initiated by a station blackout (SBO) under the assumption of 100% metal–water reaction in the Reactor Pressure Vessel (RPV) to evaluate an overpressure buildup in the containment of the Advanced Power Reactor 1400 MWe (APR1400). The magnitude of the overpressure buildup in the APR1400 containment might be used as a criterion to judge whether the containment integrity is maintained or not when the hydrogen combustion occurs during a severe accident. The COM3D calculation results using the established analysis methodology showed that the calculated peak pressure in the containment was lower than the fracture pressure of the APR1400 containment. This calculation result might have resulted from a large air volume of the containment a reduced hydrogen concentration owing to passive auto-catalytic recombiners installed in the containment during the hydrogen release from the RPV and a lot of stem presence during the hydrogen combustion period in the containment. Therefore we found that the current design of the APR1400 containment maintained its integrity when the flame acceleration occurred during the severe accident initiated by the SBO accident.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content
Mar 2022
Publication
With the increasing interest in hydrogen energy the stability of hydrogen storage facilities and components is emphasized. In this study we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail cure characteristics crosslink density mechanical properties and hydrogen permeation properties were investigated. Results showed that material volume remaining hydrogen content and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content the crosslink density and mechanical properties increased but hydrogen permeability was decreased. After treatment high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties but high silica content can inhibit the reduction in mechanical properties. In particular EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas as no change in their physical and mechanical properties was observed.
Complex Hydrides for Hydrogen Storage – New Perspectives
Apr 2014
Publication
Since the 1970s hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached as discussed in this review but a range of new lightweight hydrogen-containing materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed with a focus on metal borohydrides which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities.
Evaluation of Hydrogen Permeation Characteristics in Rubbery Polymers
Oct 2020
Publication
To find suitable sealing material with low permeability against hydrogen the elaborated evaluation techniques for hydrogen transport properties are necessary. We developed two techniques determining the permeability of hydrogen including software for diffusion behavior analysis. The techniques contain gas chromatography and volumetric collection of hydrogen gas. By measuring the hydrogen released from polymer samples with respect to the elapsed time after being decompressed from the high pressure total amount of adsorption and diffusivity (D) of hydrogen are evaluated with self-developed program of Fick's diffusion equation specified to a sample shape. The solubility (S) and permeability (P) of the polymers are determined through Henry's law and a relation of P=SD respectively. Developed techniques were applied to three kinds of spherical-shaped sealing rubbers NBR EPDM and FKM. The D S and P have been measured as function of pressure. The permeability obtained by both methods are discussed with Comsol simulation.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
Baking Effect on Desorption of Diffusible Hydrogen and Hydrogen Embrittlement on Hot-Stamped Boron Martensitic Steel
Jun 2019
Publication
Recently hot stamping technology has been increasingly used in automotive structural parts with ultrahigh strength to meet the standards of both high fuel efficiency and crashworthiness. However one issue of concern regarding these martensitic steels which are fabricated using a hot stamping procedure is that the steel is highly vulnerable to hydrogen delayed cracking caused by the diffusible hydrogen flow through the surface reaction of the coating in a furnace atmosphere. One way to make progress in understanding hydrogen delayed fractures is to elucidate an interaction for desorption with diffusible hydrogen behavior. The role of diffusible hydrogen on delayed fractures was studied for different baking times and temperatures in a range of automotive processes for hot-stamped martensitic steel with aluminum- and silicon-coated surfaces. It was clear that the release of diffusible hydrogen is effective at higher temperatures and longer times making the steel less susceptible to hydrogen delayed fractures. Using thermal desorption spectroscopy the phenomenon of the hydrogen delayed fracture was attributed to reversible hydrogen in microstructure sites with low trapping energy.
A Study on the Joule-Thomson Effect of During Filling Hydrogen in High Pressure Tank
Dec 2022
Publication
With the development of the hydrogen fuel cell automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogenation process of hydrogenation station. Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. At present the technological difficulty of hydrogenation is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. The Joule-Thomson (JT) effect occurs when high-pressure hydrogen gas passes through the valve assembly which may lead to an increase in hydrogen temperature. The JT effect is generally reflected by the JT coefficient. According to the high pressure hydrogen in the pressure reducing valve the corresponding JT coefficients were calculated by using the VDW equation RK equation SRK equation and PR equation and the expression of JT effect temperature rise was deduced which revealed the hydrogen temperature variation law in the process of reducing pressure. Make clear the relationship between charging parameters and temperature rise in the process of decompression; the flow and thermal characteristics of hydrogen in the process of decompression are revealed. This study provides basic support for experts to achieve throttling optimization of related pressure control system in hydrogen industry
Hydrogen Stress Cracking Behaviour in Dissimilar Welded Joints of Duplex Stainless Steel and Carbon Steel
Jun 2021
Publication
As the need for duplex stainless steel (DSS) increases it is necessary to evaluate hydrogen stress cracking (HSC) in dissimilar welded joints (WJs) of DSS and carbon steel. This study aims to investigate the effect of the weld microstructure on the HSC behaviour of dissimilar gas-tungsten arc welds of DSS and carbon steel. In situ slow-strain rate testing (SSRT) with hydrogen charging was conducted for transverse WJs which fractured in the softened heat-affected zone of the carbon steel under hydrogen-free conditions. However HSC occurred at the martensite band and the interface of the austenite and martensite bands in the type-II boundary. The band acted as an HSC initiation site because of the presence of a large amount of trapped hydrogen and a high strain concentration during the SSRT with hydrogen charging. Even though some weld microstructures such as the austenite and martensite bands in type-II boundaries were harmless under normal hydrogen-free conditions they had a negative effect in a hydrogen atmosphere resulting in the premature rupture of the weld. Eventually a premature fracture occurred during the in situ SSRT in the type-II boundary because of the hydrogen-enhanced strain-induced void (HESIV) and hydrogen-enhanced localised plasticity (HELP) mechanisms.
Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review
Dec 2020
Publication
Solid-state hydrogen storage covers a broad range of materials praised for their gravimetric volumetric and kinetic properties as well as for the safety they confer compared to gaseous or liquid hydrogen storage methods. Among them AxBy intermetallics show outstanding performances notably for stationary storage applications. Elemental substitution whether on the A or B site of these alloys allows the effective tailoring of key properties such as gravimetric density equilibrium pressure hysteresis and cyclic stability for instance. In this review we present a brief overview of partial substitution in several AxBy alloys from the long-established AB5 and AB2-types to the recently attractive and extensively studied AB and AB3 alloys including the largely documented solid-solution alloy systems. We not only present classical and pioneering investigations but also report recent developments for each AxBy category. Special care is brought to the influence of composition engineering on desorption equilibrium pressure and hydrogen storage capacity. A simple overview of the AxBy operating conditions is provided hence giving a sense of the range of possible applications whether for low- or high-pressure systems.
Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas
Jul 2021
Publication
The commercialization of eco-friendly hydrogen vehicles has elicited attempts to expand hydrogen refueling stations in urban areas; however safety measures to reduce the risk of jet fires have not been established. The RISKCURVES software was used to evaluate the individual and societal risks of hydrogen refueling stations in urban areas and the F–N (Frequency–Number of fatalities) curve was used to compare whether the safety measures satisfied international standards. From the results of the analysis it was found that there is a risk of explosion in the expansion of hydrogen refueling stations in urban areas and safety measures should be considered. To lower the risk of hydrogen refueling stations this study applied the passive and active independent protection layers (IPLs) of LOPA (Layer of Protection Analysis) and confirmed that these measures significantly reduced societal risk as well as individual risk and met international standards. In particular such measures could effectively reduce the impact of jet fire in dispensers and tube trailers that had a high risk. Measures employing both IPL types were efficient in meeting international standard criteria; however passive IPLs were found to have a greater risk reduction effect than active IPLs. The combination of RISKCURVES and LOPA is an appropriate risk assessment method that can reduce work time and mitigate risks through protective measures compared to existing risk assessment methods. This method can be applied to risk assessment and risk mitigation not only for hydrogen facilities but also for hazardous materials with high fire or explosion risk.
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant attempts have been placed on the maturity of cooling technologies for electrochemical devices. Nonetheless the existing reviews on the subject have been primarily focused on battery cooling. Conversely heat transfer in other electrochemical systems commonly used for energy conversion and storage has not been subjected to critical reviews. To address this issue the current study gives an overview of the progress and challenges on the thermal management of different electrochemical energy devices including fuel cells electrolysers and supercapacitors. The physicochemical mechanisms of heat generation in these electrochemical devices are discussed in-depth. Physics of the heat transfer techniques currently employed for temperature control are then exposed and some directions for future studies are provided.
Optimal Facility Combination Set of Integrated Energy System Based on Consensus Point between Independent System Operator and Independent Power Producer
Dec 2022
Publication
In recent years the frequency of power demand imbalance and negative price phenomenon has risen due to the rapid expansion of renewable energy sources (RES). Because of this a means to reduce the curtailment of RES by utilizing surplus energy is essential. This paper focuses on reducing the curtailment of wind turbines (WT) with high output intermittency and minimizing the investment cost of IES via an integrated energy system (IES). The IES operation seeks to improve the acceptability and efficiency of the RES as it supports the integration of various energies mix such as electricity heat hydrogen. This paper proposes an optimal facility combination set (FCS) of IES that satisfies the requirements of ISO and IPP using Multi-Objective Optimization Programming (MOP). The case study is based on a wind farm in South Korea set in Aewol-eup Jeju-Island. The case study results provide the best configuration of the IES energy mix with the best economic value and efficiency while satisfying ISO and IPP perspectives.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Graded Grain Structure to Improve Hydrogen-Embrittlement Resistance of TWIP Steel
Nov 2020
Publication
The high strength of twinning-induced plasticity (TWIP) steels makes them vulnerable to the hydrogen embrittlement (HE) phenomenon thereby limiting their potential applications. This study suggests inducing a graded grain structure (GGS) in a Fe-17Mn-0.8C TWIP steel through shot peening and subsequent heat treatment to solve the problem. The microstructures and fracture surfaces of GGS TWIP steel were compared with those of conventionally manufactured TWIP steel possessing a uniform grain structure (UGS). Compared with the conventional UGS TWIP steel GGS steel showed similar tensile properties with a yield strength of 310 MPa tensile strength of 1060 MPa and elongation-to-failure of 135%. It also exhibited moderately enhanced low-cycle fatigue (LCF) resistance in terms of fatigue life (8196 cycles to failure) compared with the UGS steel (7201 cycles). Furthermore GGS TWIP steel exhibited a marked improvement in HE resistance both in the monotonic (by a slow-strain-rate test) and cyclic deformation modes (by the LCF test) in a hydrogen environment. A relatively fine-grained (d = 15.6 μm) surficial area enhanced the HE resistance by inhibiting hydrogen penetration and decreasing twin density while the coarse-grained (d = 74.6 μm) interior promoted the LCF resistance by suppressing crack growth
No more items...