Skip to content
1900

Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects

Abstract

With the growing demand for green technologies, hydrogen energy devices, such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers, have received accelerated developments. However, the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM), commonly termed 3D Printing (3DP), with its advanced capabilities, could be a potential pathway to solve the fabrication challenges of PEM parts. Herein, in this paper, the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties, such as corrosion and hydrogen embrittlement resistance, of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally, the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.

Related subjects: Production & Supply Chain
Loading

Article metrics loading...

/content/journal4855
2023-07-05
2024-04-27
http://instance.metastore.ingenta.com/content/journal4855
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error