Institution of Gas Engineers & Managers
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD opens the hydrogen fires will engulf the whole vehicle making it difficult for the drivers and passenger to evacuate from the vehicle. This paper designs a new safety system to solve the evacuation problem. The safety system includes a rotatable pressure relief device with a motor a sensory system that consists of infrared sensors ultrasonic radar and temperature sensors a central control unit and an alarm device. The new design of the pressure relief device allows the system actively adjusting the release direction towards void open space outside the vehicle to minimize the risks of hydrogen fires. The infrared sensors located at the roof of the vehicles collect info inside the vehicle and the ultrasonic radar detect the region outside the vehicle. Temperature sensors tell when to trigger the alarm and set the motor in standby mode and the central control unit determines where to rotate based on the info from the infrared sensors and ultrasonic radars. A control strategy is also proposed to operate the safety system in an appropriate way. The cost-benefit analysis show that the new safety system can significantly reduce the risks of intended hydrogen releases from onboard pressure relief devices with total cost increases by less than 1% of the vehicle cost making it a good cost-effective engineering solution.
Prospective Hydrogen Production Regions of Australia
Oct 2019
Publication
There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. Australia’s Chief Scientist Alan Finkel recently prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
As part of the ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been commissioned by the Department of Industry Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential and the availability of water are the most important factors with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen There is significant interest in Australia both federally and at the state level to develop a hydrogen production industry. In August 2018 Australia’s Chief Scientist Dr Alan Finkel prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production.
As part of ongoing investigations into the hydrogen production potential of Australia Geoscience Australia has been engaged by the Department of Industry Innovation and Science to develop maps that show areas with high potential for future hydrogen production. The study is technology agnostic but considers only low carbon production processes. It includes hydrogen production via electrolysis using renewable energy sources (referred to as renewable hydrogen) as well as fossil fuel-derived hydrogen coupled with carbon capture and storage (CCS) (referred to as CCS hydrogen). The maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis renewable energy potential (from wind solar and hydro resources) and the availability of water are the most important factors while various infrastructure considerations also play a role. In the case of CCS hydrogen proximity to gas and coal resources water and availability of carbon storage sites are the important parameters that control the spatial distribution of potential hydrogen production. In this report we present five different scenarios that reflect key differences in technologies for hydrogen production and the requirements of those technologies. Using geospatial analysis each scenario is translated into a heat map that shows regional trends in potential for hydrogen production based on access to underpinning resources and existing infrastructure.
Three scenarios explore the future potential for renewable hydrogen produced by electrolysis. These demonstrate a high potential for hydrogen production in the future near many Australian coastal areas which is even larger if infrastructure is available to transport renewable power generated from inland areas to the coast. Results also show significant future potential for hydrogen production in inland areas where water is available. The final two scenarios focus on the future potential for CCS hydrogen: a 2030 scenario and a 2050 scenario. A key factor in future CCS hydrogen potential is related to the timeframes for the availability of geological storage resources for CO2.
Tees Valley Multi-modal Hydrogen Transport Hub Masterplan
Mar 2021
Publication
Study setting out a vision and plan for a multi-modal hydrogen transport hub within the UK. The study considers the:
- size of operational trials
- quantity of green hydrogen required
- research and development facilities which will support a living lab
- green hydrogen infrastructure required including:
- production
- storage
- distribution
- The study uses Tees Valley as an example region although the blueprint may be applied to other areas.
Multi-Criteria Optimization of a Biomass-Based Hydrogen Production System Integrated With Organic Rankine Cycle
Oct 2020
Publication
Biomass-based gasification is an attractive and promising pathway for hydrogen production. In this work a biomass-based hydrogen production system integrated with organic Rankine cycle was designed and investigated to predict the performance of hydrogen production yield and electricity generation under various operating conditions. The modified equilibrium model presented desirable results for the produced syngas compositions compared with the experimental data. Hydrogen yields from four types of biomass (wood chips daily manure sorghum and grapevine pruning wastes) were compared under the same operating condition with wood chips exhibiting the maximum hydrogen yield of 11.59 mol/kg. The effects of gasification temperature equivalence ratio and steam-to-biomass ratio on the hydrogen yield and electricity generation were investigated by using the response surface method. Furthermore the system was optimized using a genetic algorithm based on the response surface model. A preferred optimal solution with a hydrogen yield of 39.31 mol/kg and an output power of 3558.08 kW (0.99 kW h/kg) was selected by the linear programming technique for multidimensional analysis of the preference method.
Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel
Feb 2019
Publication
The effects of temperature on bulk hydrogen concentration and diffusion have been tested with the Devanathan–-Stachurski method. Thus a model based on hydrogen potential diffusivity loading frequency and hydrostatic stress distribution around crack tips was applied in order to quantify the temperature’s effect. The theoretical model was verified experimentally and confirmed a temperature threshold of 320 K to maximize the crack growth. The model suggests a nanoscale embrittlement mechanism which is generated by hydrogen atom delivery to the crack tip under fatigue loading and rationalized the ΔK dependence of traditional models. Hence this work could be applied to optimize operations that will prolong the life of the pipeline.
A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride Storage System: Modeling and Experimental Validation
Jan 2022
Publication
In this paper a gas-to-power (GtoP) system for power outages is digitally modeled and experimentally developed. The design includes a solid-state hydrogen storage system composed of TiFeMn as a hydride forming alloy (6.7 kg of alloy in five tanks) and an air-cooled fuel cell (maximum power: 1.6 kW). The hydrogen storage system is charged under room temperature and 40 bar of hydrogen pressure reaching about 110 g of hydrogen capacity. In an emergency use case of the system hydrogen is supplied to the fuel cell and the waste heat coming from the exhaust air of the fuel cell is used for the endothermic dehydrogenation reaction of the metal hydride. This GtoP system demonstrates fast stable and reliable responses providing from 149 W to 596 W under different constant as well as dynamic conditions. A comprehensive and novel simulation approach based on a network model is also applied. The developed model is validated under static and dynamic power load scenarios demonstrating excellent agreement with the experimental results.
Study Navigating the Way to a Renewable Future – Solutions to Decarbonise Shipping
Sep 2019
Publication
On average the shipping sector is responsible for 3% of annual global green-house gas emissions on a CO2-equivalent basis. International shipping represents around 9% of the global emissions associated with the transport sector.<br/>This report from the International Renewable Energy Agency (IRENA) explores the impact of maritime shipping on CO2 emissions the structure of the shipping sector and key areas that need to be addressed to reduce the sector’s carbon footprint.<br/>There is no clear-cut path to decarbonisation. Cutting CO2 emissions in half is therefore likely to require a combination of approaches including the use of alternative fuels upgrading of onshore infrastructure and reducing fuel demand by improving operational performance the report finds.<br/>The shipping sector is strategically important for global efforts against climate change and could be crucial in the long-term shift to a zero-carbon economy. Large-scale deployment of low-carbon fuel infrastructure for shipping could also help to build the necessary momentum to decarbonise other sectors.
An Intelligent Site Selection Model for Hydrogen Refueling Stations Based on Fuzzy Comprehensive Evaluation and Artificial Neural Network—A Case Study of Shanghai
Feb 2022
Publication
With the gradual popularization of hydrogen fuel cell vehicles (HFCVs) the construction and planning of hydrogen refueling stations (HRSs) are increasingly important. Taking operational HRSs in China’s coastal and major cities as examples we consider the main factors affecting the site selection of HRSs in China from the three aspects of economy technology and society to establish a site selection evaluation system for hydrogen refueling stations and determine the weight of each index through the analytic hierarchy process (AHP). Then combined with fuzzy comprehensive evaluation (FCE) method and artificial neural network model (ANN) FCE method is used to evaluate HRS in operation in China's coastal areas and major cities and we used the resulting data obtained from the comprehensive evaluation as the training data to train the neural network. So an intelligent site selection model for HRSs based on fuzzy comprehensive evaluation and artificial neural network model (FCE-ANN) is proposed. The planned HRSs in Shanghai are evaluated and an optimal site selection of the HRS is obtained. The results show that the optimal HRSs site selected by the FCE-ANN model is consistent with the site selection obtained by the FCE method and the accuracy of the FCE-ANN model is verified. The findings of this study may provide some guidelines for policy makers in planning the hydrogen refueling stations
Hydrogen: A Reviewable Energy Perspective
Sep 2019
Publication
Hydrogen has emerged as an important part of the clean energy mix needed to ensure a sustainable future. Falling costs for hydrogen produced with renewable energy combined with the urgency of cutting greenhouse-gas emissions has given clean hydrogen unprecedented political and business momentum.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
This paper from the International Renewable Energy Agency (IRENA) examines the potential of hydrogen fuel for hard-to-decarbonise energy uses including energy-intensive industries trucks aviation shipping and heating applications. But the decarbonisation impact depends on how hydrogen is produced. Current and future sourcing options can be divided into grey (fossil fuel-based) blue (fossil fuel-based production with carbon capture utilisation and storage) and green (renewables-based) hydrogen. Green hydrogen produced through renewable-powered electrolysis is projected to grow rapidly in the coming years.
Among other findings:
Important synergies exist between hydrogen and renewable energy. Hydrogen can boost renewable electricity market growth and broaden the reach of renewable solutions.
