United States
Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review
Nov 2023
Publication
The depletion of fossil fuels in the current world has been a major concern due to their role as a primary source of energy for many countries. As non-renewable sources continue to deplete there is a need for more research and initiatives to reduce reliance on these sources and explore better alternatives such as renewable energy. Hydrogen is one of the most intriguing energy sources for producing power from fuel cells and heat engines without releasing carbon dioxide or other pollutants. The production of hydrogen via the electrolysis of water using renewable energy sources such as solar energy is one of the possible uses for solid oxide electrolysis cells (SOECs). SOECs can be classified as either oxygen-ion conducting or proton-conducting depending on the electrolyte materials used. This article aims to highlight broad and important aspects of the hybrid SOEC-based solar hydrogen-generating technology which utilizes a mixed-ion conductor capable of transporting both oxygen ions and protons simultaneously. In addition to providing useful information on the technological efficiency of hydrogen production in SOEC this review aims to make hydrogen production more efficient than any other water electrolysis system.
Everything About Hydrogen Podcast: Electric or Hydrogen? It's 'AND' not 'OR'
May 2023
Publication
On this weeks episode we have Juergen Guldner General Program Manager Hydrogen Technology at BMW. The role of hydrogen in passenger vehicles has for many years been seen as a lonely pursuit for Toyota and Hyundai but the landscape is changing. With the Warrego from startup H2X the Ford H2 pick up the Grenadier/Defender F-Cell from INEOS and now the BMW IX5 it is clear that the race to net zero is far from settled!
In this episode the team dive into the what why and how of the BMW story towards one of the world’s most exciting zero emission vehicle offerings. We explore the details of the vehicle and its performance the reasons why BMW are exploring the potential for hydrogen and why now is the time they feel for hydrogen as a passenger vehicle solution to compliment BEV and finally the How or rather the plan for the testing and broader roll-out of not only the IX5 but also the infrastructure that supports it.
The podcast can be found on their website.
In this episode the team dive into the what why and how of the BMW story towards one of the world’s most exciting zero emission vehicle offerings. We explore the details of the vehicle and its performance the reasons why BMW are exploring the potential for hydrogen and why now is the time they feel for hydrogen as a passenger vehicle solution to compliment BEV and finally the How or rather the plan for the testing and broader roll-out of not only the IX5 but also the infrastructure that supports it.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Getting Steel in the Ground in an IRA Driven H2 Market
May 2023
Publication
On this episode we speak with Scott Weiss Senior Vice President for Corporate Strategy and Ashleigh Cotting Senior Manager for Green Fuels Marketing with Apex Clean Energy. Apex has a history of developing utility scale renewables with more than 2GW under management and with nearly 8GW of renewables financed. Apex also partnered with Plug Power in April 2021 to develop a 345MW wind facility to support a 30 tonne per day green hydrogen production facility.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
Geomechanical and Geochemical Considerations for Hydrogen Storage in Shale and Tight Reservoirs
Aug 2025
Publication
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage playing a critical role in the transition to a hydrogenbased economy. However the successful deployment of UHS in these low-permeability formations depends on a thorough understanding of the geomechanical and geochemical factors that affect storage integrity injectivity and long-term stability. This review critically examines the geomechanical aspects including stress distribution rock deformation fracture propagation and caprock integrity which govern hydrogen containment under subsurface conditions. Additionally it explores key geochemical challenges such as hydrogen-induced mineral alterations adsorption effects microbial activity and potential reactivity with formation fluids to evaluate their impact on storage feasibility. A comprehensive analysis of experimental studies numerical modeling approaches and field applications is presented to identify knowledge gaps and future research directions.
Everything About Hydrogen Podcast: Opportunities in Africa
Sep 2023
Publication
For the second episode in this new season the team interviews Oghosa Erhahon to discuss hydrogen opportunities in Africa including the African Climate Summit in September and what to look forward to at COP28.
The podcast can be found on their website.
The podcast can be found on their website.
