Saudi Arabia
A Review on Underground Hydrogen Storage: Insight into Geological Sites, Influencing Factors and Future Outlook
Dec 2021
Publication
Without remorse fossil fuels have made a huge contribution to global development in all of its forms. However the recent scientific outlooks are currently shifting as more research is targeted towards promoting a carbon-free economy in addition to the use of electric power from renewable sources. While renewable energy sources may be a solution to the anthropogenic greenhouse gas (GHG) emissions from fossil fuel they are yet season-dependent faced with major atmospheric drawbacks which when combined with annually varying but steady energy demand results in renewable energy excesses or deficits. Therefore it is essential to devise a long-term storage medium to balance their intermittent demand and supply. Hydrogen (H2) as an energy vector has been suggested as a viable method of achieving the objectives of meeting the increasing global energy demand. However successful implementation of a full-scale H2 economy requires large-scale H2 storage (as H2 is highly compressible). As such storage of H2 in geological formations has been considered as a potential solution where it can be withdrawn again at the larger stage for utilization. Thus in this review we focus on the potential use of geological formations for large-scale underground hydrogen storage (UHS) where both conventional and non-conventional UHS options were examined in depth. Also insights into some of the probable sites and the related examined criteria for selection were highlighted. The hydrodynamics of UHS influencing factors (including solid fluid and solid–fluid interactions) are summarized exclusively. In addition the economics and reaction perspectives inherent to UHS have been examined. The findings of this study show that UHS like other storage systems is still in its infancy. Further research and development are needed to address the significant hurdles and research gaps found particularly in replaceable influencing parameters. As a result this study is a valuable resource for UHS researchers.
Renewable Energy Market Analysis: Africa and its Regions
Jan 2022
Publication
An energy system centred on renewable energy can help resolve many of Africa’s social economic health and environmental challenges. A profound energy transition is not only feasible it is essential for a climate-safe future in which sustainable development prerogatives are met. Renewables are key to overcoming energy poverty providing needed energy services without damaging human health or ecosystems and enabling a transformation of economies in support of development and industrialisation.
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
- Only 2% of global investments in renewable energy in the last two decades were made in Africa with significant regional disparities
- Less than 3% of global renewables jobs are in Africa
- In Sub-Saharan Africa electrification rate was static at 46% in 2019 with 906 million people still lacking access to clean cooking fuels and technologies
- Africa has vast resource potential in wind solar hydro and geothermal energy and falling costs are increasingly bringing renewables within reach
- Central and Southern Africa have abundant mineral resources essential to the production of electric batteries wind turbines and other low-carbon technologies
- Renewable energy deployment has grown in the last decade with more than 26 GW of renewables-based generation capacity added. The largest additions were in solar energy
- Average annual investments in renewable energy grew ten-fold from less than USD 0.5 billion in the 2000-2009 period to USD 5 billion in 2010-2020
- Distributed renewable energy solutions including stand-alone systems and mini-grids are playing a steadily growing role in expanding electricity access in off-grid areas and strengthening supply in already connected areas
- The energy transition under IRENA’s 1.5°C Scenario pathway predicts 6.4% higher GDP 3.5% higher economy-wide jobs and a 25.4% higher welfare index than that realised under current plans on average up to 2050
- Jobs created in the renewable energy transition will outweigh those lost by moving away from traditional energy. Every million U.S. dollars invested in renewables between 2020 – 2050 would create at least 26 job-years; for every million invested in energy efficiency at least 22 job-years would be created annually; for energy flexibility the figure is 18
- A comprehensive policy package that combines the pursuit of climate and environmental goals; economic development and jobs creation; and social equity and welfare for society as a whole
- Strong institutions international co-operation (including South- South co-operation) and considerable co-ordination at the regional level
Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions
Mar 2021
Publication
Of all the available resources given to mankind the sunlight is perhaps the most abundant renewable energy resource providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high and no air pollution or toxic gas is released into the environment after combustion. However in order to adopt these devices for readily use they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
Feb 2022
Publication
An increase in human activities and population growth have significantly increased the world’s energy demands. The major source of energy for the world today is from fossil fuels which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis thermolysis and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen storage and transportation of hydrogen high cost of production lack of international standards and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
TM-doped Mg12O12 Nano-cages for Hydrogen Storage Applications: Theoretical Study
Feb 2022
Publication
DFT calculations at B3LYP/6-31g(dp) with the D3 version of Grimme’s dispersion are performed to investigate the application of TM-encapsulated Mg12O12 nano-cages (TM= Mn Fe and Co) as a hydrogen storage material. The molecular dynamic (MD) calculations are utilized to examine the stability of the considered structures. TD-DFT method reveals that the TM-encapsulation converts the Mg12O12 from an ultraviolet into a visible optical active material. The adsorption energy values indicate that the Mn and Fe atoms encapsulation enhances the adsorption of H2 molecules on the Mg12O12 nano-cage. The pristine Mg12O12 and CoMg12O12 do not meet the requirements for hydrogen storage materials while the MnMg12O12 and FeMg12O12 obey the requirements. MnMg12O12 and FeMg12O12 can carry up to twelve and nine H2 molecules respectively. The hydrogen adsorption causes a redshift for the λmax value of the UV-Vis. spectra of the MnMg12O12 and FeMg12O12 nano-cages. The thermodynamic calculations show that the hydrogen storage reaction for MnMg12O12 nano-cage is a spontaneous reaction while for FeMg12O12 nano-cage is not spontaneous. The results suggested that the MnMg12O12 nano-cage may be a promising material for hydrogen storage applications.
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilization purposes. The geostorage capacity of a porous formation is a function of its wetting characteristics which strongly influence residual saturations fluid flow rate of injection rate of withdrawal and containment security. However literature severely lacks information on hydrogen wettability in realistic geological and caprock formations which contain organic matter (due to the prevailing reducing atmosphere). We therefore measured advancing (θa) and receding (θr) contact angles of mica substrates at various representative thermo-physical conditions (pressures 0.1-25 MPa temperatures 308–343 K and stearic acid concentrations of 10−9 - 10−2 mol/L). The mica exhibited an increasing tendency to become weakly water-wet at higher temperatures lower pressures and very low stearic acid concentration. However it turned intermediate-wet at higher pressures lower temperatures and increasing stearic acid concentrations. The study suggests that the structural H2 trapping capacities in geological formations and sealing potentials of caprock highly depend on the specific thermo-physical condition. Thus this novel data provides a significant advancement in literature and will aid in the implementation of hydrogen geo-storage at an industrial scale.
