Saudi Arabia
Enhancing Hydrogen Gas Production in Electrolysis Cells with Ammonium Chloride and Solar PV Integration
Feb 2025
Publication
In this study the electrolysis of water by using ammonium chloride (NH4Cl) as an electrolyte was investigated for the production of hydrogen gas. The assembled electrochemical cell consists mainly of twenty-one stainless-steel electrodes and a direct current from a battery ammonium chloride solution. In the electrolysis process hydrogen and oxygen are developed at the same time and collected as a mixture to be used as a fuel. This study explores a technic regarding the matching of oxyhydrogen (HHO) electrolyzers with photovoltaic (PV) systems to make HHO gas. The primary objective of the present research is to enable the electrolyzer to operate independently of other energy origins functioning as a complete unit powered solely by PV. Moreover the impact of using PWM on cell operation was investigated. The experimental data was collected at various time intervals NH4Cl concentrations. Additionally the hydrogen unit consists of two cells with a shared positive pole fixed between them. Some undesirable anodic reaction affects the efficiency of hydrogen gas production because of the corrosion of anode to ferrous hydroxide (Fe(OH)2). Polyphosphate Inhibitor was used to minimize the corrosion reaction of anode and keep the efficiency of hydrogen gas flow. The optimal concentration of 3M for ammonium chloride was identified balancing a gas flow rate of 772 ml/min with minimal anode corrosion. Without PWM conversion efficiency ranges between 93% and 96%. Therefore PWM increased conversion efficiency by approximately 5% leading to a corresponding increase in hydrogen gas production.
Synergistic Sizing and Energy Management Strategy of Combined Offshore Wind with Solar Floating PV System for Green Hydrogen and Electricity Co-Production Using Multi-Objective Dung Beetle Optimization
Feb 2025
Publication
This study comprehensively analyzes an integrated renewable energy system complementing offshore wind turbines (OWT) and floating solar photovoltaic (FPV) technology designed for producing electric power and green hydrogen. The research explores the technical feasibility techno-economic performance and optimal sizing of the system components. The system integrates OWT farms FPV arrays water electrolyzer and hydrogen storage tank to minimize the levelized cost of energy (LCOE) loss of power supply probability (LPSP) and excess energy. A novel optimization approach Dung Beetle Optimization (DBO) algorithm is utilized and compared with the Grey Wolf Optimizer (GWO) for performance validation. To ensure the robustness of the proposed DBO algorithm it is thoroughly tested on two system configurations: a standalone OWT hydrogen production system and a hybrid FPV/OWT hydrogen production system. The results showed that the DBO algorithm outperforms the GWO algorithm in terms of system efficiency cost-effectiveness and reliability. The optimization findings reveal that the FPV/OWT hybrid system optimized with the DBO algorithm leads to a more cost-effective configuration with the OWT component contributing 45.96% of the total costs. Moreover the optimized FPV/OWT system achieves a lower levelized cost of energy (LCOE) of 0.5797 $/kWh compared to 0.8190 $/kWh for the standalone OWT system. Furthermore the hybrid FPV/OWT system maintains a levelized cost of hydrogen (COH) of 1.205 $/kg making it a competitive option for large-scale hydrogen production. Conclusively the findings demonstrate the technical feasibility and economic viability of the designated hybrid system for sustainable off-grid rural electrification and hydrogen production offering a robust solution to meet future energy demands.
Enhancing Diesel Engine Performance Through Hydrogen Addition
May 2025
Publication
This study evaluates the potential of hydrogen as a clean additive to conventional diesel fuel. Experiments were carried out on a single-cylinder air-cooled diesel engine under half- and full-load conditions across engine speeds ranging from 1000 to 3000 rpm. Hydrogen produced on site via a proton exchange membrane electrolyser was supplied to the engine at a constant flow rate of 0.5 L/min. Compared to pure diesel the hydrogen–diesel blend reduced specific fuel consumption by 10% and increased brake thermal efficiency by 10% at full load. Emissions of carbon monoxide and carbon dioxide decreased by 13% and 17% respectively at half load. Additionally nitrogen oxide emissions dropped by 17%. These results highlight the potential of hydrogen to improve combustion efficiency while significantly mitigating emissions offering a viable transitional solution for cleaner power generation using existing diesel infrastructure.
