Turkey
City Blood: A Visionary Infrastructure Solution for Household Energy Provision through Water Distribution Networks
May 2013
Publication
This paper aims to expand current thinking about the future of energy and water utility provision by presenting a radical idea: it proposes a combined delivery system for household energy and water utilities which is inspired by an analogy with the human body. It envisions a multi-functional infrastructure for cities of the future modelled on the human circulatory system. Red blood cells play a crucial role as energy carriers in biological energy distribution; they are suspended in the blood and distributed around the body to fuel the living cells. So why not use an analogous system e an urban circulatory system or “city blood” e to deliver energy and water simultaneously via one dedicated pipeline system? This paper focuses on analysing the scientific technological and economic feasibilities and hurdles which would need to be overcome in order to achieve this idea.<br/>We present a rationale for the requirement of an improved household utility delivery infrastructure and discuss the inspirational analogy; the technological components required to realise the vignette are also discussed. We identify the most significant advance requirement for the proposal to succeed: the utilisation of solid or liquid substrate materials delivered through water pipelines; their benefits and risks are discussed.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
PEM Fuel Cell Performance with Solar Air Preheating
Feb 2020
Publication
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed it has been a potential alternative over fossil fuel-based engines and power plants all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.
Hydrogen Storage Performance of the Multi-principal-component CoFeMnTiVZr Alloy in Electrochemical and Gas–solid Reactions
Jun 2020
Publication
The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas–solid reactions. X-ray diffraction and high-resolution transmission electron microscopy analyses reveal a hexagonal Laves-phase structure (type C14). Cyclic voltammetry and electrochemical impedance spectroscopy investigations in the hydrogen absorption/desorption region give insight into the absorption/desorption kinetics and the change in the desorption charge in terms of the applied potential. The thickness of the hydrogen absorption layer obtained by the electrochemical reaction is estimated by high-resolution transmission electron microscopy. The electrochemical hydrogen storage capacity for a given applied voltage is calculated from a series of chronoamperometry and cyclic voltammetry measurements. The selected alloy exhibits good stability for reversible hydrogen absorption and demonstrates a maximum hydrogen capacity of ∼1.9 wt% at room temperature. The amount of hydrogen absorbed in the gas–solid reaction reaches 1.7 wt% at 298 K and 5 MPa evidencing a good correlation with the electrochemical results.
Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles
Nov 2021
Publication
In recent years the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug‐in HEV (PHEV) electric cars but hydrogen‐based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV particular attention should be paid to hydrogen technology i.e. FCEVs which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug‐in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector identifying a growing trend in the expansion of hydrogen infrastructure although at this time it is still at an early stage of development. At the moment the cost of building the infrastructure is still high but on the basis of medium/long‐term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear since the charging times are reduced compared to charging from an electric charging post and the long‐distance voyage is made easier as the autonomy is much larger i.e. the psycho‐ sociological anxiety is avoided. Therefore the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory that is the propensity of citizens to technological change. Subsequently using current data on EV development and comparing information from recent years this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis) with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained the districts of Lisbon Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.
Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus
May 2018
Publication
The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production hydrogen storage and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80 which is above the value of conventional district energy systems and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 ◦C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
Effect of Hydrogen–diesel Dual-fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
Jul 2016
Publication
Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0% 25% and 50% of total fuel energy where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750 900 1100 1400 1750 and finally 2100 r/min engine speed. Variation in engine performance emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.
Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte
Jul 2021
Publication
The corrosion morphology in grade 2205 duplex stainless steel wire was studied to understand the nature of pitting and the causes of the ferrite phase’s selective corrosion in acidic (pH 3) NaCl solutions at 60 °C. It is shown that the corrosion mechanism is always pitting which either manifests lacy cover perforation or densely arrayed selective cavities developing selectively on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions whereas the ferrite phase’s selective corrosion develops in diluted electrolytes showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.
Hydrogen and Fuel Cell Demonstrations in Turkey
Nov 2012
Publication
As a non-profit UNIDO project funded 100% by the Turkish Ministry of Energy and Natural Resources International Center for Hydrogen Energy Technologies (ICHET) has been implementing pilot demonstration projects providing applied R&D funding; organizing workshops education and training activities in Turkey and other developing countries to show potential benefits of “hydrogen and fuel cell systems”. It is important to leap-frog developing countries to hydrogen for eliminating detrimental effect of fossil fuels. To achieve its mission ICHET implements pilot demonstration projects in combination with renewable energy systems to encourage local industry to manufacture similar systems and explore market potential for such use. Support is provided to selected industrial partners in Turkey for developing products or for early demonstrations including a fuel cell forklift a fuel cell boat a fuel cell passenger cart with PV integrated roof-top renewable integrated mobile house fuel cell based UPS installations. As more and more systems demonstrated public awareness on applications of hydrogen and fuel cell technologies will increase and viability of such systems will be realized to change public perception.