Assessing the Cost-effectiveness of Carbon Neutrality for Light-duty Vehicle Sector in China
Nov 2023
Publication
China’s progress in decarbonizing its transportation particularly vehicle electrification is notable. However the economically effective pathways are underexplored. To find out how much cost is necessary for carbon neutrality for the light-duty vehicle (LDV) sector this study examines twenty decarbonization pathways combining the New Energy and Oil Consumption Credit model and the China-Fleet model. We find that the 2060 zero-greenhouse gas (GHG) emission goal for LDVs is achievable via electrification if the battery pack cost is under CNY483/kWh by 2050. However an extra of CNY8.86 trillion internal subsidies is needed under pessimistic battery cost scenarios (CNY759/kWh in 2050) to eliminate 246 million tonnes of CO2-eq by 2050 ensuring over 80% market penetration of battery electric vehicles (BEVs) in 2050. Moreover the promotion of fuel cell electric vehicles is synergy with BEVs to mitigate the carbon abatement difficulties decreasing up to 34% of the maximum marginal abatement internal investment.
Entropy Production and Filling Time in Hydrogen Refueling Stations: An Economic Assessment
Aug 2024
Publication
A multi-objective optimization is performed to obtain fueling conditions in hydrogen stations leading to improved filling times and thermodynamic efficiency (entropy production) of the de facto standard of operation which is defined by the protocol SAE J2601. After finding the Pareto frontier between filling time and total entropy production it was found that SAE J2601 is suboptimal in terms of these process variables. Specifically reductions of filling time from 47 to 77% are possible in the analyzed range of ambient temperatures (from 10 to 40 °C) with higher saving potential the hotter the weather conditions. Maximum entropy production savings with respect to SAE J2601 (7% for 10 °C 1% for 40 °C) demand a longer filling time that increases with ambient temperature (264% for 10 °C 350% for 40 °C). Considering average electricity prices in California USA the operating cost of the filling process can be reduced between 8 and 28% without increasing the expected filling time.
Thermo-Catalytic Decomposition of Natural Gas: Connections Between Deposited Carbon Nanostructure, Active Sites and Kinetic Rates
Oct 2025
Publication
Thermo-catalytic decomposition (TCD) presents a promising pathway for producing hydrogen from natural gas without emitting CO2. This process represents a form of fossil fuel decarbonization where the byproduct rather than being a greenhouse gas is a solid carbon material with potential for commercial value. This study examines the dynamic behavior of TCD showing that carbon formed during the reaction first enhances and later dominates methane decomposition. Three types of carbon materials were employed as starting catalysts. Methane decomposition was continuously monitored using on-line Fourier transform infrared (FT-IR) spectroscopy. The concentration and nature of surface-active sites were determined using a two-step approach: oxygen chemisorption followed by elemental analysis through X-ray photoelectron spectroscopy (XPS). Changes in the morphology and nanostructure of the carbon catalysts both before and after TCD were examined using high-resolution transmission electron microscopy (HRTEM). Thermogravimetric analysis (TGA) was used to study the reactivity of the TCD deposits in relation to the initial catalysts. Partial oxidation altered the structural and surface chemistry of the initial carbon catalysts resulting in activation energies of 69.7–136.7 kJ/mol for methane. The presence of C2 and C3 species doubled methane decomposition (12% → 24%). TCD carbon displayed higher reactivity than the nascent catalysts and sustained long-term activity.
Green Hydrogen: A Pathway to Vietnam’s Energy Security
Oct 2025
Publication
Green hydrogen is increasingly recognized as a pivotal energy carrier in the global transition toward low-carbon energy systems. Beyond its established applications in industry and transportation the development of green hydrogen could accelerate its integration into the power generation sector thus enabling a more sustainable deployment of renewable energy sources. Vietnam endowed with abundant renewable energy potential—particularly solar and wind—has a strong foundation for green hydrogen. This emerging energy source holds significant potential to support the strategic objectives in recent national energy policies aligning with the country’s socio-economic development. However despite this promise the integration of green hydrogen into Vietnam’s energy system remains limited. This paper provides a critical review of the current landscape of green hydrogen in Vietnam examining both the opportunities and challenges associated with its production and deployment. Special attention is given to regulatory frameworks infrastructure readiness and economic viability. Additionally the study also explores the potential of green hydrogen in enhancing energy security within the context of the national energy transition.