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. They also require less cushion gas as the native residual gases serve as a buffer for pressure maintenance during storage. However there is a lack of thorough understanding of this technology. This work aims to provide a comprehensive insight and technical outlook into hydrogen storage in depleted gas reservoirs. It briefly discusses the operating and potential facilities case studies and the thermophysical and petrophysical properties of storage and withdrawal capacity gas immobilization and efficient gas containment. Furthermore a comparative approach to hydrogen methane and carbon dioxide with respect to well integrity during gas storage has been highlighted. A summary of the key findings challenges and prospects has also been reported. Based on the review hydrodynamics geochemical and microbial factors are the subsurface’s principal promoters of hydrogen losses. The injection strategy reservoir features quality and operational parameters significantly impact gas storage in depleted reservoirs. Future works (experimental and simulation) were recommended to focus on the hydrodynamics and geomechanics aspects related to migration mixing and dispersion for improved recovery. Overall this review provides a streamlined insight into hydrogen storage in depleted gas reservoirs.
Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage
Sep 2021
Publication
The present work addresses the modelling control and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid instead of a two level-inverter the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control (DRPC) and fuzzy logic controls techniques is applied to the proposed topology. In this work two topologies are proposed. In the first one the active power injected into the grid is smoothened by using an economical hybrid battery and supercapacitor energy storage system. However in the second one the excess wind energy is used to produce and store the hydrogen and then a solid oxide fuel cell system (SOFC) is utilized to regenerate electricity by using the stored hydrogen when there is not enough wind energy. To avoid overcharging deep discharging of batteries to mitigate fluctuations due to wind speed variations and to fulfil the requirement of the load profile a power management algorithm is implemented. This algorithm ensures smooth output power in the first topology and service continuity in the second. The modelling and simulation results are presented and analysed using Matlab/Simulin.
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium—Palladium Nanoparticles
Jun 2021
Publication
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition reaching conversion to 81%. The reported process could potentially be used in commercial applications.
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage (TES) systems power to hydrogen (P2H) and hydrogen to power (H2P) technologies in hydrogen storage systems (HSS) and electric vehicles (EVs) in dynamic ESS. Further demand response program (DRP) for electrical and thermal loads has been considered as a tool of VESS due to the similar behavior of physical ESS. In the market three participants have considered such as electrical thermal and hydrogen markets. In addition the price uncertainties were calculated by means of scenarios as in stochastic programming while the optimization process and the operational constraints were considered to calculate the operational costs in different ESSs. However congestion in the power systems is often occurred due to the extreme load increments. Hence this study proposes a bi-level formulation system where independent system operators (ISO) manage the congestion in the upper level while VESS operators deal with the financial goals in the lower level. Moreover four case studies have considered to observe the effectiveness of each storage system and the simulation was modeled in the IEEE 33-bus system with CPLEX in GAMS.
How Do Dissolved Gases Affect the Sonochemical Process of Hydrogen Production: An Overview of Thermodynamic and Mechanistic Effects – On the “Hot Spot Theory”
Dec 2020
Publication
Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H2) from water namely the radical attack of H2O and H2O2 and the free radicals recombination several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas i.e. N2 O2 Ar and air may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects i.e. dynamics of bubble oscillation and collapse events if any against indirect chemical effects i.e. the chemical reactions of free radicals formation and consequently hydrogen emergence it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera in the case of CO2-saturated water where degassing bubbles are formed instead of transient cavitation.
High Purity, Self-sustained, Pressurized Hydrogen Production from Ammonia in a Catalytic Membrane Reactor
Dec 2021
Publication
The combination of catalytic decomposition of ammonia and in situ separation of hydrogen holds great promise for the use of ammonia as a clean energy carrier. However finding the optimal catalyst – membrane pair and operation conditions have proved challenging. Here we demonstrate that cobalt-based catalysts for ammonia decomposition can be efficiently 2 used together with a Pd-Au based membrane to produce high purity hydrogen at elevated pressure. Compared to a conventional packed bed reactor the membrane reactor offers several operational advantages that result in energetic and economic benefits. The robustness and durability of the combined system has been demonstrated for more than 1000 h on stream yielding a very pure hydrogen stream (>99.97 % H2) and recovery (>90 %). When considering the required hydrogen compression for storage/utilization and environmental issues the combined system offers the additional advantage of production of hydrogen at moderate pressures along with full ammonia conversion. Altogether our results demonstrate the possibility of deploying high pressure (350 bar) hydrogen generators from ammonia with H2 efficiencies of circa 75% without any external energy input and/or derived CO2 emissions.
Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study
Apr 2021
Publication
Observing the growing energy demand of modern societies many countries have recognized energy security as a looming problem and renewable energies as a solution to this issue. Renewable hydrogen production is an excellent method for the storage and transfer of energy generated by intermittent renewable sources such as wind and solar so that they can be used at a place and time of our choosing. In this study the suitability of 15 cities in Fars province Iran for renewable hydrogen production was investigated and compared by the use of multiple multi-criteria decision-making methods including ARAS SAW CODAS and TOPSIS. The obtained rankings were aggregated by rank averaging Borda method and Copeland method. Finally the partially ordered set ranking technique was used to reach a general consensus about the ranking. The criteria that affect hydrogen production were found to be solar energy potential wind energy potential population air temperature natural disasters altitude relative humidity land cost skilled labor infrastructure topographic condition and distance from main roads. These criteria were weighted using the best–worst method (BWM) based on the data collected by a questionnaire. Solar energy potential was estimated using the Angstrom model. Wind energy potential was estimated by using the Weibull distribution function for each month independently. The results of the multi-criteria decision-making methods showed Izadkhast to be the most suitable location for renewable hydrogen production in the studied area.
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct injection (HPDI) nonpremixed H2 combustion. Experimentally validated 3D CFD simulations are combined with 1D GT-Power simulations to make the predictions. Several modifications to the system design and operating conditions are systematically implemented and their effects are investigated. Addition of a catalytic burner in the combustor exhaust insulation of the expander dehumidification of the EGR and removal of the intercooling yielded 1.5 1.3 0.8 and 0.5%-point BTE improvements respectively. Raising the peak pressure to 300 bar via a larger compressor further improved the BTE by 1.8%-points but should be accompanied with a higher injector-cylinder differential pressure. The λ of ~1.4 gave the optimum tradeoff between the mechanical and combustion efficiencies. A peak BTE of 60.3% is reported with H2DCEE which is ~5%-points higher than the best diesel-fueled DCEE alternative.
