Publications
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
Transient Reversible Solid Oxide Cell Reactor Operation – Experimentally Validated Modeling and Analysis
Oct 2018
Publication
A reversible solid oxide cell (rSOC) reactor can operate efficiently in both electrolysis mode and in fuel cell mode. The bidirectional operability enables rSOC reactors to play a central role as an efficient energy conversion system for energy storage and sector coupling for a renewable energy driven society. A combined system for electrolysis and fuel cell operation can result in complex system configurations that should be able to switch between the two modes as quickly as possible. This can lead to temperature profiles within the reactor that can potentially lead to the failure of the reactor and eventually the system. Hence the behavior of the reactor during the mode switch should be analyzed and optimal transition strategies should be taken into account during the process system design stage. In this paper a one dimensional transient reversible solid oxide cell model was built and experimentally validated using a commercially available reactor. A simple hydrogen based system model was built employing the validated reactor model to study reactor behavior during the mode switch. The simple design leads to a system efficiency of 49% in fuel cell operation and 87% in electrolysis operation where the electrolysis process is slightly endothermic. Three transient operation strategies were studied. It is shown that the voltage response to transient operation is very fast provided the reactant flows are changed equally fast. A possible solution to ensure a safe mode switch by controlling the reactant inlet temperatures is presented. By keeping the rate of change of reactant inlet temperatures five to ten times slower than the mode switch a safe transition can be ensured.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Roadmap to Hybrid Offshore System with Hydrogen and Power Co-generation
Sep 2021
Publication
Constrained by the expansion of the power grid the development of offshore wind farms may be hindered and begin to experience severe curtailment or restriction. The combination of hydrogen production through electrolysis and hydrogen-to-power is considered to be a potential option to achieve the goal of low-carbon and energy security. This work investigates the competitiveness of different system configurations to export hydrogen and/or electricity from offshore plants with particular emphasis on unloading the mixture of hydrogen and electricity to end-users on land. Including the levelized energy cost and net present value a comprehensive techno-economic assessment method is proposed to analyze the offshore system for five scenarios. Assuming that the baseline distance is 10 km the results show that exporting hydrogen to land through pipelines shows the best economic performance with the levelized energy cost of 3.40 $/kg. For every 10 km increase in offshore distance the net present value of the project will be reduced by 5.69 MU$ and the project benefit will be positive only when the offshore distance is less than 53.5 km. An important finding is that the hybrid system under ship transportation mode is not greatly affected by the offshore distance. Every 10% increase in the proportion of hydrogen in the range of 70%–100% can increase the net present value by 1.43–1.70 MU$ which will increase by 7.36–7.37 MU$ under pipeline transportation mode. Finally a sensitivity analysis was carried out to analyze the wind speed electricity and hydrogen prices on the economic performance of these systems.
Everything About Hydrogen Podcast: Is Small the Perfect Answer for SMRs?
Jun 2020
Publication
On this week’s episode the team discuss the appeal of modular reforming of biogas and natural gas with Mo Vargas from Bayotech. The company use a proprietary modular reformer technology to help provide low cost decentralise hydrogen production units for onsite demand at various scales using biogas waste gases and natural gas with carbon capture. With large scale steam methane reforming accounting for 95% of hydrogen production in major markets like the US and Europe today the team dive into the good the bad and the unusual considerations behind the growing international demand for modular methane reforming technologies and how Bayotech see the transition from a CO2 intensive process today to a net zero emission future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
Jul 2025
Publication
This article presents the development integration and experimental validation of a modular microgrid for sustainable hydrogen production addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment with scalability to other applications. Centered on a six-compartment skid it integrates photovoltaic generation battery storage and a liquefied petroleum gas generator to emulate typical cogeneration conditions together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility demonstrating stable hydrogen production efficient energy management and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts.