- Electrolysers can add demand-side flexibility. In advanced European energy markets electrolysers are growing from megawatt to gigawatt scale.
- Blue hydrogen is not inherently carbon free. This type of production requires carbon-dioxide (CO2) monitoring verification and certification.
- Synergies may exist between green and blue hydrogen deployment given the chance for economies of scale in hydrogen use or logistics.
- A hydrogen-based energy transition will not happen overnight. Hydrogen use is likely to catch on for specific target applications. The need for new supply infrastructure could limit hydrogen use to countries adopting this strategy.
- Dedicated hydrogen pipelines have existed for decades and could be refurbished along with existing gas pipelines. The implications of replacing gas abruptly or changing mixtures gradually should be further explored.
Trade of energy-intensive commodities produced with hydrogen including “e-fuels” could spur faster uptake or renewables and bring wider economic benefits.
Hydrogen Embrittlement in Super Duplex Stainless Steels
Nov 2019
Publication
In super duplex stainless steels (SDSSs) both austenite and ferrite are susceptible to hydrogen embrittlement however there is a lack of understanding into the effect of hydrogen in each phase. In this study in neutron diffraction was applied on hydrogen-charged (H-charged) samples to investigate the hydrogen embrittlement behaviour in super duplex stainless steels. The result reveals that austenite maintains good plasticity during tensile testing whilst a loss of it is realised in ferrite. Fractography analysis reveals the diffusion of hydrogen induced a brittle-to-ductile transition from the sample surface towards the centre; hydrogen embrittlement vanishes as the specimen’s centre is approached while it is demonstrated to disappear first in austenite but not in ferrite. This transition can be predicted by applying a physics-based hydrogen embrittlement model which incorporates the effects of hydrogen concentration hydrogen diffusivity residual stress loading state and temperature. The present work demonstrates the dissimilar susceptibility of austenite and ferrite to hydrogen embrittlement providing a tool to describe it.
Energy From Waste and the Circular Economy
Jul 2020
Publication
The Energy Research Accelerator (ERA) and the Birmingham Energy Institute have launched a policy commission to examine the state of play barriers challenges and opportunities for Energy from Waste (EfW) to form part of the regional energy circular economy in the Midlands. This policy commission explores the case for regional investment whilst helping shape the regional local government and industry thinking surrounding critical issues such as fuel poverty and poor air quality.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
- Building a network of local and regional Resource Recovery Clusters
- Creating a National Centre for the Circular Economy
- Launching an R&D Grand Challenge to develop small-scale circular carbon capture technologies.
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
Numerical Simulation of Tensile Behavior of Corroded Aluminum Alloy 2024 T3 Considering the Hydrogen Embrittlement
Jan 2018
Publication
A multi-scale modeling approach for simulating the tensile behavior of the corroded aluminum alloy 2024 T3 was developed accounting for both the geometrical features of corrosion damage and the effect of corrosion-induced hydrogen embrittlement (HE). The approach combines two Finite Element (FE) models: a model of a three-dimensional Representative Unit Cell (RUC) representing an exfoliated area and its correspondent hydrogen embrittled zone (HEZ) and a model of the tensile specimen. The models lie at the micro- and macro-scales respectively. The characteristics of the HEZ are determined from measurements of nanoindentation hardness conducted on pre-corroded specimens. Using the model of the RUC the local homogenized mechanical behavior of the corroded material is simulated. Then the behavior of the exfoliated areas is assigned into different areas (elements) of the tensile specimen and final analyses are performed to simulate the tensile behavior of the corroded material. The approach was applied to model specimens after 8 16 and 24 h exposure periods of the Exfoliation Corrosion (EXCO) test. For validation of the approach tensile tests were used. The numerical results show that this approach is suitable for accurately simulating the tensile behavior of pre-corroded experimental specimens accounting for both geometrical features of corrosion damage and corrosion-induced HE.
Effect of Wind on Cryogenic Hydrogen Dispersion from Vent Stacks
Sep 2021
Publication
Liquid hydrogen vent stacks often release hydrogen for example due to pressure relief from an underutilized tank boiling off hydrogen or after hydrogen delivery and transfer (trucks often depressurize through the tank vent stack to meet pressure regulations for on-road transport).<br/>A rapid release of cryogenic hydrogen through a vent stack will condense moisture from the entrained air forming a visible cloud. It is often assumed that the extent of the cold hydrogen is concurrent with the cloud. In this work a laser-based Raman scattering diagnostic was used to map out the hydrogen location during a series of vent stack release experiments. A description of the diagnostic instrument is given followed by a comparison of hydrogen signals to the visible cloud for releases through a liquid hydrogen vent stack. A liquid hydrogen pump was used to vary the flowrate of hydrogen through the vent stack and tests were performed under low and high wind conditions as well as low and high humidity conditions. The hydrogen was observed only where the condensed moisture was located regardless of the humidity level or wind. These measurements are being used to validate models such as those included in Sanda’s HyRAM toolkit and inform safety codes and standards.