A Direct Synthesis of Platinum/Nickel Co-catalysts on Titanium Dioxide Nanotube Surface from Hydrometallurgical-type Process Streams
Aug 2018
Publication
Solutions that simulate hydrometallurgical base metal process streams with high nickel (Ni) and minor platinum (Pt) concentrations were used to create Pt/Ni nanoparticles on TiO2 nanotube surfaces. For this electrochemical deposition – redox replacement (EDRR) was used that also allowed to control the nanoparticle size density and Pt/Ni content of the deposited nanoparticles. The Pt/Ni nanoparticle decorated titanium dioxide nanotubes (TiO2 nanotubes) become strongly activated for photocatalytic hydrogen (H2) evolution. Moreover EDRR facilitates nanoparticle formation without the need for any additional chemicals and is more effective than electrodeposition alone. Actually a 10000-time enrichment level of Pt took place on the TiO2 surface when compared to Pt content in the solution with the EDRR method. The results show that hydrometallurgical streams offer great potential as an alternative raw material source for industrial catalyst production when coupled with redox replacement electrochemistry.
Hydrogen Diffusion in Coal: Implications for Hydrogen Geo-storage
Oct 2021
Publication
Hypothesis: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations coal seams look to be one of the best suitable options as coal’s micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However literature lacks fundamental data regarding H2 diffusion in coal. Experiments: In this study we measured H2 adsorption rate in an Australian anthracite coal sample at isothermal conditions for four different temperatures (20 C 30 C 45 C and 60 C) at equilibrium pressure 13 bar and calculated H2 diffusion coefficient (DH2 ) at each temperature. CO2 adsorption rates were measured for the same sample at similar temperatures and equilibrium pressure for comparison. Findings: Results show that H2 adsorption rate and consequently DH2 increases by temperature. DH2 values are one order of magnitude larger than the equivalent DCO2 values for the whole studied temperature range 20–60 C. DH2 / DCO2 also shows an increasing trend versus temperature. CO2 adsorption capacity at equilibrium pressure is about 5 times higher than that of H2 in all studied temperatures. Both H2 and CO2 adsorption capacities at equilibrium pressure slightly decrease as temperature rises.
A Developed Plasmatron Design to Enhance Production of Hydrogen in Synthesis Gas Produced by a Fuel Reformer System
Jan 2022
Publication
Feeding IC engines with hydrogen‐rich syngas as an admixture to hydrocarbon fuels can decrease pollutant emissions particularly NOx. It offers a potential technique for low‐environmen‐ tal impact hydrocarbon fuel use in automotive applications. However hydrogen‐rich reformate gas (syngas) production via fuel reforming still needs more research and optimization. In this paper we describe the effect of a plasma torch assembly design on syngas yield and composition during plasma‐assisted reforming of gasoline. Additionally erosion resistance of the cathode‐emitting ma‐ terial under the conditions of gasoline reforming was studied using hafnium metal and lanthanated tungsten alloy. The gasoline reforming was performed with a noncatalytic nonthermal low‐current plasma system in the conditions of partial oxidation in an air and steam mixture. To find the most efficient plasma torch assembly configuration in terms of hydrogen production yield four types of anode design were tested i.e. two types of the swirl ring and two cathode materials while varying the inlet air and fuel flow rates. The experimental results showed that hydrogen was the highest proportion of the produced syngas. The smooth funnel shape anode design in Ring 1 at air/fuel flow rates of 24/4 27/4.5 and 30/5 g/min respectively was more effective than the edged funnel shape. Lanthanated tungsten alloy displayed higher erosion resistance than hafnium metal.
Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production
Jan 2022
Publication
Hydrogen is an economical source of clean energy that has been utilized by industry for decades. In recent years demand for hydrogen has risen significantly. Hydrogen sources include water electrolysis hydrocarbon steam reforming and fossil fuels which emit hazardous greenhouse gases and therefore have a negative impact on global warming. The increasing worldwide population has created much pressure on natural fuels with a growing gap between demand for renewable energy and its insufficient supply. As a result the environment has suffered from alarming increases in pollution levels. Biohydrogen is a sustainable energy form and a preferable substitute for fossil fuel. Anaerobic fermentation photo fermentation microbial and enzymatic photolysis or combinations of such techniques are new approaches for producing biohydrogen. For cost-effective biohydrogen production the substrate should be cheap and renewable. Substrates including algal biomass agriculture residue and wastewaters are readily available. Moreover substrates rich in starch and cellulose such as plant stalks or agricultural waste or food industry waste such as cheese whey are reported to support dark- and photo-fermentation. However their direct utilization as a substrate is not recommended due to their complex nature. Therefore they must be pretreated before use to release fermentable sugars. Various pretreatment technologies have been established and are still being developed. This article focuses on pretreatment techniques for biohydrogen production and discusses their efficiency and suitability including hybrid-treatment technology
Clean Hydrogen Production by Ultrasound (Sonochemistry): The Effect of Noble Gases
Feb 2022
Publication
Power ultrasonic (> 100 kHz) splits water into free radicals and hydrogen. As a result water sonochemistry is considered as an alternative clean and fossil-fuel-free hydrogen production technique. In this research work the impact of rare gases (Xe Ar and He) on the sonochemical production of hydrogen as well as the population of active bubbles has been investigated computationally for various sonicated frequencies (213-515 kHz) and intensities (1-2 W/cm²). It has been found that both the H2 yielding and the bubble population size for H2 yielding are in the order Xe>Ar>He whatever the imposed sonolytic parameters (i.e. frequency and power). These findings were principally ascribed to the thermal conductivity of the saturating gases which is in the reverse order (He>Ar>Xe). Besides the difference between Ar and Xe is condensed in comparison with the He gas. For wave frequencies larger than 213 kHz however all saturating gases (Xe Ar and He) behave identically with the influence of thermal conductivity of these gases on the optimal radius muted. At 213 kHz however this impact is plainly visible (Ropt (Ar and Xe)>Ropt (He)). As per the results obtained helium's inefficiency as a saturating gas for hydrogen production is verified but xenon's maximal efficacy is reached when water is saturated with it. These results support the fewer experimental data reported in this emerging branch of sonochemistry while the discussed results in the present (i.e. noble gases effect on sono-hydrogen production) are treated for the first time consequently our work is considered as a guideline for increasing the efficacy of hydrogen production in a sonochemical reactor.
Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials
Aug 2015
Publication
Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides complex chemical hydride nanostructured carbon materials metal-doped carbon nanotubes metal-organic frameworks (MOFs) metal-doped metal organic frameworks covalent organic frameworks (COFs) and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.