Future Heat Series Part 1 - Pathways for Heat
Nov 2014
Publication
Together the pathways examined in the report paint a picture of the nationwide transformation getting underway in how we heat our homes and buildings. The report identifies that by 2050 gas used to heat buildings could fall by 75-95% electricity increase from a 10% share today to 30-80% and district heat increase from less than 2% to up to a 40% share. At the same time energy efficiency could help to lower bills and offset the expected growth in our heating needs from an expanding population and building stock. Across most pathways examined in the report mass deployment of low carbon heat solutions ramps up in the lead-in to 2030. Carbon Connect’s overarching recommendation is that the next decade should be spent preparing by developing a robust strategy for decarbonising heat in buildings whilst testing and scaling up delivery models. The report calls for the next Government to prioritise these preparations in the same way that preparing for power sector decarbonisation has been the overriding focus of energy policy in the past decade. The Future Heat Series brings together politicians policy and academic experts and industry leaders. Together this coalition of key figures is taking stock of evidence progressing the policy debate in an open and constructive forum and building consensus for prioritising and transforming heat. Pathways for Heat is the first part of the Future Heat Series and presents six recommendations and over twenty findings.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Methodologies for Representing the Road Transport Sector in Energy System Models
Dec 2013
Publication
Energy system models are often used to assess the potential role of hydrogen and electric powertrains for reducing transport CO2 emissions in the future. In this paper we review how different energy system models have represented both vehicles and fuel infrastructure in the past and we provide guidelines for their representation in the future. In particular we identify three key modelling decisions: the degree of car market segmentation the imposition of market share constraints and the use of lumpy investments to represent infrastructure. We examine each of these decisions in a case study using the UK MARKAL model. While disaggregating the car market principally affects only the transition rate to the optimum mix of technologies market share constraints can greatly change the optimum mix so should be chosen carefully. In contrast modelling infrastructure using lumpy investments has little impact on the model results. We identify the development of new methodologies to represent the impact of behavioural change on transport demand as a key challenge for improving energy system models in the future.
Everything About Hydrogen Podcast: Show Me the Money!
Jul 2020
Publication
This week on the show the team catch up with Alena Fargere Principal at SWEN Capital Partners and a former special advisor to the World Energy Council on Hydrogen projects. As one of the few current project finance funds in Europe with a green gas mandate and a dedicated allocation for investing in hydrogen project finance SWEN Capital Partners provide an invaluable perspective on the challenges and opportunities for hydrogen project investment in Europe and the synergies that exist from Green Gas funds that support biogas and hydrogen opportunities. On the show our hosts discuss the rationale for this fund the profile of projects SWEN are considering and Alena’s broader perspective on the hydrogen market. All this and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2
Jul 2024
Publication
In the energy transition from fossil fuels to renewables hydrogen is a realistic alternative to achieving the decarbonization target. However its chemical and physical properties make its storage and transport expensive. To ensure the cost-effective H2 usage as an energy vector other chemicals are getting attention as H2 carriers. Among them ammonia is the most promising candidate. The value chain of NH3 as a H2 carrier considering the long-distance ship transport includes NH3 synthesis and storage at the loading terminal NH3 storage at the unloading terminal and its cracking to release H2. NH3 synthesis and cracking are the cost drivers of the value chain. Also the NH3 cracking at large scale is not a mature technology and a significant effort has to be made in intensifying the process as much as possible. In this respect this work reviews the available technologies for NH3 cracking critically analyzing them in view of the scale up to the industrial level.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy
Aug 2021
Publication
This article attempts to model interdependencies between socio-economic energy and environmental factors with selected data characterizing the development of the hydrogen economy. The study applies Spearman’s correlation and a linear regression model to estimate the influence of gross domestic product population final energy consumption renewable energy and CO2 emission on chosen hydrogen indicators—production patents energy technology research development and demonstration budgets. The study was conducted in nine countries selected for their actions towards a hydrogen economy based on analyses of national strategies policies research and development programs and roadmaps. The results confirm the statistically significant impact of the chosen indicators which are the drivers for the development of the hydrogen economy from 2008 to 2018. Moreover the empirical results show that different characteristics in each country contribute to the development of the hydrogen economy vision
Everything About Hydrogen Podcast: Masters of Scale: How to Build the Hydrogen Infrastructure of the Future
Oct 2020
Publication
On this week's episode the EAH team speaks with Prof. Armin Schnettler CEO of New Energy Business at Siemens Energy to talk about where green hydrogen solutions fit into the path to decarbonisation how companies like Siemens are looking at those solutions and working to scale them to meet future demand timelines for deployment in different markets how governments can help the private sector and much much more.
The podcast can be found on their website
The podcast can be found on their website
Neutron Scattering and Hydrogen Storage
Nov 2009
Publication
Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.