Technoeconomic Optimisation and Sentivity Analysis of Off-grid Hybrid Renewable Energy Systems: A Case Study for Sustainable Energy Solutions in Rural India
Dec 2024
Publication
In the twenty-first century global energy consumption is rapidly increasing particularly in emerging nations hastening the depletion of fossil fuel reserves and emphasizing the vital need for sustainable and renewable energy sources. This study aims to analyze hybrid renewable energy systems (HRESs) that use solid waste to generate power focusing on difficulties linked to intermittent renewable sources using a techno-economic framework. Employing the HOMER Pro software prefeasibility analysis is performed to meet the energy needs of an Indian community. System architecture optimization depends on factors like minimizing net present cost (NPC) achieving the lowest cost of energy (COE) and maximizing renewable source utilization. This study evaluates the technical economic and environmental feasibility of a hybrid renewable energy system (HRES) comprising a 400-kW solar photovoltaic (PV) array a 100-kW wind turbine (WT) a 100-kW electrolyzer 918 number of 12V batteries a 200-kW converter a 200-kW reformer and a 15-kg hydrogen tank (H-tank). This optimal configuration has the lowest NPC of $26.8 million and COE of $4.32 per kilowatt-hour and a Renewable Fraction (RF) of 100%. It can provide a dependable power supply and satisfy 94% of the daily onsite load demand which is 1080 kilowatt-hours per day. The required electricity is sourced to load demand entirely from renewable energy at the given location. Additionally the study highlights the benefits of HRES in solid waste management considering technological advancements and regulatory frameworks. Furthermore sensitivity analysis is conducted to measure economic factors that influence HRES accounting for fluctuations in load demand project lifespan diesel fuel costs and interest rates. Installing an HRES custom-made to the local environmental conditions would provide a long-lasting reliable and cost-effective energy source. The results show that the optimal HRES system performs well and is a viable option for sustainable electrification in rural communities.
Optimizing Hydrogen Production from Wastewater-derived Sewage Sludge via Alkali-catalyzed Supercritical Water Gasification
Sep 2025
Publication
The increasing global wastewater generation and reliance on fossil fuels for energy production necessitate sustainable treatment and energy recovery solutions. This study explores supercritical water gasification (SCWG) of sewage sludge from municipal wastewater as a hydrogen production pathway focusing on the role of alkali catalysts (KOH K₂CO₃ Na₂CO₃). The effects of temperature (450–550◦C) reaction time (5–30 min) and catalyst type on gas yield and efficiency were analyzed. At 550◦C the highest carbon efficiency (61 %) gas efficiency (69 %) and hydrogen yield (41 mol/kg) were observed. After 30 min the gas composition reached H₂ (58 %) CO₂ (26 %) CH₄ (11.7 %) and CO (4 %). Among catalysts Na₂CO₃ exhibited superior H₂ yield (29 mol/kg) carbon efficiency (58 %) and gas efficiency (51 %). This study highlights SCWG as a viable technology for hydrogen-rich gas production contributing to sustainable energy solutions and wastewater valorization.
Production of Green Hydrogen from Sewage Sludge/Algae in Agriculture Diesel Engine: Performance Evaluation
Jan 2024
Publication
Alternative fuel opportunities can satisfy energy security and reduce carbon emissions. In this regard the hydrogen fuel is derived from the source of environmental pollutants like sewage and algae wastewater through hydrothermal gasification technique using a KOH catalyst with varied gasification process parameters of duration and temperature of 6–30 min and 500-800 ◦C. The novelty of the work is to identify the optimum gasification process parameter for obtaining the maximum hydrogen yield using a KOH catalyst as an alternative fuel for agricultural engine applications. Influences of gasification processing time and temperature on H2 selectivity Carbon gasification efficiency (CE) Lower heating value (LHV) Hydrogen yield potential (HYP) and gasification efficiency (GE) were studied. Its results showed that the gasifier operated at 800 ◦C for 30 min offering maximum hydrogen yield (26 mol/kg) and gasification efficiency (58 %). The synthesized H2 was an alternative fuel blended with diesel fuel/TiO2 nanoparticles. It was experimentally studied using an internal combustion engine. Influences of H2 on engine perfor mance like brake-specific fuel consumption brake thermal efficiency and emission performances were measured and compared with diesel fuel. The results showed that DH20T has the least (420g/kWh) brake-specific fuel consumption (BSFC) and superior brake thermal efficiency of about 25.2 %. The emission results revealed that the DH20T blend showed the NOX value increased by almost 10.97 % compared to diesel fuel whereas the CO UHC and smoke values reduced by roughly 31.25 28.34 and 42.35 %. The optimum fuel blend (DH20T) result is rec ommended for agricultural engine applications.