Hydrogen Effect on the Cyclic Behavior of a Superelastic NiTi Archwire
Mar 2019
Publication
In this work we are interested in examining the strain rate effect on the mechanical behavior of Ni–Ti superelastic wires after hydrogen charging and ageing for 24 h. Specimens underwent 50 cycles of loading-unloading reaching an imposed deformation of 7.6%. During loading strain rates from 10−4 s−1 to 10−2 s−1 were achieved. With a strain rate of 10−2 s−1 the specimens were charged by hydrogen for 6 h and aged for one day showed a superelastic behavior marked by an increase in the residual deformation as a function of the number of cycles. In contrast after a few number of cycles with a strain rate of 10−4 s−1 the Ni-Ti alloy archwire specimens fractured in a brittle manner during the martensite transformation stage. The thermal desorption analysis showed that for immersed specimens the desorption peak of hydrogen appeared at 320 °C. However after annealing the charged specimens by hydrogen at 400 °C for 1 h an embrittlement took place at the last cycles for the lower strain rates of 10−4 s−1. The present study suggests that the embrittlement can be due to the development of an internal stress in the subsurface of the parent phase during hydrogen charging and due to the creation of cracks and local zones of plasticity after desorption.
Geopolitics of the Energy Transformation: The Hydrogen Factor
Jan 2022
Publication
As countries around the world rally behind net zero targets hydrogen is increasingly seen as a missing piece of the energy transformation puzzle to decarbonise harder-to-abate sectors. The possible pathway on which hydrogen might evolve still involves many uncertainties. With the growing momentum to establish a global hydrogen market comes the need for a deeper understanding of its broader effects including geopolitical aspects. IRENA has carried out an in-depth analysis of the geopolitics of hydrogen as part of the work of the Collaborative Framework on the Geopolitics of Energy Transformation (CF-GET). The report builds on IRENA’s substantial body of work in hydrogen and benefits from a wide range of expert input in the fields of energy and geopolitics.
This report considers whether and how hydrogen may disrupt future energy systems reflecting on many of the key themes discussed in the Global Commission’s report A New World – The Geopolitics of the Energy Transformation. The analysis offers insights into how countries and stakeholders can navigate the uncertainties and shape the development of hydrogen markets and outlines policy considerations to help mitigate the geopolitical risks and capitalise on opportunities. Some of the key findings of the report include:
This report considers whether and how hydrogen may disrupt future energy systems reflecting on many of the key themes discussed in the Global Commission’s report A New World – The Geopolitics of the Energy Transformation. The analysis offers insights into how countries and stakeholders can navigate the uncertainties and shape the development of hydrogen markets and outlines policy considerations to help mitigate the geopolitical risks and capitalise on opportunities. Some of the key findings of the report include:
- Hydrogen is part of a much bigger energy transition picture and its development and deployment strategies should not be considered in isolation.
- Setting the right priorities for hydrogen use will be essential for its rapid scale-up and long-term contribution to decarbonisation efforts.
- The 2020s could become the era of a big race for technology leadership as costs are likely to fall sharply with learning and scaling-up of needed infrastructure. Equipment manufacturing offers an opportunity to capture value in the coming years and decades.
- Hydrogen trade and investment flows will spawn new patterns of interdependence and bring shifts in bilateral relations.
- Countries with an abundance of low-cost renewable power could become producers of green hydrogen with commensurate geoeconomic and geopolitical consequences.
- Hydrogen could be an attractive avenue for fossil fuel exporters to help diversify their economies and develop new export industries.
- Supporting the advancement of renewable energy and green hydrogen in developing countries is critical for decarbonising the energy system and can contribute to global equity and stability.
- International co-operation will be necessary to devise a transparent hydrogen market with coherent standards and norms that contribute to climate change efforts meaningfully.
A Pathway to Decarbonise the Shipping Sector by 2050
Oct 2021
Publication
Urgent action is needed to accelerate the pace of the global energy transition and the decarbonisation of the global economy. International shipping is a key sector of the economy as much as 90% of worldwide trade is transacted via ocean going vessels. The sector is also one of the most challenging to decarbonise.
In this context A Pathway to Decarbonise the Shipping Sector by 2050 by the International Renewable Energy Agency (IRENA) analyses the technology readiness of the renewable fuels suitable for international shipping. This report also explores the options and actions needed to progress towards a decarbonised maritime shipping sector by 2050 and seeks to identify a realistic mitigation pathway to reach the climate goal of limiting global temperature rise to 1.5°C and bringing CO2 emissions closer to net zero by mid-century.
Key messages:
In this context A Pathway to Decarbonise the Shipping Sector by 2050 by the International Renewable Energy Agency (IRENA) analyses the technology readiness of the renewable fuels suitable for international shipping. This report also explores the options and actions needed to progress towards a decarbonised maritime shipping sector by 2050 and seeks to identify a realistic mitigation pathway to reach the climate goal of limiting global temperature rise to 1.5°C and bringing CO2 emissions closer to net zero by mid-century.
Key messages:
- The sector’s decarbonisation strategy must involve a combination of energy efficiency and renewable fuels. Starting now the active adoption of energy efficiency measures will be critical to reduce energy demand and thus CO2 emissions in the immediate term.
- In the short term advanced biofuels will play a key role in the reduction of CO2 emissions. In the medium and long-term green hydrogen-based fuels are set to be the backbone for the sector’s decarbonisation.
- Renewable e-ammonia will play a pivotal role; where 183 million tonnes of renewable ammonia for international shipping alone will be needed by 2050 - a comparable amount to today’s ammonia global production.
- While renewable fuels production costs are currently high in the next decades renewable fuels will become cost competitive and can shield the shipping sector from the volatility that characterises the fossil fuels market.
- Taking early action is vital. Sector decarbonisation can be accelerated and ambition raised beyond the climate goals by fostering investment in the production of renewable fuels. Stakeholders need to develop broader business models and establish strategic partnerships involving energy-intensive industries as well as power suppliers and the petrochemical sector.
A Thorough Economic Evaluation by Implementing Solar/Wind Energies for Hydrogen Production: A Case Study
Jan 2022
Publication
A technical–economic assessment was carried out in this study to determine the possibilities for wind and solar power generation in Afghanistan’s Helmand province. The results showed that most of the province has a solar irradiance of over 400 W/m2 and also showed that wind and solar power generated in the province can be up to twice as cheap as the official price of renewable power in Afghanistan. The most suitable site for solar and hydrogen production was found to be Laškar Gah where solar and hydrogen can be produced at a cost of 0.066 $/kWh and 2.1496 $/kg-H ¯ 2 respectively. In terms of wind power production and hydrogen production from wind the most suitable site was Sang¯ın where wind power and hydrogen could be produced at costs of 0.057 $/kWh and 1.4527 $/kg-H2 respectively. Despite the high potential of wind and solar energy in the Helmand province the most suitable place in this region to produce hydrogen from wind/solar energy was evaluated from technical economic and environmental perspectives with the Multi-Criteria DecisionMaking (MCDM) method. The Stepwise Weight Assessment Ratio Analysis (SWARA) method was used for weighting criteria and the Weighted Aggregated Sum Product Assessment (WASPAS) method was used to prioritize locations. The results show that Sang¯ın is the most suitable place for the construction of a wind hydrogen power plant and Laškar Gah is the most suitable place for the ¯ construction of a solar hydrogen power plant.