Performance Analysis of a Stand-alone Integrated Solar Hydrogen Energy System for Zero Energy Buildings
Oct 2022
Publication
This study analyzes the optimal sizing design of a stand-alone solar hydrogen hybrid energy system for a house in Afyon Turkey. The house is not connected to the grid and the proposed hybrid system meets all its energy demands; therefore it is considered a zero-energy building. The designed system guarantees uninterrupted and reliable power throughout the year. Since the reliability of the power supply is crucial for the house optimal sizing of the components photovoltaic (PV) panels electrolyzer storage tank and fuel cell stack is critical. Determining the sufficient number of PV panels suitable electrolyzer model and size number of fuel cell stacks and the minimum storage tank volume to use in the proposed system can guarantee an uninterrupted energy supply to the house. In this study a stand-alone hybrid energy system is proposed. The system consists of PV panels a proton exchange membrane (PEM) electrolyzer a storage tank and a PEM fuel cell stack. It can meet the continuous energy demand of the house is sized by using 10 min of averaged solar irradiation and temperature data of the site and consumption data of the house. Present results show that the size of each component in a solar hydrogen hybrid energy system in terms of power depends on the size of each other components to meet the efficiency requirement of the whole system. Choosing the nominal electrolyzer power is critical in such energy systems
Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems
Apr 2022
Publication
The current evidential effect of carbon emissions has become a societal challenge and the need to transition to cleaner energy sources/technologies has attracted wide research attention. Technologies that utilize low-grade heat like the organic Rankine cycle (ORC) and Kalina cycle have been proposed as viable approaches for fossil reduction/carbon mitigation. The development of renewable energy-based multigeneration systems is another alternative solution to this global challenge. Hence it is important to monitor the development of multigeneration energy systems based on low-grade heat. In this study a review of the ORC’s application in multigeneration systems is presented to highlight the recent development in ORC integrality/application. Beyond this a new ORC-CPVT (concentrated photovoltaic/thermal) integrated multigeneration system is also modeled and analyzed using the thermodynamics approach. Since most CPVT systems integrate hot water production in the thermal stem the proposed multigeneration system is designed to utilize part of the thermal energy to generate electricity and hydrogen. Although the CPVT system can achieve high energetic and exergetic efficiencies while producing thermal energy and electricity these efficiencies are 47.9% and 37.88% respectively for the CPVT-ORC multigeneration configuration. However it is noteworthy that the electricity generation from the CPVT-ORC configuration in this study is increased by 16%. In addition the hot water cooling effect and hydrogen generated from the multigeneration system are 0.4363 L/s 161 kW and 1.515 L/s respectively. The environmental analysis of the system also shows that the carbon emissions reduction potential is enormous.
Material-based Hydrogen Storage Projection
Sep 2021
Publication
Massive consumption of fossil fuel leads to shortage problems as well as various global environmental issues. Due to the global climatic problem in the world techniques to supply energy demand change from conventional methods that use fossil fuel as the energy source to clean and renewable sources such as solar and wind. However these renewable energy sources are not permanent. Energy storage methods can ensure to supply the energy demand in need if the energy is stored when the renewable source is available. Hydrogen is considered a promising alternative feedstock owing to has unique properties such as clean energy high energy density absence of toxic materials and carbon-free nature. Hydrogen is used main fuel source in fuel cells and hydrogen can be produced with various methods such as wind or electrolysis of water systems that supply electricity from renewable sources. However the safe effective and economical storage of hydrogen is still a challenge that limits the spread of the usage of hydrogen energy. High pressed hydrogen gas and cryogenic hydrogen liquid are two applied storage pathways although they do not meet the above-mentioned requirement. To overcome these drawbacks materials-based hydrogen storage materials have been mostly investigated research field recently. The aim of the study is that exhibiting various material-based hydrogen storage systems and development of these techniques worldwide. Additionally past and current status of the technology are explained and future perspective is discussed.
Decarbonization in Ammonia Production, New Technological Methods in Industrial Scale Ammonia Production and Critical Evaluations
Oct 2021
Publication
With the synthesis of ammonia with chemical methods global carbon emission is the biggest threat to global warming. However the dependence of the agricultural industry on ammonia production brings with it various research studies in order to minimize the carbon emission that occurs with the ammonia synthesis process. In order to completely eliminate the carbon emissions from ammonia production both the hydrogen and the energy needed for the operation of the process must be obtained from renewable sources. Thus hydrogen can be produced commercially in a variety of ways. Many processes are discussed to accompany the Haber Bosch process in ammonia production as potential competitors. In addition to parameters such as temperature and pressure various plasma catalysts are being studied to accelerate the ammonia production reaction. In this study various alternative processes for the capture storage and complete removal of carbon gas released during the current ammonia production are evaluated and the current conditions related to the applicability of these processes are discussed. In addition it has been discussed under which conditions it is possible to produce larger capacities as needed in the processes studied in order to reduce carbon gas emissions during ammonia production in order to provide raw material source for fertilizer production and energy sector. However if the hydrogen gas required for ammonia production is produced using a solid oxide electrolysis cell the reduction in the energy requirement of the process and in this case the reduction of energy costs shows that it will play an important role in determining the method to be used for ammonia production. In addition it is predicted that working at lower temperature (<400 °C) and pressure (<10 bar) values in existing ammonia production technologies despite increasing possible energy costs will significantly reduce process operating costs.