Hydrogen Implications for Gas Network Operators
Jan 2021
Publication
Europe has built up one of the best gas distribution infrastructures in the world. There’s one problem though. It distributes natural gas a fuel that we will hardly be able to use if we’re to reach our net zero targets. Can we use the infrastructure instead for clean hydrogen – either blended with natural gas as a stepping stone or with pure hydrogen in the future? In this episode we put aside discussion on the extent to which we should do this – and focus on whether or not we can do this and what’s involved in doing so.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Ordered Clustering of Single Atomic Te Vacancies in Atomically Thin PtTe2 Promotes Hydrogen Evolution Catalysis
Apr 2021
Publication
Exposing and stabilizing undercoordinated platinum (Pt) sites and therefore optimizing their adsorption to reactive intermediates offers a desirable strategy to develop highly efficient Pt-based electrocatalysts. However preparation of atomically controllable Pt-based model catalysts to understand the correlation between electronic structure adsorption energy and catalytic properties of atomic Pt sites is still challenging. Herein we report the atomically thin two-dimensional PtTe2 nanosheets with well-dispersed single atomic Te vacancies (Te-SAVs) and atomically well-defined undercoordinated Pt sites as a model electrocatalyst. A controlled thermal treatment drives the migration of the Te-SAVs to form thermodynamically stabilized ordered Te-SAV clusters which decreases both the density of states of undercoordinated Pt sites around the Fermi level and the interacting orbital volume of Pt sites. As a result the binding strength of atomically defined Pt active sites to H intermediates is effectively reduced which renders PtTe2 nanosheets highly active and stable in hydrogen evolution reaction.
AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges
May 2020
Publication
The main objective of the article is to provide a thorough review of currently used AC-DC converters for alkaline and proton exchange membrane (PEM) electrolyzers in power grid or wind energy conversion systems. Based on the current literature this article aims at emphasizing the advantages and drawbacks of AC-DC converters mainly based on thyristor rectifier bridges and chopper-rectifiers. The analysis is mainly focused on the current issues for these converters in terms of specific energy consumption current ripple reliability efficiency and power quality. From this analysis it is shown that thyristors-based rectifiers are particularly fit for high-power applications but require the use of active and passive filters to enhance the power quality. By comparison the association combination of the chopper-rectifier can avoid the use of bulky active and passive filters since it can improve power quality. However the use of a basic chopper (i.e. buck converter) presents several disadvantages from the reliability energy efficiency voltage ratio and current ripple point of view. For this reason new emerging DC-DC converters must be employed to meet these important issues according to the availability of new power switching devices. Finally based on the authors’ experience in power conversion for PEM electrolyzers a discussion is provided regarding the future challenges that must face power electronics for green hydrogen production based on renewable energy sources.
Evaluation of the Impact of Green Hydrogen Blending Scenarios in the Italian Gas Network: Optimal Design and Dynamic Simulation of Operation Strategies
Apr 2022
Publication
Blending hydrogen (H2) produced from PEM electrolysis coupled to Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However blending H2 with NG significantly affects the thermophysical properties of the gas mixture changing the gas supply requirements to meet the demand. In this work different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at the national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy addressing both design requirements (RES and PEM electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for PEM electrolyzers and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analyzed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated at around 7.3 $/kg for yearly scenarios (best-case) although shorter temporal constraints entail significant excess hydrogen which would increase the LCOH if not deployed for other applications.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
The Role of the Testing Rate on Small Punch Tests for the Estimation of Fracture Toughness in Hydrogen Embrittlement
Dec 2020
Publication
In this paper different techniques to test notched Small Punch (SPT) samples in fracture conditions in aggressive environments are studied based on the comparison of the micromechanisms at different rates. Pre-embrittled samples subsequently tested in air at rates conventionally employed (0.01 and 0.002 mm/s) are compared to embrittled ones tested in environment at the same rates (0.01 and 0.002 mm/s) and at a very slow rate (5E-5 mm/s). A set of samples tested in environment under a set of constant loads that produce very slow rates completes the experimental results. As a conclusion it is recommended to test SPT notched specimens in environment at very slow rates of around E-6 mm/s when characterizing in Hydrogen Embrittlement (HE) scenarios in order to allow the interaction material-environment to govern the process.
No more items...