Development and Mechanistic Studies of Ternary Nanocomposites for Hydrogen Production from Water Splitting to Yield Sustainable/Green Energy and Environmental Remediation
Mar 2022
Publication
Photocatalysts lead vitally to water purifications and decarbonise environment each by wastewater treatment and hydrogen (H2 ) production as a renewable energy source from waterphotolysis. This work deals with the photocatalytic degradation of ciprofloxacin (CIP) and H2 production by novel silver-nanoparticle (AgNPs) based ternary-nanocomposites of thiolated reducegraphene oxide graphitic carbon nitride (AgNPs-S-rGO2%@g-C3N4 ) material. Herein the optimised balanced ratio of thiolated reduce-graphene oxide in prepared ternary-nanocomposites played matchlessly to enhance activity by increasing the charge carriers’ movements via slowing down charge-recombination ratios. Reduced graphene oxide (rGO) >2 wt.% or < 10 nm. Therefore AgNPs-S-rGO2%@g-C3N4 has 3772.5 µmolg−1 h −1 H2 production which is 6.43-fold higher than g-C3N4 having cyclic stability of 96% even after four consecutive cycles. The proposed mechanism for AgNPs-S-rGO2%@g-C3N4 revealed that the photo-excited electrons in the conduction-band of g-C3N4 react with the adhered water moieties to generate H2 .
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
Oct 2021
Publication
The use of hybrid renewable energy systems (HRES) has become the best option for supplying electricity to sites remote from the central power system because of its sustainability environmental friendliness and its low cost of energy compared to many conventional sources such as diesel generators. Due to the intermittent nature of renewable energy resources there is a need however for an energy storage system (ESS) to store the surplus energy and feed the energy deficit. Most renewable sources used battery storage systems (BSS) a green hydrogen storage system (GHSS) and a diesel generator as a backup for these sources. Batteries are very expensive and have a very short lifetime and GHSS have a very expensive initial cost and many security issues. In this paper a system consisting of wind turbines and a photovoltaic (PV) array with a pumped hydro energy storage (PHES) system as the main energy storage to replace the expensive and short lifetime batteries is proposed. The proposed system is built to feed a remote area called Dumah Aljandal in the north of Saudi Arabia. A smart grid is used via a novel demand response strategy (DRS) with a dynamic tariff to reduce the size of the components and it reduces the cost of energy compared to a flat tariff. The use of the PHES with smart DRS reduced the cost of energy by 34.2% and 41.1% compared to the use of BSS and GHSS as an ESS respectively. Moreover the use of 100% green energy sources will avoid the emission of an estimated 2.5 million tons of greenhouse gases every year. The proposed system will use a novel optimization algorithm called the gradually reduced particles of particle swarm optimization (GRP-PSO) algorithm to enhance the exploration and exploitation during the searching iterations. The GRP-PSO reduces the convergence time to 58% compared to the average convergence time of 10 optimization algorithms used for comparison. A sensitivity analysis study is introduced in this paper in which the effect of ±20% change in wind speed and solar irradiance are selected and the system showed a low effect of these resources on the Levelized cost of energy of the HRES. These outstanding results proved the superiority of using a pumped-storage system with a dynamic tariff demand response strategy compared to the other energy storage systems with flat-rate tariffs.
Intelligent Natural Gas and Hydrogen Pipeline Dispatching Using the Coupled Thermodynamics-Informed Neural Network and Compressor Boolean Neural Network
Feb 2022
Publication
Natural gas pipelines have attracted increasing attention in the energy industry thanks to the current demand for green energy and the advantages of pipeline transportation. A novel deep learning method is proposed in this paper using a coupled network structure incorporating the thermodynamics-informed neural network and the compressor Boolean neural network to incorporate both functions of pipeline transportation safety check and energy supply predictions. The deep learning model is uniformed for the coupled network structure and the prediction efficiency and accuracy are validated by a number of numerical tests simulating various engineering scenarios including hydrogen gas pipelines. The trained model can provide dispatchers with suggestions about the number of phases existing during the transportation as an index showing safety while the effects of operation temperature pressure and compositional purity are investigated to suggest the optimized productions.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Catalytic and Photocatalytic Electrospun Nanofibers for Hydrogen Generation from Ammonia Borane Complex: A Review
Jul 2021
Publication
Hydrogen (H2) is a promising renewable energy source that can replace fossil fuels since it can solve several environmental and economic issues. However the widespread usage of H2 is constrained by its storage and safety issues. Many researchers consider solid materials with an excellent capacity for H2 storage and generation as the solution for most H2-related issues. Among solid materials ammonia borane (abbreviated hereafter as AB) is considered one of the best hydrogen storage materials due to its extraordinary H2 content and small density. However the process must be conducted in the presence of efficient catalysts to obtain a reasonable amount of generated H2. Electrospun nanofibrous catalysts are a new class of efficient catalysts that involves the usage of polymers. Here a comprehensive review of the ceramic-supported electrospun NF catalysts for AB hydrolysis is presented with a special focus on catalytic and photolytic performance and preparation steps. Photocatalytic AB hydrolysis was discussed in detail due to its importance and promising results. AB photocatalytic hydrolysis mechanisms under light were also explained. Electrospun catalysts show excellent activity for AB hydrolysis with good recyclability. Kinetics studies show that the AB hydrolysis reaction is independent of AB concentration and the first-order reaction of NF catalysts.