Everything About Hydrogen Podcast: Toyota's global hydrogen ambitions
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Craig Scott the Group Manager for Toyota North America a global automotive giant and a recognised pioneer in the field of fuel cell mobility. On the show we get into the story of Toyota’s roll out of fuel cell mobility solutions in North America the challenges and opportunities that fuel cell vehicles can offer in the hydrogen market and the challenges around infrastructure. Importantly we also dive into the scaling up work that Toyota is undertaking and some of its plans for next steps on the mission to become the world’s leader in fuel cell mobility solutions. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
A Promising Cobalt Catalyst for Hydrogen Production
Mar 2022
Publication
In this work a metal cobalt catalyst was synthesized and its activity in the hydrogen production process was tested. The substrates were water and ethanol. Activity tests were conducted at a temperature range of 350–600 °C water to ethanol molar ratio of 3 to 5 and a feed flow of 0.4 to 1.2 mol/h. The catalyst had a specific surface area of 1.75 m2/g. The catalyst was most active at temperatures in the range of 500–600 °C. Under the most favorable conditions the ethanol conversion was 97% the hydrogen production efficiency was 4.9 mol (H2)/mol(ethanol) and coke production was very low (16 mg/h). Apart from hydrogen and coke CO2 CH4 CO and traces of C2H2 and C2H4 were formed.
Everything About Hydrogen Podcast: Highway to the Hydrogen Zone
May 2020
Publication
On this weeks episode the team discuss hydrogen for aviation with ZeroAvia. Val launched ZeroAvia to provide a genuinely zero emission flight proposition with two aircraft currently undergoing trials in California and the UK. The company is due to complete a 300 mile flight of its six seater aircraft from the Orkney islands to the Scottish mainland this summer 2020 with plans for twenty seat planes flying regional routes as early as 20205. On the show we discuss why Val set up ZeroAvia how the proposition stacks up against conventional alternatives infrastructure and plans for the future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Heat and Buildings Strategy
Oct 2021
Publication
The heat and buildings strategy sets out the government’s plan to significantly cut carbon emissions from the UK’s 30 million homes and workplaces in a simple low-cost and green way whilst ensuring this remains affordable and fair for households across the country. Like the transition to electric vehicles this will be a gradual transition which will start by incentivizing consumers and driving down costs.<br/>There are about 30 million buildings in the UK. Heating these buildings contributes to almost a quarter of all UK emissions. Addressing the carbon emissions produced in heating and powering our homes workplaces and public buildings can not only save money on energy bills and improve lives but can support up to 240000 skilled green jobs by 2035 boosting the economic recovery levelling up across the country and ensuring we build back better.<br/>The heat and buildings strategy builds on the commitments made in Clean growth: transforming heating our Energy white paper and the Prime Minister’s 10 point plan. This strategy aims to provide a clear direction of travel for the 2020s set out the strategic decisions that need to be taken this decade and demonstrate how we plan to meet our carbon targets and remain on track for net zero by 2050.
Future Costs of Hydrogen: A Quantitative Review
Mar 2024
Publication
Hydrogen is the key energy carrier of the future. Numerous industrial processes incorporate hydrogen in their transformation towards climate neutrality. To date the high cost of producing hydrogen from renewable sources has been a major barrier to its widespread adoption. Inspired by these two aspects many researchers have published cost predictions for hydrogen. This review provides an overview of the extant literature of more than 7000 publications in the last two decades concerned with the topic. After removing articles that do not provide explicit hydrogen production cost projections for the 2020 to 2050 time horizon 89 articles remain and are analyzed in detail. The review identifies 832 cost forecast data points among these studies and categorizes the data points according to various parameters such as production region production process and publication year of the study. Through a linear regression a main trajectory for the development of hydrogen production costs can be derived. The costs of hydrogen from electrolysis are reduced on the basis of this trajectory starting from the reference 5.3 V per kg in 2020 to 4.4 V per kg in 2030 and to 2.7 V per kg in 2050. The costs for natural gas-based hydrogen are almost constant on a globally aggregated basis. There are also major regional and processrelated differences. In 2050 Asia has the lowest average costs of the regions analyzed at 1.8 V per kg and production by alkaline electrolysis with average costs of 2.0 V per kg appears to be the most costeffective electrolysis technology. Although studies show a high degree of variation it is evident from this review that the trend within certain investigation parameters is well defined. Therefore researchers and practitioners can use this review to set up further analyses that depend on future hydrogen costs.
No more items...