An International Review of Hydrogen Technology and Policy Developments, with a Focus on Wind- and Nuclear Power-Produced Hydrogen and Natural Hydrogen
Aug 2025
Publication
The potential for hydrogen to reshape energy systems has been recognized for over a century. Yet as decarbonization priorities have sharpened in many regions three distinct frontier areas are critical to consider: hydrogen produced from wind; hydrogen produced from nuclear power; and the development of natural hydrogen. These pathways reflect technology and policy changes including a 54% increase in the globally installed wind capacity since 2020 plus new signs of potential emerging in nuclear energy and natural hydrogen. Broadly speaking there are a considerable number of studies covering hydrogen production from electrolysis yet none systematically examine wind- and nuclear-derived hydrogen natural hydrogen or the policies that enable their adoption in key countries. This article highlights international policy and technology developments with a focus on prime movers: Germany China the US and Russia.
Synergies Between Green Hydrogen and Renewable Energy in South Africa
Aug 2025
Publication
South Africa has excellent conditions for renewable energy generation making it well placed to produce green hydrogen for both domestic use and export. In building a green hydrogen economy around export markets it will face competition from countries with equivalent or better resources and/or that are located closer to export markets (e.g. in North Africa and the Middle East) or have lower capital costs (developed markets like Australia and Canada). South Africa however has an extensive energy system with unserved electricity demand. The ability to trade electricity with the national grid (feeding into the grid during times of peak dedicated renewable energy supply and extracting from the grid during times of low dedicated renewable energy availability) could reduce the cost of producing green hydrogen by as much as 10–25 %. This paper explores the opportunity for South African green hydrogen producers presented by the electricity supply crisis that has been ongoing since 2007. It highlights the potential for a mutually reinforcing growth cycle between renewable energy and green hydrogen to be established which will contribute not only to the mitigation of greenhouse gas emissions but to the local economy and broader society.
Potential Vulnerability of US Green Hydrogen in a World of Interdependent Networks
Jul 2025
Publication
Green hydrogen is viewed as a promising pathway to future decarbonized energy systems. However hydrogen production depends on a few critical minerals particularly platinum and iridium. Here we examine how the supply of these minerals is subject to vulnerabilities hidden in interdependent global networks of trade and investment. We develop an index to quantify these vulnerabilities for a combination of a target country an investing country an intermediary country and a commodity. Focusing on the US as the target country for the import of platinum and iridium we show how vulnerability-inducing investing countries changed between 2010 and 2019. We find that the UK is consistently among investing countries that can potentially induce US vulnerabilities via intermediary exporters of platinum and iridium with South Africa being the primary intermediary country. Future research includes incorporating geopolitical factors and technological innovations to move the index closer from potential to real-world vulnerabilities.
Which Offers Greater Techno-Economic Potential: Oil or Hydrogen Production from Light Oil Reservoirs?
Jun 2025
Publication
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil the question of which offers greater economic potential oil or hydrogen remains central to ongoing discussions especially as researchers explore ways to produce hydrogen exclusively from petroleum reservoirs. This study presents the first integrated techno-economic model comparing oil and hydrogen production under varying injection strategies using CMG STARS for reservoir simulations and GoldSim for economic modeling. Key technical factors including injection compositions well configurations reservoir heterogeneity and formation damage (issues not addressed in previous studies) were analyzed for their impact on hydrogen yield and profitability. The results indicate that CO2-enriched injection strategies enhance hydrogen production but are economically constrained by the high costs of CO2 procurement and recycling. In contrast air injection although less efficient in hydrogen yield provides a more cost-effective alternative. Despite the technological promise of hydrogen oil revenue remains the dominant economic driver with hydrogen co-production facing significant economic challenges unless supported by policy incentives or advancements in gas lifting separation and storage technologies. This study highlights the economic trade-offs and strategic considerations crucial for integrating hydrogen production into conventional petroleum extraction offering valuable insights for optimizing hydrogen co-production in the context of a sustainable energy transition. Additionally while the present work focuses on oil reservoirs future research should extend the approach to natural gas and gas condensate reservoirs which may offer more favorable conditions for hydrogen generation.
Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control
Jun 2025
Publication
This study investigates the effects of varying hydrogen percentages in fuel blends on combustion dynamics engine performance and emissions. Experimental data and analytical equations were used to evaluate combustion parameters such as equivalent lambda in-cylinder pressure heat release rate and ignition timing. The findings demonstrate that hydrogen blending enhances combustion stability shortens ignition delay and shifts peak heat release to be closer to the top dead center (TDC). These changes improve thermal efficiency and reduce cycle-to-cycle variation. Hydrogen blending also significantly lowers carbon dioxide (CO2) and hydrocarbon (HC) emissions particularly at higher blend levels (H0–H5) while lower blends increase nitrogen oxides (NOx) emissions and risk pre-ignition due to advanced start of combustion (SOC). Engine performance improved with an average hydrogen energy contribution of 12% under a constant load. However the optimal hydrogen blending range is crucial to balancing efficiency gains and emission reductions. These results underline the potential of hydrogen as a cleaner additive fuel and the importance of optimizing blend ratios to harness its benefits effectively.
A Multi-objective Decision-making Framework for Renewable Energy Transportation
Aug 2025
Publication
The mismatch in renewable energy generation potential levelized cost and demand across different geographies highlight the potential of a future global green energy economy through the trade of green fuels. This potential and need call for modeling frameworks to make informed decisions on energy investments operations and regulations. In this work we present a multi-objective optimization framework for modeling and optimizing energy transmission strategies considering different generation locations transportation modes and often conflicting objectives of cost environmental impact and transportation risk. An illustrative case study on supplying renewable energy to Germany demonstrates the utility of the framework across diverse options and trade-offs. Sensitivity analysis reveals that the optimal energy carrier and transmission strategy depend on distance demand and existing infrastructure that can be re-purposed. The framework is adaptable across geographies and scales to offer actionable insights to guide investment operational and regulatory decisions in renewable energy and hydrogen supply chains.
Towards Net-Zero: Comparative Analysis of Hydrogen Infrastructure Development in USA, Canada, Singapore, and Sri Lanka
Sep 2025
Publication
This paper compares national hydrogen (H2) infrastructure plans in Canada the United States (the USA) Singapore and Sri Lanka four countries with varying geographic and economic outlooks but shared targets for reaching net-zero emissions by 2050. It examines how each country approaches hydrogen production pipeline infrastructure policy incentives and international collaboration. Canada focuses on large-scale hydrogen production utilizing natural resources and retrofitted natural gas pipelines supplemented by carbon capture technology. The USA promotes regional hydrogen hubs with federal investment and intersectoral collaboration. Singapore suggests an innovation-based import-dominant strategy featuring hydrogen-compatible infrastructure in a land-constrained region. Sri Lanka maintains an import-facilitated pilot-scale model facilitated by donor funding and foreign collaboration. This study identifies common challenges such as hydrogen embrittlement leakages and infrastructure scalability as well as fundamental differences based on local conditions. Based on these findings strategic frameworks are proposed including scalability adaptability partnership policy architecture digitalization and equity. The findings highlight the importance of localized hydrogen solutions supported by strong international cooperation and international partnerships.
Sustainable Refining: Integrating Renewable Energy and Advanced Technologies
Aug 2025
Publication
Crude oil distillation is one of the most energy-intensive processes in petroleum refining consuming up to 20% of total refinery energy. Improving the energy efficiency of crude distillation units (CDUs) is essential for reducing costs lowering emissions and achieving sustainable refining. Current studies often examine energy savings operational flexibility or renewable energy integration separately. This review brings these aspects together focusing on heat integration advanced control systems and renewable energy options such as solar-assisted preheating and green hydrogen. Advanced column designs including dividing-wall and hybrid systems can cut energy use by 15–30% while AI-based optimization improves process stability and flexibility. Solar-assisted preheating can reduce fossil fuel demand by up to 20% and green hydrogen offers strong potential for decarbonization. Our findings highlight that integrated strategies including advanced simulation tools and machine learning significantly improve CDU performance. We recommend exploring hybrid algorithms renewable energy integration and sustainable technologies to address these challenges and achieve long-term environmental and economic benefits.