An Optimization-Based Model for A Hybrid Photovoltaic-Hydrogen Storage System for Agricultural Operations in Saudi Arabia
Apr 2023
Publication
Renewable energy technologies and resources particularly solar photovoltaic systems provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task as it has a significant impact on the overall cost of the system. In this paper a mixed-integer linear programming-based model is proposed for designing an integrated photovoltaic-hydrogen renewable energy system to minimize total life costs for one of Saudi Arabia’s most important fields a greenhouse farm. The aim of the proposed system is to determine the number of photovoltaic (PV) modules the amount of hydrogen accumulated over time and the number of hydrogen tanks. In addition binary decision variables are used to describe either-or decisions on hydrogen tank charging and discharging. To solve the developed model an exact approach embedded in the general algebraic modeling System (GAMS) software was utilized. The model was validated using a farm consisting of 20 greenhouses a worker-housing area and a water desalination station with hourly energy demand. The findings revealed that 1094 PV panels and 1554 hydrogen storage tanks are required to meet the farm’s load demand. In addition the results indicated that the annual energy cost is $228234 with a levelized cost of energy (LCOE) of 0.12 $/kWh. On the other hand the proposed model reduced the carbon dioxide emissions to 882 tons per year. These findings demonstrated the viability of integrating an electrolyzer fuel cell and hydrogen tank storage with a renewable energy system; nevertheless the cost of energy produced remains high due to the high capital cost. Moreover the findings indicated that hydrogen technology can be used as an energy storage solution when the production of renewable energy systems is variable as well as in other applications such as the industrial residential and transportation sectors. Furthermore the results revealed the feasibility of employing renewable energy as a source of energy for agricultural operations.
Portable Prototype of Hydrogen Fuel Cells for Educational Training
Jan 2023
Publication
This paper presents an experimental prototype of hydrogen fuel cells suitable for training engineering students. The presented system is designed to teach students the V-I characteristics of the fuel cells and how to record the V-I characteristics curve in the case of a single or multiple fuel cells. The prototype contains a compact electrolyzer to produce hydrogen and oxygen to the fuel cell. The fuel cell generates electricity to supply power to various types of loads. The paper also illustrates how to calculate the efficiency of fuel cells in series and parallel modes of operation. In the series mode of operation it is mathematically proven that the efficiency is higher at lower currents. Still the fuel cell operating area is required where the power is the highest. According to experimental results the efficiency in the case of series connection is approximately 25% while in parallel operation mode the efficiency is about 50%. Thus a parallel connection is recommended in the high current applications because the efficiency is higher than the one resulted from series connection. As explained later in the study plan several other experiments can be performed using this educational kit.
Advances in Hydrogen Production from Natural Gas Reforming
Jun 2021
Publication
Steam natural gas reforming is the preferred technique presently used to produce hydrogen. Proposed in 1932 the technique is very well established but still subjected to perfections. Herein first the improvements being sought in catalysts and processes are reviewed and then the advantage of replacing the energy supply from burning fuels with concentrated solar energy is discussed. It is especially this advance that may drastically reduce the economic and environmental cost of hydrogen production. Steam reforming can be easily integrated into concentrated solar with thermal storage for continuous hydrogen production.
Design and Implementation of an Intelligent Energy Management System for Smart Home Utilizing a Multi-agent System
Jul 2022
Publication
Green Hydrogen Microgrid System has been selected as a source of clean and renewable alternative energy because it is undergoing a global revolution and has been identified as a source of clean energy that may aid the country in achieving net-zero emissions in the coming years. The study proposes an innovative Microgrid Renewable hybrid system to achieve these targets. The proposed hybrid renewable energy system combines a photovoltaic generator (PVG) a fuel cell (FC) a supercapacitor (SC) and a home vehicle power supply (V2H) to provide energy for a predefined demand. The proposed architecture is connected to the grid and is highly dependent on solar energy during peak periods. During the night or shading period it uses FC as a backup power source. The SC assists the FC with high charge power. SC performs this way during load transients or quick load changes. A multi-agent system (MAS) was used to build a real energy management system (RT-HEMS) for intelligent coordination between components (MAS). The scheduling algorithm reduces energy consumption by managing the required automation devices without the need for additional network power. It will meet household energy requirements regardless of weather conditions including bright cloudy or rainy conditions. Implementation and discussion of the RT-HEMS ensures that the GHS is functioning properly and that the charge request is satisfied.
Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
Dec 2021
Publication
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions our environment conditions might be affected necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore this study analyzed and examined it critically. In this study two different routes for the production of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions energy efficiency energy consumption and environmental and economic impacts. In this study the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8% which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen which was almost 9% lower than that of Case I. In terms of the environmental analysis both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity the hydrogen could be used for production of other products further downstream or for industrial applications.
Hydrogen Production Methods Based on Solar and Wind Energy: A Review
Jan 2023
Publication
Several research works have investigated the direct supply of renewable electricity to electrolysis particularly from photovoltaic (PV) and wind generator (WG) systems. Hydrogen (H2 ) production based on solar energy is considered to be the newest solution for sustainable energy. Different technologies based on solar energy which allow hydrogen production are presented to study their benefits and inconveniences. The technology of water decomposition based on renewable energy sources to produce hydrogen can be achieved by different processes (photochemical systems; photocatalysis systems photo-electrolysis systems bio-photolysis systems thermolysis systems thermochemical cycles steam electrolysis hybrid processes and concentrated solar energy systems). A comparison of the different methods for hydrogen production based on PV and WG systems was given in this study. A comparative study of different types of electrolyzers was also presented and discussed. Finally an economic assessment of green hydrogen production is given. The hydrogen production cost depends on several factors such as renewable energy sources electrolysis type weather conditions installation cost and the productivity of hydrogen per day. PV/H2 and wind/H2 systems are both suitable in remote and arid areas. Minimum maintenance is required and a power cycle is not needed to produce electricity. The concentrated CSP/H2 system needs a power cycle. The hydrogen production cost is higher if using wind/H2 rather than PV/H2 . The green energy sources are useful for multiple applications such as hydrogen production cooling systems heating and water desalination.
Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle
Feb 2023
Publication
Fuel cell hybrid electric vehicles (FCEVs) are mainly electrified by the fuel cell (FC) system. As a supplementary power source a battery or supercapacitor (SC) is employed (besides the FC) to enhance the power response due to the slow dynamics of the FC. Indeed the performance of the hybrid power system mainly depends on the required power distribution manner among the sources which is managed by the energy management strategy (EMS). This paper considers an FCEV based on the proton exchange membrane FC (PEMFC)/battery/SC. The energy management strategy is designed to ensure optimum power distribution between the sources considering hydrogen consumption. Its main objective is to meet the electric motor’s required power with economic hydrogen consumption and better electrical efficiency. The proposed EMS combines the external energy maximization strategy (EEMS) and the bald eagle search algorithm (BES). Simulation tests for the Extra-Urban Driving Cycle (EUDC) and New European Driving Cycle (NEDC) profiles were performed. The test is supposed to be performed in typical conditions t = 25 ◦C on a flat road without no wind effect. In addition this strategy was compared with the state machine control strategy classic PI and equivalent consumption minimization strategy. In terms of optimization the proposed approach was compared with the original EEMS particle swarm optimization (PSO)-based EEMS and equilibrium optimizer (EO)-based EEMS. The results confirm the ability of the proposed strategy to reduce fuel consumption and enhance system efficiency. This strategy provides 26.36% for NEDC and 11.35% for EUDC fuel-saving and efficiency enhancement by 6.74% for NEDC and 36.19% for EUDC.