Nanomaterials and Hydrogen Production: A Comprehensive Review of Clean Energy Strategies, Costs, and Environmental Implications
Aug 2025
Publication
An increasing demand for energy coupled with rising pollution levels is driving the search for environmentally clean alternative energy resources to replace fossil fuels. Hydrogen has emerged as a promising clean energy carrier and raw material for various applications. However its environmental benefits depend on sustainable production methods. The rapid development of nanomaterials (NMs) has opened new avenues for the conversion and utilization of renewable energy (RE). NMs are becoming increasingly important in addressing challenges related to hydrogen (H₂) generation. This review provides an overview of current advancements in H₂ production from biomass via thermochemical (TC) and biological (BL) processes including associated costs and explores the applications of nanomaterials in these methods. Research indicates that biological hydrogen (BL-H₂) production remains costly. The challenges associated with the TC conversion process are examined along with potential strategies for improvement. Finally the technical and economic obstacles that must be overcome before hydrogen can be widely adopted as a fuel are discussed.
Analysis of the Sugarcane Biomass Use to Produce Green Hydrogen: Brazilian Case Study
Feb 2025
Publication
Conventional hydrogen production processes which often involve fossil raw materials emit significant amounts of carbon dioxide into the atmosphere. This study critically evaluates the feasibility of using sugarcane biomass as an energy source to produce green hydrogen. In the 2023/2024 harvest Brazil the world’s largest sugarcane producer processed approximately 713.2 million metric tons of sugarcane. This yielded 45.68 million metric tons of sugar and 29.69 billion liters of first-generation ethanol equivalent to approximately 0.0416 liters of ethanol per kilogram of sugarcane. A systematic literature review was conducted using Scopus and Clarivate Analytics Web of Science resulting in the assessment of 335 articles. The study has identified seven potential biohydrogen production methods including two direct approaches from second-generation ethanol and five from integrated bioenergy systems. Experimental data indicate that second-generation ethanol can yield 594 MJ per metric ton of biomass with additional energy recovery from lignin combustion (1705 MJ per metric ton). Moreover advances in electrocatalytic reforming and plasma-driven hydrogen production have demonstrated high conversion efficiencies addressing key technical barriers. The results highlight Brazil’s strategic potential to integrate biohydrogen production within its existing bioenergy infrastructure. By leveraging sugarcane biomass for green hydrogen the country can contribute significantly to the global transition to sustainable energy while enhancing its energy security.
Photocatalytic Generation of Hydrogen from a Non-carbon Source, Ammonia in Aqueous Solutions
Aug 2025
Publication
This review investigates hydrogen production via photocatalysis using ammonia a carbon-free source potentially present in wastewater. Photocatalysis offers low energy requirements and high conversion efficiency compared to electrocatalysis thermocatalysis and plasma catalysis. However challenges such as complex material synthesis low stability spectral inefficiency high costs and integration barriers hinder industrial scalability. The review addresses thermodynamic requirements reaction mechanisms and the role of pH in optimizing photocatalysis. By leveraging ammonia’s potential and advancing photocatalyst development this study provides a framework for scalable sustainable hydrogen production and simultaneous ammonia decomposition paving the way for innovative energy solutions and wastewater management.
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Mar 2025
Publication
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022 the global energy matrix was composed mainly of nonrenewable sources such as oil natural gas and coal where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023 USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context currently about 353 geothermal power units are in operation worldwide with a capacity of 16335 MW. In addition globally there are 35 geothermal power units under pre-construction (project phase) 93 already being constructed and recently 45 announced. Concerning hydrogen the industry announced 680 large-scale project proposals valued at USD 240 billion in direct investment by 2030. In Brazil the energy company Petroleo Brasileiro SA (Petrobras Rio de Janeiro Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation and since the exploration and access to natural energy resources (oil and gas natural hydrogen and geothermal systems among others) are achieved through the drilling of wells this document presents a technical–scientific contextualization of social interest.