Exploring the Potential of Ammonia as a Fuel: Advances in Combustion Understanding and Large-scale Furnace Applications
Sep 2025
Publication
From an environmental standpoint carbon-free energy carriers such as ammonia and hydrogen are essential for future energy systems. However their hightemperature chemical behavior remains insufficiently understood posing challenges for the development and optimization of advanced combustion technologies. Ammonia in particular is globally available and cost-effective especially for energy-intensive industries. The addition of ammonia or hydrogen to methane significantly reduces the accuracy of existing predictive models. Therefore validated and detailed data are urgently needed to enable reliable design and performance predictions. This review highlights the compatibility of ammonia with existing combustion infrastructure facilitating a smoother transition to more sustainable heating methods without the need for entirely new systems. Applications in high-temperature heating processes such as metal processing ceramics and glass production and power generation are of particular interest. This review focuses on the systematic assessment of alternative fuel mixtures comprising ammonia and hydrogen as well as natural gas with particular consideration of existing safety-related parameters and combustion characteristics. Fundamental quantities such as the laminar burning velocity are discussed in the context of their relevance for fuel mixtures and their scalability toward turbulent flame propagation which is of critical importance for industrial burner and reactor design. The influence of fuel composition on ignition limits is examined as these are essential parameters for safety margin definitions and operational boundary conditions. Furthermore flame stability in mixed-fuel systems is addressed to evaluate the practical feasibility and robustness of combustion under varying process conditions. A detailed overview of current diagnostic and analysis methods follows encompassing both pollutant measurement techniques and the detection of key radical species. These diagnostics form the experimental basis for reaction kinetics modeling and mechanism validation. Given the importance of emission formation in combustion systems a dedicated subsection summarizes major emission trends even though a comprehensive treatment would exceed the scope of this review. Thermal radiation effects which are highly relevant for heat transfer and system efficiency in large-scale applications are then reviewed. In parallel current developments in numerical simulation approaches for industrial-scale combustion systems are presented including aspects of model accuracy boundary conditions and computational efficiency. The review also incorporates insights from materials engineering particularly regarding high-temperature material performance corrosion resistance and compatibility with combustion products. Based on these interdisciplinary findings operational strategies for high-temperature furnaces are outlined and selected industrial reference systems are briefly presented. This integrated approach aims to support the design optimization and safe operation of next-generation combustion technologies utilizing carbon-free or low-carbon fuels.
Global Warming Impacts of the Transition from Fossil Fuel Conversion and Infrastructure to Hydrogen
Jul 2025
Publication
Emissions from fossil fuel extraction conveyance and combustion are among the most significant causes of air pollution and climate change leading to arguably the most acute crises mankind has ever faced. The transition from fossil fuel-based energy systems to hydrogen is essential for meeting a portion of global decarbonization goals. Hydrogen offers certain features such as high gravimetric energy density that is required for heavy-duty shipping and freight applications and chemical properties such as high temperature combustion and reducing capabilities that are required for steel chemicals and fertilizer industries. However hydrogen that leaks has indirect climate implications stemming from atmospheric interactions that are emerging as a critical area of research. This study reviews recent literature on hydrogen’s global warming potential (GWP) highlighting its indirect contributions to radiative forcing via methane’s extended atmospheric lifetime tropospheric ozone formation and stratospheric water vapor formation. The 100-year GWP (GWP100) of hydrogen estimated to range between 8 and 12.8 underscores the need to minimize leakage throughout the hydrogen supply chain to maximize the climate benefits of using hydrogen instead of fossil fuels. Comparisons with methane reveal hydrogen’s shorter atmospheric lifetime and reduced long-term warming effects establishing it as a viable substitute for fossil fuels in sectors such as steel cement and heavy-duty transport. The analysis emphasizes the importance of accurate leakage assessments robust policy frameworks and advanced infrastructure to ensure hydrogen realizes its potential as a sustainable energy carrier that displaces the use of fossil fuels. Future research is recommended to refine climate models better understand atmospheric sinks and hydrogen leakage phenomena and develop effective strategies to minimize hydrogen emissions paving the way for environmentally sound use of hydrogen.
