Skip to content

Multi-port Coordination: Unlocking Flexibility and Hydrogen Opportunities in Green Energy Networks


Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However, optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore, the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits, particularly through coupling them with offshore wind farms. Compared to existing literature, the proposed method enjoys a comprehensive logistics-electric model for the ports, a novel coordination framework for multi-port flexibility, and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.

Funding source: This work was supported by the Newcastle University and Engineering and Physical Sciences Research Council under Grant EP/S00078X/2: Supergen Energy Networks Hub Accleration Flex Fund.
Related subjects: Applications & Pathways
Countries: Canada ; United Kingdom

Article metrics loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error