Performance Assessment of a Solar Powered Hydrogen Production System and its ANFIS Model
Oct 2020
Publication
Apart from many limitations the usage of hydrogen in different day-to-day applications have been increasing drastically in recent years. However numerous techniques available to produce hydrogen electrolysis of water is one of the simplest and cost-effective hydrogen production techniques. In this method water is split into hydrogen and oxygen by using external electric current. In this research a novel hydrogen production system incorporated with Photovoltaic – Thermal (PVT) solar collector is developed. The influence of different parameters like solar collector tilt angle thermal collector design and type of heat transfer fluid on the performance of PVT system and hydrogen production system are also discussed. Finally thermal efficiency electrical efficiency and hydrogen production rate have been predicted by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. Based on this study results it can be inferred that the solar collector tilt angle plays a significant role to improve the performance of the electrical and thermal performance of PVT solar system and Hydrogen yield rate. On the other side the spiral-shaped thermal collector with water exhibited better end result than the other hydrogen production systems. The predicted results ANFIS techniques represent an excellent agreement with the experimental results. In consequence it is suggested that the developed ANFIS model can be adopted for further studies to predict the performance of the hydrogen production system.
Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Feb 2022
Publication
The Energy Management Strategy (EMS) in Fuel Cell Hybrid Electric Vehicles (FCHEVs) is the key part to enhance optimal power distribution. Indeed the most recent works are focusing on optimizing hydrogen consumption without taking into consideration the degradation of embedded energy sources. In order to overcome this lack of knowledge this paper describes a new health-conscious EMS algorithm based on Model Predictive Control (MPC) which aims to minimize the battery degradation to extend its lifetime. In this proposed algorithm the health-conscious EMS is normalized in order to address its multi-objective optimization. Then weighting factors are assigned in the objective function to minimize the selected criteria. Compared to most EMSs based on optimization techniques this proposed approach does not require any information about the speed profile which allows it to be used for real-time control of FCHEV. The achieved simulation results show that the proposed approach reduces the economic cost up to 50% for some speed profile keeping the battery pack in a safe range and significantly reducing energy sources degradation. The proposed health-conscious EMS has been validated experimentally and its online operation ability clearly highlighted on a PEMFC delivery postal vehicle.
Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman
Nov 2022
Publication
Recently the management of water and wastewater is gaining attention worldwide as a way of conserving the natural resources on the planet. The traditional wastewater treatment in Oman is such that the treated effluent produced is only reused for unfeasible purposes such as landscape irrigation cooling or disposed of in the sea. Introducing more progressive reuse applications can result in achieving a circular economy by considering treated effluent as a source of producing new products. Accordingly wastewater treatment plants can provide feedstock for green hydrogen production processes. The involvement of the wastewater industry in the green pathway of production scores major points in achieving decarbonization. In this paper the technical and economic feasibility of green hydrogen production in Oman was carried out using a new technique that would help explore the benefits of the treated effluent from wastewater treatment in Oman. The feasibility study was conducted using the Al Ansab sewage treatment plant in the governate of Muscat in Wilayat (region) Bousher. The results have shown that the revenue from Al Ansab STP in a conventional case is 7.02 million OMR/year while sustainable alternatives to produce hydrogen from the Proton Exchange Membrane (PEM) electrolyzer system for two cases with capacities of 1500 kg H2/day and 50000 kg H2/day would produce revenue of 8.30 million OMR/year and 49.73 million OMR/year respectively.
Thermochemical Looping Technologies for Clean Hydrogen Production – Current Status and Recent Advances
Nov 2022
Publication
This review critically analyses various aspects of the most promising thermochemical cycles for clean hydrogen production. While the current hydrogen market heavily relies on fossil-fuel-based platforms the thermochemical water-splitting systems based on the reduction-oxidation (redox) looping reactions have a significant potential to significantly contribute to the sustainable production of green hydrogen at scale. However compared to the water electrolysis techniques the thermochemical cycles suffer from a low technology readiness level (TRL) which retards the commercial implementation of these technologies. This review mainly focuses on identifying the capability of the state-of-the-art thermochemical cycles to deploy large-scale hydrogen production plants and their techno-economic performance. This study also analyzed the potential integration of the hybrid looping systems with the solar and nuclear reactor designs which are evidenced to be more cost-effective than the electrochemical water-splitting methods but it excludes fossil-based thermochemical processes such as gasification steam methane reforming and pyrolysis. Further investigation is still required to address the technical issues associated with implementing the hybrid thermochemical cycles in order to bring them to the market for sustainable hydrogen production.
Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)
Dec 2022
Publication
In recent years there has been great interest in Wankel-type rotary engines which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines which are already very advantageous for UAV applications even more advantageous by applying the hydrogen enrichment technique. In this study hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases respectively compared to those obtained with neat gasoline. In contrast CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions respectively. NOx emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
No more items...