Can Hydrogen Be Produced Cost-Effectively from Heavy Oil Reservoirs?
Oct 2025
Publication
The potential for hydrogen production from heavy oil reservoirs has gained significant attention as a dual-benefit process for both enhanced oil recovery and low-carbon energy generation. This study investigates the technical and economic feasibility of producing hydrogen from heavy oil reservoirs using two primary in situ combustion gasification strategies: cyclic steam/air and CO2 + O2 injection. Through a comprehensive analysis of technical barriers economic drivers and market conditions we assess the hydrogen production potential of each method. While both strategies show promise they face considerable challenges: the high energy demands associated with steam generation in the steam/air strategy and the complexities of CO2 procurement capture and storage in the CO2 + O2 method. The novelty of this work lies in combining CMG-STARS reservoir simulations with GoldSim techno-economic modeling to quantify hydrogen yields production costs and oil–hydrogen revenue trade-offs under realistic field conditions. The analysis reveals that under current technological and market conditions the cost of hydrogen production significantly exceeds the market price rendering the process economically uncompetitive. Furthermore the dominance of oil production as the primary revenue source in both methods limits the economic viability of hydrogen production. Unless substantial advancements are made in technology or a more cost-efficient production strategy is developed hydrogen production from heavy oil reservoirs is unlikely to become commercially viable in the near term. This study provides crucial insights into the challenges that must be addressed for hydrogen production from heavy oil reservoirs to be considered a competitive energy source.
Early Transition to Near-zero Emissions Electricity and Carbon Dioxide Removal is Essential to Achieve Net-zero Emissions at a Low Cost in Australia
Aug 2025
Publication
Achieving net-zero emissions requires major changes across a nation’s economy energy and land systems particularly due to sectors where emissions are difficult to eliminate. Here we adapt two global scenarios from the International Energy Agency—the net-zero emissions by 2050 and the Stated Policies Scenario—using an integrated numerical economic-energy model tailored to Australia. We explore how emissions may evolve by sector and identify key technologies for decarbonisation. Our results show that a rapid shift to near-zero emissions electricity is central to reducing costs and enabling wider emissions reductions. From 2030 onwards carbon removal through land management and engineered solutions such as direct air capture and bioenergy with carbon capture and storage becomes critical. Australia is also well-positioned to become a global supplier of clean energy such as hydrogen made using renewable electricity helping reduce emissions beyond its borders.
Hydrogen Storage Potential of Salado Formation in the Permian Basin of West Texas, United States
Jun 2025
Publication
Hydrogen (H2) has the potential to become a cleaner fuel alternative to increase energy mix versatility as part of a low-carbon economy. Geological H2 storage represents a key component of the emerging H2 value chain since large-scale energy generation linked to energy generation and large-scale industrial applications will require significant upscaling of geological storage. Geological H2 storage can take place in both salt domes and bedded salt formations. Bedded salt formations offer a significant advantage for H2 storage over salt domes because of their widespread availability. This research focuses on evaluating the H2 storage potential of the Salado Formation a bedded salt deposit in the Permian Basin of West Texas in the United States. Using data from 3268 well logs this study analyzes an area of 136100 km2 to identify suitable depth and net halite thickness for H2 storage in salt caverns. In addition this work applies a novel geostatistical workflow to quantify the uncertainty in the formation’s storage potential. The H2 working gas potential of the Salado Formation ranges from 0.62 to 17.53 Tsm3 (1.75–49.68 PWh of stored energy) across low-risk to high-risk scenarios with a median potential of 1.19 Tsm3 (3.37 PWh). The counties with the largest storage potential are: Lea in New Mexico and Gaines and Andrews in Texas. These three counties account for more than 75 % of the formation’s total storage potential. This is the first study to quantify uncertainty in H2 storage estimates for a bedded salt formation while providing a detailed breakdown of results by county and 1 km2 grid sections. The findings of this work offer critical insights for developing H2 infrastructure in the Permian Basin. The Permian Basin of West Texas has the potential to become an important hub for H2 production from both natural gas and/or renewable energy. Estimating H2 storage potential is an important contribution to assess the feasibility of the entire H2 value chain in Texas. An interactive map accompanies this work allowing the readers to explore the results visually.