A Spatio-techno-economic Analysis for Wind-powered Hydrogen Production in Tunisia
Aug 2025
Publication
This study investigated the potential of large-scale wind-powered green hydrogen production in Tunisia through a combined spatio-techno-economic analysis. Using a geographic information system-based Multi-Criteria Decision-Making approach optimal locations for wind-hydrogen systems were identified based on criteria such as hydrogen potential slope land use and proximity to essential infrastructure (water resources grid network transportation and urban areas). The Best worst method (BMW) technique was employed to assign weights to the identified criteria. Subsequently a techno-economic assessment was conducted at six prospective onshore wind project sites to evaluate the economic feasibility of hydrogen production. Therefore the main contribution of this study lies in the synergistic combination of a wind-specific focus application of an efficient and consistent BWM methodology within a GIS framework and detailed site-specific techno-economic validation of the spatially identified optimal locations. The results of the spatial analysis indicated that 15.91 % (21185 km²) of Tunisia’s land was suitable for wind-based hydrogen production with 1110 km² exhibiting exceptional suitability primarily in the central-western southwestern southeastern and coastal regions. Among the five evaluated wind turbine models the E115-3000 proved to be the most efficient. Site S3 (Sidi Abdelrahman) demonstrated the highest annual energy output (117.7 GWh) and hydrogen production potential (1267–1482 t) while S5 (Souk El Ahed) yielded the lowest energy output (50.121 GWh). Economically S3 emerged as the most advantageous site with the lowest Levelized Cost of Electricity (0.0446 $/kWh) and Levelized Cost of Hydrogen (3.581 $/kg) followed by S4. S5 had the highest LCOE (0.0643 $/kWh) and LCOH (5.169 $/kg). These findings highlight Tunisia’s promising potential for cost-competitive green hydrogen production particularly in identified optimal locations thus contributing to renewable energy targets and sustainable development.
Hydrogen Production via Water Ultrasonication: A Review
Aug 2025
Publication
This review thoroughly examines the potential of water ultrasonication (US) for producing hydrogen. First it discusses ultrasonication reactor designs and techniques for measuring ultrasonication power and optimizing energy. Then it explores the results of hydrogen production via ultrasonication experiments focusing on the impact of processing factors such as ultrasonication frequency acoustic intensity dissolved gases pH temperature and static pressure on the process. Additionally it examines advanced ultrasonication techniques such as US/photolysis US/catalysis and US/photocatalysis emphasizing how these techniques could increase hydrogen production. Lastly to progress the efficacy and scalability of hydrogen generation through ultrasonication the review identifies existing challenges proposes solutions and suggests areas for future research.
From Pure H2 to H2-CO2 Mixtures: A Study of Reductant Strategies in Plasma Iron Smelting Reduction
Sep 2025
Publication
Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption but reduced plasma stability and limited conversion. CO2 addition enhances stability increasing gas temperature from approximately 1900 K (pure H2 ) to 2900 K at 50% CO2 driven by exothermic H2 oxidation. Particle rapidly reach gas temperature (>2000 K within 5 ms). The highest metallization degree (≈37%) achieved at 30% CO2 corresponds to an optimal reductant gas composition balancing hydrogen carbon monoxide and atomic hydrogen availability. Higher dilution (50% CO2 ) significantly decreased the reductant gas availability lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO2 co-feeding and regeneration optimize plasma stability temperature and reductant gas chemistry presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO2 closed loop.
Optimum Blending Hydrogen Ratio in Spray Combustion to Reduce Emissions of Nitrogen Oxides
Sep 2025
Publication
This study examined the effects of adding hydrogen to flammable liquid fuel droplets on emissions. It was found that an optimal mixing ratio with hydrogen can reduce the amount of NO in the reaction zone which is the area where the primary combustion reactions occur. N-pentane is burnt in air enriched with different amounts of hydrogen and the effects of the amount of hydrogen in the air on the combustion and emission parameters are investigated numerically. The combustion is modelled with the PDF/mixture fraction and standard twoequation turbulence models and thermal NO models are used for this modelling. The determination of the optimum H2 blending ratio is evaluated after the estimation results. It is evident that the addition of H2 led to an increase in spray flame temperatures. As a result the addition of H2 increases the combustion performance of n-pentane. The emissions evaluation results show that a blending ratio of 20% H2 reduces CO emissions at the combustion’s reaction zone and also results in a decrease in the mixture fraction. There is an increase in NO emissions due to the increase in spray flame temperatures. Combustion under air conditions containing 20% H2 by volume resulted in the highest temperature levels reaching 2130 K while the reduced NO levels decreased to approximately 11.3%. The thermal NO model when combined with the combustion model provides a sufficient level of agreement with the experimental data.
Synergizing Water Desalination and Hydrogen Production using Solar Stills with Novel Sensible Heat Storage and an Alkaline Electrolyzer
Dec 2024
Publication
This study tested a cogeneration (desalination/hydrogen production) system with natural and black sand as sensible heat storage considering the thermal efficiencies environmental impact water quality cost aspects and hydrogen generation rate. The black sand-modified distiller attained the highest water production of 4645 mL more than the conventional distiller by 1595 mL. It also offered better energy and exergy efficiencies of 45.26% and 3.72% respectively compared to 32.10% and 2.19% for the conventional one. Both modified distillers showed impressive improvements in water quality by significant reductions in total dissolved solids (TDS) from 29300 mg/L to 60–61 mg/L. Moreover the black sand-modified still reduced chemical oxygen demand (COD) to 135 mg/L. The production cost was minimized by using black sand to 0.0111$/L higher than one-fifth in the case of the lab-based distiller. Regarding hydrogen production the highest rate was obtained using distilled water from a labbased distiller of 0.742 gH₂/hr with an energy efficiency of 11.00%; however it was not much higher than the case of black sand-modified still (0.736 gH₂/hr production rate and 10.91% efficiency). Moreover the black sand-modified still showed the highest annual exergy output of 70.4 kWh/year with a significant annual decarbonization of 1.69 ton-CO2.