Wettability of Shale–brine–H2 System and H2-brine Interfacial Tension for Assessment of the Sealing Capacities of Shale Formations During Underground Hydrogen Storage
Jul 2022
Publication
Replacement of fossil fuels with clean hydrogen has been recognized as the most feasible approach of implementing CO2-free hydrogen economy globally. However large-scale storage of hydrogen is a critical component of hydrogen economy value chain because hydrogen is the lightest molecule and has moderately low volumetric energy content. To achieve successful storage of buoyant hydrogen at the subsurface and convenient withdrawal during the period of critical energy demand the integrity of the underground storage rock and overlying seal (caprock) must be assured. Presently there is paucity of information on hydrogen wettability of shale and the interfacial properties of H2/brine system. In this research contact angles of shale/H2/brine system and hydrogen/brine interfacial tension (IFT) were measured using Krüss drop shape analyzer (DSA 100) at 50 ◦C and varying pressure (14.7–1000 psi). A modified form of sessile drop approach was used for the contact angles measurement whereas the H2- brine IFT was measured through the pendant drop method. H2-brine IFT values decreased slightly with increasing pressure ranging between 63.68◦ at 14.7 psia and 51.29◦ at 1000 psia. The Eagle-ford shale with moderate total organic carbon (TOC) of 3.83% attained fully hydrogen-wet (contact angle of 99.9◦ ) and intermediate-wet condition (contact angle of 89.7◦ ) at 14.7 psi and 200 psi respectively. Likewise the Wolf-camp shale with low TOC (0.30%) attained weakly water-wet conditions with contact angles of 58.8◦ and 62.9◦ at 14.7 psi and 200 psi respectively. The maximum height of hydrogen that can be securely trapped by the Wolf-camp shale was approximately 325 meters whereas the value was merely 100 meters for the Eagle-ford shale. Results of this study will aid in assessment of hydrogen storage capacity of organic-rich shale (adsorption trapping) as well as evaluation of the sealing potentials of low TOC shale (caprock) during underground hydrogen storage.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Industrial Waste Gases as a Resource for Sustainable Hydrogen Production: Resource Availability, Production Potential, Challenges, and Prospects
May 2024
Publication
Industrial sectors pivotal for the economic prosperity of nations rely heavily on affordable reliable and environmentally friendly energy sources. Industries like iron and steel oil refineries and coal-fired power plants while instrumental to national economies are also the most significant contributors to waste gases that contain substantial volumes of carbon monoxide (CO). CO can be converted to a highly efficient and carbon free fuel hydrogen (H2) through a well-known water gas shift reaction. However the untapped potential of H2 from waste industrial streams is yet to be explored. This is the first article that investigates the potential of H2 production from industrial waste gases. The available resource (i.e. CO) and its H2 production potential are estimated. The article also provides insights into the principal challenges and potential avenues for long-term adoption. The results showed that 249.14 MTPY of CO are available to produce 17.44 MTPY of H2 annually. This suggests a significant potential for H2 production from waste gases to revolutionize industrial waste management and contribute significantly towards Sustainable Development Goals 7 9 and 13ensuring access to affordable reliable sustainable and modern energy for all and taking decisive climate action respectively.
A Review of Hydrogen Production and Supply Chain Modeling and Optmization
Jan 2023
Publication
This paper reviews recent optimization models for hydrogen supply chains and production. Optimization is a central component of systematic methodologies to support hydrogen expansion. Hydrogen production is expected to evolve in the coming years to help replace fossil fuels; these high expectations arise from the potential to produce low-carbon hydrogen via electrolysis using electricity generated by renewable sources. However hydrogen is currently mainly used in refinery and industrial operations; therefore physical infrastructures for transmission distribution integration with other energy systems and efficient hydrogen production processes are lacking. Given the potential of hydrogen the greenfield state of infrastructures and the variability of renewable sources systematic methodologies are needed to reach competitive hydrogen prices and design hydrogen supply chains. Future research topics are identified: 1) improved hydrogen demand projections 2) integrated sector modeling 3) improving temporal and spatial resolutions 4) accounting for climate change 5) new methods to address sophisticated models.
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
Jun 2022
Publication
A general rise in environmental and anthropogenically induced greenhouse gas emissions has resulted from worldwide population growth and a growing appetite for clean energy industrial outputs and consumer utilization. Furthermore well-established advanced and emerging countries are seeking fossil fuel and petroleum resources to support their aviation electric utilities industrial sectors and consumer processing essentials. There is an increasing tendency to overcome these challenging concerns and achieve the Paris Agreement’s priorities as emerging technological advances in clean energy technologies progress. Hydrogen is expected to be implemented in various production applications as a fundamental fuel in future energy carrier materials development and manufacturing processes. This paper summarizes recent developments and hydrogen technologies in fuel refining hydrocarbon processing materials manufacturing pharmaceuticals aircraft construction electronics and other hydrogen applications. It also highlights the existing industrialization scenario and describes prospective innovations including theoretical scientific advancements green raw materials production potential exploration and renewable resource integration. Moreover this article further discusses some socioeconomic implications of hydrogen as a green resource.
Design and Analysis of Photovoltaic/wind Operations at MPPT for Hydrogen Production using a PEM Electrolyzer: Towards Innovations in Green Technology
Jul 2023
Publication
In recent times renewable energy systems (RESs) such as Photovoltaic (PV) and wind turbine (WT) are being employed to produce hydrogen. This paper aims to compare the efficiency and performance of PV and WT as sources of RESs to power polymer electrolyte membrane electrolyzer (PEMEL) under different conditions. The study assessed the input/ output power of PV and WT the efficiency of the MPPT controller the calculation of the green hydrogen production rate and the efficiency of each system separately. The study analyzed variable irradiance from 600 to 1000 W/m2 for a PV system and a fixed temperature of 25˚C while for the WT system it considered variable wind speed from 10 to 14 m/s and zero fixed pitch angle. The study demonstrated that the applied controllers were effective fast low computational and highly accurate. The obtained results showed that WT produces twice the PEMEL capacity while the PV system is designed to be equal to the PEMEL capacity. The study serves as a reference for designing PV or WT to feed an electrolyzer. The MATLAB program validated the proposed configurations with their control schemes.