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
Jun 2025
Publication
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however uncertainty remains about optimal grid architectures to minimize cost including how and when to incorporate long-duration energy storage. This study implements a novel multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue which has already successfully deployed solar photovoltaics wind turbines and battery storage systems. Using real community load resource and generation data we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability sustainability and security.
Scoring and Ranking Methods for Evaluating the Techno-Economic Competitiveness of Hydrogen Production Technologies
Jun 2025
Publication
This research evaluates four hydrogen (H2) production technologies via water electrolysis (WE): alkaline water electrolysis (AWE) proton exchange membrane electrolysis (PEME) anion exchange membrane electrolysis (AEME) and solid oxide electrolysis (SOE). Two scoring and ranking methods the MACBETH method and the Pugh decision matrix are utilized for this evaluation. The scoring process employs nine decision criteria: capital expenditure (CAPEX) operating expenditure (OPEX) operating efficiency (SOE) startup time (SuT) environmental impact (EI) technology readiness level (TRL) maintenance requirements (MRs) supply chain challenges (SCCs) and levelized cost of H2 (LCOH). The MACBETH method involves pairwise technology comparisons for each decision criterion using seven qualitative judgment categories which are converted into quantitative scores via M-MACBETH software (Version 3.2.0). The Pugh decision matrix benchmarks WE technologies using a baseline technology—SMR with CCS—and a three-point scoring scale (0 for the baseline +1 for better −1 for worse). Results from both methods indicate AWE as the leading H2 production technology which is followed by AEME PEME and SOE. AWE excels due to its lowest CAPEX and OPEX highest TRL and optimal operational efficiency (at ≈7 bars of pressure) which minimizes LCOH. AEME demonstrates balanced performance across the criteria. While PEME shows advantages in some areas it requires improvements in others. SOE has the most areas needing enhancement. These insights can direct future R&D efforts toward the most promising H2 production technologies to achieve the net-zero goal.
Electrospun Metal Hydride-polymer Nanocomposite Fibers for Enhanced Hydrogen Storage and Kinetics
Oct 2025
Publication
One of the key elements in the advancement of hydrogen (H2) and fuel cell technologies is to store H2 effectively for use in various industries such as transportation defense portable electronics and energy. Because of its highest energy density availability and environmental and health benefits H2 stands as a promising future energy carrier. Currently enterprises are searching for a solution for energy distribution management and H2 gas storage. Thus there is a need to develop an innovative solution to H2 storage that might be considered for later use in aviation applications. This study aims to synthesize an electrospun nanocomposite fiber (NCF) for an H2 storage application and to understand the absorption kinetics of the resultant highly porous NCF mats. This study incorporates functional NCFs with H2-sensitive inclusions to increase the storage capacity and absorption/desorption kinetics of H2 gas at lower temperatures and pressures. Here the electrospinning technique is utilized to produce NCFs with various nanoscale metal hydrides (MHs) and conductive particles which support enhancing H2 storage capacity and kinetics. These NCFs enable controlled H2 storage and improve thermal properties. Selected polymeric materials for H2 storage that have been investigated are polyacrylonitrile (PAN) polymethyl methacrylate (PMMA) and sulfonated polyether ether ketone (SPEEK) in combination with MHs and multiwalled carbon nanotubes (MWCNTs). On testing it was observed that H2 capacity with SPEEK which includes 4 wt% MWCNTs and 4 wt% MH MmNi4.5Fe0.5 shows significant H2 uptake compared to a PAN/PMMA polymer.