Evaluation of Green and Blue Hydrogen Production Potential in Saudi Arabia
Sep 2024
Publication
The Kingdom of Saudi Arabia has rich renewable energy resources specifically wind and solar in addition to geothermal beside massive natural gas reserves. This paper investigates the potential of both green and blue hydrogen production for five selected cities in Saudi Arabia. To accomplish the said objective a techno-economic model is formulated. Four renewable energy scenarios are evaluated for a total of 1.9 GW installed capacity to reveal the best scenario of Green Hydrogen Production (GHP) in each city. Also Blue Hydrogen Production (BHP) is investigated for three cases of Steam Methane Reforming (SMR) with different percentages of carbon capture. The economic analysis for both GHP and BHP is performed by calculating the Levelized Cost of Hydrogen (LCOH) and cash flow. The LCOH for GHP range for all cities ($3.27/kg -$12.17/kg)) with the lowest LCOH is found for NEOM city (50% PV and 50% wind) ($3.27/kg). LCOH for BHP are $0.534/kg $0.647/kg and $0.897/kg for SMR wo CCS/U SMR 55% CCS/U and SMR 90% CCS/U respectively.
Status and Perspectives of Key Materials for PEM Electrolyzer
Sep 2024
Publication
Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g. solar and wind). The technology with compact stack structure has many notable advantages including large current density high hydrogen purity and great conversion efficiency. However the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review recent advances made in key materials of PEMWE are summarized. First we present a brief overview about the basic principles thermodynamics and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions as well as discuss the research status of key materials such as membrane electrocatalysts membrane electrode assemblies gas diffusion layer and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment including catalyst degradation membrane degradation bipolar plate degradation and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.
Industrial Waste Gases as a Resource for Sustainable Hydrogen Production: Resource Availability, Production Potential, Challenges, and Prospects
May 2024
Publication
Industrial sectors pivotal for the economic prosperity of nations rely heavily on affordable reliable and environmentally friendly energy sources. Industries like iron and steel oil refineries and coal-fired power plants while instrumental to national economies are also the most significant contributors to waste gases that contain substantial volumes of carbon monoxide (CO). CO can be converted to a highly efficient and carbon free fuel hydrogen (H2) through a well-known water gas shift reaction. However the untapped potential of H2 from waste industrial streams is yet to be explored. This is the first article that investigates the potential of H2 production from industrial waste gases. The available resource (i.e. CO) and its H2 production potential are estimated. The article also provides insights into the principal challenges and potential avenues for long-term adoption. The results showed that 249.14 MTPY of CO are available to produce 17.44 MTPY of H2 annually. This suggests a significant potential for H2 production from waste gases to revolutionize industrial waste management and contribute significantly towards Sustainable Development Goals 7 9 and 13ensuring access to affordable reliable sustainable and modern energy for all and taking decisive climate action respectively.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
Hybrid Solar PV/PEM Fuel Cell/Diesel Generator Power System for Cruise Ship: A Case Study in Stockholm, Sweden
Jul 2019
Publication
Optimal design and performance analysis of renewable energy system to serve the cruise ship main and auxiliary power in Stockholm Sweden is presented in this paper. The goal is to integrate renewable energy systems in small and large ships for greener and sustainable marine transport. The power load for the cruise ship was determined and modeling and simulation analysis was used to investigate the daily and annual performance of the power system architectures including the efficiency and capacity factors of the energy conversion systems. The total electrical power generated from the solar PV PEM fuel cell and Diesel generator; the cost of electricity; and the greenhouse gas and particulate matter PM emissions were determined. The proposed renewable energy system offers a good penetration of renewable energy system (13.83%) and greenhouse gas and particulate emissions reduction (9.84% emissions reduction compared to baseline system using Diesel engines). The integration of renewable and clean power systems such as solar PV and PEM fuel cell (high electrical efficiency) is very attractive solution for onboard ship power generation. They are economically viable (reduce the cost of Diesel fuel) cleaner than the conventional gas turbine and internal combustion engines and reduce the dependency on fossil fuel.
No more items...