Demonstration of Green Hydrogen Production Using Solar Energy at 28% Efficiency and Evaluation of its Economic Viability
Jan 2021
Publication
The solar to hydrogen (STH) efficiency of photovoltaic-electrolysis (PV-E) setups is a key parameter to lower the cost of green hydrogen produced. Commercial c-Si solar cells have neared saturation with respect to their efficiency which warrants the need to look at alternative technologies. In this work we report a concentrator photovoltaic-electrolysis (CPV-E) setup with a STH efficiency of 28% at 41 suns (without the use of Fresnel lenses) the highest reported efficiency using an alkaline system to date. Using this as a base case we carried out a detailed techno-economic (TEA) analysis which showed that despite the high cost associated with CPV cells the levelized cost of hydrogen (LCOH) is at $5.9 kg1 close to that from c-Si solar farms ($4.9 kg1 ) primarily due to the high STH efficiency. We also report sensitivity analysis of factors affecting both CPV and alkaline electrolyser systems such as the CPV module efficiency and installed capacity electrolyser stack lifetime operating current density and working hours. Our results indicate that in a scenario where the installed capacity of CPV technology matches that of silicon and with an electrolyser operating current density of 0.7 A cm2 the LCOH from CPV electrolysis systems can be.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Ultra-clean Hydrogen Production by Ammonia Decomposition
Jan 2016
Publication
A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR) with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR) and a single fixed bed membrane reactor (FBMR) shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.
Double Compression-Expansion Engine (DCEE) Fueled with Hydrogen: Preliminary Computational Assessment
Jan 2022
Publication
Hydrogen (H2 ) is currently a highly attractive fuel for internal combustion engines (ICEs) owing to the prospects of potentially near-zero emissions. However the production emissions and cost of H2 fuel necessitate substantial improvements in ICE thermal efficiency. This work aims to investigate a potential implementation of H2 combustion in a highly efficient double compression-expansion engine (DCEE). DICI nonpremixed H2 combustion mode is used for its superior characteristics as concluded in previous studies. The analysis is performed using a 1D GT-Power software package where different variants of the DICI H2 and diesel combustion cycles obtained experimentally and numerically (3D CFD) are imposed in the combustion cylinder of the DCEE. The results show that the low jet momentum free jet mixing dominated variants of the DICI H2 combustion concept are preferred owing to the lower heat transfer losses and relaxed requirements on the fuel injection system. Insulation of the expander and removal of the intercooling improve the engine efficiency by 1.3 and 0.5 %-points respectively but the latter leads to elevated temperatures in the high-pressure tank which makes the selection of its materials harder but allows the use of cheaper oxidation catalysts. The results also show that the DCEE performance is insensitive to combustion cylinder temperatures making it potentially suitable for other high-octane fuels such as methane methanol ammonia etc. Finally a brake thermal efficiency of 56 % is achieved with H2 combustion around 1 %-point higher than with diesel. Further efficiency improvements are also possible with a fully optimized H2 combustion system.
Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City
Feb 2023
Publication
The issue of depleting fossil fuels has emphasized the use of renewable energy. Multigeneration systems fueled by renewables such as geothermal biomass solar etc. have proven to be cutting-edge technologies for the production of different valuable by-products. This study proposes a multigeneration system using a geothermal source of energy. The main outputs include power space heating cooling fresh and hot water dry air and hydrogen. The system includes a regenerative Rankine cycle a double effect absorption cycle and a double flash desalination cycle. A significant amount of electrical power hydrogen and fresh water is generated which can be used for commercial or domestic purposes. The power output is 103 MW. The thermal efficiency is 24.42% while energetic and exergetic efficiencies are 54.22% and 38.96% respectively. The COPen is found to be 1.836 and the COPex is found to be 1.678. The hydrogen and fresh water are produced at a rate of 0.1266 kg/s and 37.6 kg/s respectively.
A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy
Oct 2022
Publication
Hydrogen is acknowledged as a potential and appealing energy carrier for decarbonizing the sectors that contribute to global warming such as power generation industries and transportation. Many people are interested in employing low-carbon sources of energy to produce hydrogen by using water electrolysis. Additionally the intermittency of renewable energy supplies such as wind and solar makes electricity generation less predictable potentially leading to power network incompatibilities. Hence hydrogen generation and storage can offer a solution by enhancing system flexibility. Hydrogen saved as compressed gas could be turned back into energy or utilized as a feedstock for manufacturing building heating and automobile fuel. This work identified many hydrogen production strategies storage methods and energy management strategies in the hybrid microgrid (HMG). This paper discusses a case study of a HMG system that uses hydrogen as one of the main energy sources together with a solar panel and wind turbine (WT). The bidirectional AC-DC converter (BAC) is designed for HMGs to maintain power and voltage balance between the DC and AC grids. This study offers a control approach based on an analysis of the BAC’s main circuit that not only accomplishes the function of bidirectional power conversion but also facilitates smooth renewable energy integration. While implementing the hydrogen-based HMG the developed control technique reduces the reactive power in linear and non-linear (NL) loads by 90.3% and 89.4%.
Performance of Common Rail Direct Injection (CRDi) Engine Using Ceiba Pentandra Biodiesel and Hydrogen Fuel Combination
Nov 2021
Publication
An existing diesel engine was fitted with a common rail direct injection (CRDi) facility to inject fuel at higher pressure in CRDi mode. In the current work rotating blades were incorporated in the piston cavity to enhance turbulence. Pilot fuels used are diesel and biodiesel of Ceiba pentandra oil (BCPO) with hydrogen supply during the suction stroke. Performance evaluation and emission tests for CRDi mode were carried out under different loading conditions. In the first part of the work maximum possible hydrogen substitution without knocking was reported at an injection timing of 15◦ before top dead center (bTDC). In the second part of the work fuel injection pressure (IP) was varied with maximum hydrogen fuel substitution. Then in the third part of the work exhaust gas recirculation (EGR) was varied to study the nitrogen oxides (NOx) generated. At 900 bar HC emissions in the CRDi engine were reduced by 18.5% and CO emissions were reduced by 17% relative to the CI mode. NOx emissions from the CRDi engine were decreased by 28% relative to the CI engine mode. At 20% EGR lowered the BTE by 14.2% and reduced hydrocarbons nitrogen oxide and carbon monoxide by 6.3% 30.5% and 9% respectively compared to the CI mode of operation.
Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future
Sep 2023
Publication
There is a growing interest in green hydrogen with researchers institutions and countries focusing on its development efficiency improvement and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries including Australia the European Union India Canada China Russia the United States South Korea South Africa Japan and other nations in North Africa. These regions possess significant potential for “green” hydrogen production supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover it explores the potential advantages of green hydrogen utilization across various industrial commercial and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications with improvements in production and storage techniques as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency minimize costs and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits.
No more items...