Magnetically Induced Convection Enhances Water Electrolysis in Microgravity
Aug 2025
Publication
Since the early days of space exploration the efficient production of oxygen and hydrogen via water electrolysis has been a central task for regenerative life-support systems. Water electrolysers are however challenged by the near-absence of buoyancy in microgravity resulting in hindered gas bubble detachment from electrodes and diminished electrolysis efficiencies. Here we show that a commercial neodymium magnet enhances water electrolysis with current density improvements of up to 240% in microgravity by exploiting the magnetic polarization of the electrolyte and the magnetohydrodynamic force. We demonstrate that these interactions enhance gas bubble detachment and displacement through magnetic convection and achieve passive gas–liquid phase separation. Two model magnetoelectrolytic cells a proton-exchange membrane electrolyser and a magnetohydrodynamic drive were designed to leverage these forces and produce oxygen and hydrogen at near-terrestrial efficiencies in microgravity. Overall this work highlights achievable lightweight low-maintenance and energy-efficient phase separation and electrolyser technologies to support future human spaceflight architectures.
An Innovative Industrial Complex for Sustainable Hydrocarbon Production with Near-Zero Emissions
Oct 2025
Publication
The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project we utilize the CO2 generated from the Allam cycle as feedstock for a newly envisioned industrial complex dedicated to producing renewable hydrocarbons. The industrial complex (FAAR) comprises four subsystems: (i) a Fischer–Tropsch synthesis plant (FTSP) (ii) an alkaline water electrolysis plant (AWEP) (iii) an Allam power cycle plant (APCP) and (iv) a reverse water-gas shift plant (RWGSP). Through effective material heat and power integration the FAAR complex utilizing 57.1% renewable energy for its electricity needs can poly-generate sustainable hydrocarbons (C1–C30) pure hydrogen and oxygen with near-zero emissions from natural gas and water. Economic analysis indicates strong financial performance of the development with an internal rate of return (IRR) of 18% a discounted payback period of 8.7 years and a profitability index of 2.39. The complex has been validated through rigorous modeling and simulation using Aspen Plus version 14 including sensitivity analysis.
Fault Tree and Importance Measure Analysis of a PEM Electrolyzer for Hydrogen Production at a Nuclear Power Plant
Sep 2025
Publication
Pilot projects to generate hydrogen using proton exchange membrane (PEM) electrolyzers coupled to nuclear power plants (NPPs) began in 2022 with further developments anticipated over the next decade. However the co-location of electrolyzers with NPPs requires an understanding and mitigation of potential risks. In this work we identify and rank failure contributors for a 1 MW PEM electrolysis system. We used fault trees to define the component failure logic parameterized them with generic data and calculated failure frequencies and minimal cut sets for four top events: hydrogen release oxygen release nitrogen release and hydrogen and oxygen mixing. We use risk reduction worth importance measures to determine the most risk-significant components. The results provide insight into primary risk drivers in PEM electrolyzer systems and provide the foundational steps towards quantitative risk assessment of large-scale PEM electrolyzers at NPPs. The results include recommended riskmitigation actions include recommendations about design maintenance and monitoring strategies.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
Integrated Optimization of Hydrogen Production: Evaluating Scope 3 Emissions and Sustainable Pathways
Jul 2025
Publication
The U.S. produces 10 million metric tons (MMT) of hydrogen annually emitting about 41 MMT of carbon dioxide equivalents (CO2-eqs). With rising hydrogen demand and new emission regulations integrating conventional and novel hydrogen production systems is crucial. This study presents an integrated optimization framework to model diversified hydrogen economies as mixed integer linear programs (MILPs). Moreover the accounting of emissions extends to the system exterior (scope 3) thus providing a comprehensive sustainability assessment. The primary focus of the presented computational example is to analyze the impact of scope 3 emissions particularly material emissions during the construction phase on process system optimization while complying with stringent environmental constraints such as carbon limits. By evaluating emission reduction scenarios the model highlights the role of power purchase agreements (PPAs) from renewable sources and the trade-offs between conventional and novel hydrogen production technologies. The key findings indicate that while electrolyzer-based systems (PEM and AWE) offer potential for emission reduction their high energy demand and significant scope 3 material emissions pose challenges for a complete transition in the near term. The study identified two optimal design configurations: one utilizing PPAs as the primary energy source coupled with the conventional SMR-CCS process and another that combines both conventional (SMR-CCS) and novel hydrogen production technologies under a hybrid purview. Ultimately the findings contribute toward the ongoing efforts to achieve true net-carbon neutrality.
No more items...