- Home
- A-Z Publications
- Publications
Publications
Net Zero The UK's Contribution to Stopping Global Warming
May 2019
Publication
This report responds to a request from the Governments of the UK Wales and Scotland asking the Committee to reassess the UK’s long-term emissions targets. Our new emissions scenarios draw on ten new research projects three expert advisory groups and reviews of the work of the IPCC and others.<br/>The conclusions are supported by detailed analysis published in the Net Zero Technical Report that has been carried out for each sector of the economy plus consideration of F-gas emissions and greenhouse gas removals.
Committee for Climate Change Fifth Carbon Budget: Central Scenario Data
Jul 2016
Publication
This spreadsheet contains data for two future UK scenarios: a "baseline" (i.e. no climate action after 2008 the start of the carbon budget system) and the "central" scenario underpinning the CCC's advice on the fifth carbon budget (the limit to domestic emissions during the period 2028-32).<br/>The central scenario is an assessment of the technologies and behaviours that would prepare for the 2050 target cost-effectively while meeting the other criteria in the Climate Change Act (2008) based on central views of technology costs fuel prices carbon prices and feasibility. It is not prescriptive nor is it the only scenario considered for meeting the carbon budgets. For further details on our scenarios and how they were generated see the CCC report Sectoral scenarios for the Fifth Carbon Budget. The scenario was constructed for the CCC's November 2015 report and has not been further updated for example to reflect outturn data for 2015 or changes to Government policy.
The Fourth Carbon Budget Review – Part 2 The Cost-effective Path to the 2050 Target
Nov 2013
Publication
This is the second document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The first part of the review is available here: The Fourth Carbon Budget Review – part 1: assessment of climate risk and the international response (November 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 2 considers the impacts of meeting the 2023-2027 budget. The review concludes that the impacts are small and manageable and identifies broader benefits associated with meeting the fourth carbon budget including: improved energy security improved air quality and reduced noise pollution.
Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon
Dec 2021
Publication
Hydrogen is recognized as a promising and attractive energy carrier to decarbonize the sectors responsible for global warming such as electricity production industry and transportation. However although hydrogen releases only water as a result of its reaction with oxygen through a fuel cell the hydrogen production pathway is currently a challenging issue since hydrogen is produced mainly from thermochemical processes (natural gas reforming coal gasification). On the other hand hydrogen production through water electrolysis has attracted a lot of attention as a means to reduce greenhouse gas emissions by using low-carbon sources such as renewable energy (solar wind hydro) and nuclear energy. In this context by providing an environmentally-friendly fuel instead of the currently-used fuels (unleaded petrol gasoline kerosene) hydrogen can be used in various applications such as transportation (aircraft boat vehicle and train) energy storage industry medicine and power-to-gas. This article aims to provide an overview of the main hydrogen applications (including present and future) while examining funding and barriers to building a prosperous future for the nation by addressing all the critical challenges met in all energy sectors.
Meeting Carbon Budgets – Ensuring a Low-carbon Recovery
Jun 2010
Publication
As part of its statutory role the Committee provides annual reports to Parliament on the progress that Government is making in meeting carbon budgets and in reducing emissions of greenhouse gases.<br/>Meeting Carbon Budgets – ensuring a low-carbon recovery is the Committee’s 2nd progress report. Within this report we assess the latest emissions data and determine whether emissions reductions have occurred as a result of the recession or as a result of other external factors. We assess Government’s progress towards achieving emissions reductions in 4 key areas of: Power Buildings and Industry Transport and Agriculture.
The Fifth Carbon Budget: The Next Step Towards a Low-carbon Economy
Nov 2015
Publication
This report sets out our advice on the fifth carbon budget covering the period 2028-2032 as required under Section 4 of the Climate Change Act; the Government will propose draft legislation for the fifth budget in summer 2016.
Paths to Low-cost Hydrogen Energy at a Scale for Transportation Applications in the USA and China via Liquid-hydrogen Distribution Networks
Dec 2019
Publication
The cost of delivered H2 using the liquid-distribution pathway will approach $4.3–8.0/kg in the USA and 26–52 RMB/kg in China by around 2030 assuming large-scale adoption. Historically hydrogen as an industrial gas and a chemical feedstock has enjoyed a long and successful history. However it has been slow to take off as an energy carrier for transportation despite its benefits in energy diversity security and environmental stewardship. A key reason for this lack of progress is that the cost is currently too high to displace petroleum-based fuels. This paper reviews the prospects for hydrogen as an energy carrier for transportation clarifies the current drivers for cost in the USA and China and shows the potential for a liquid-hydrogen supply chain to reduce the costs of delivered H2. Technical and economic trade-offs between individual steps in the supply chain (viz. production transportation refuelling) are examined and used to show that liquid-H2 (LH2) distribution approaches offer a path to reducing the delivery cost of H2 to the point at which it could be competitive with gasoline and diesel fuel.
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
An Independent Assessment of the UK’s Clean Growth Strategy: From Ambition to Action
Nov 2018
Publication
This report provides the Committee on Climate Change’s response to the UK Government’s Clean Growth Strategy.
The report finds that:
The report finds that:
- The Government has made a strong commitment to achieving the UK’s climate change targets.
- Policies and proposals set out in the Clean Growth Strategy will need to be firmed up.
- Gaps to meeting the fourth and fifth carbon budgets remain. These gaps must be closed.
- Risks of under-delivery must be addressed and carbon budgets met on time.
Future Regulation of the Gas Grid
Jun 2016
Publication
The CCC has established a variety of viable scenarios in which UK decarbonisation targets can be met. Each has consequences for the way in which the UK’s gas network infrastructure is utilised. This report considers the implications of decarbonisation for the future regulation of the gas grid.<br/>The CCC’s 5th Carbon Budget envisaged different scenarios that would enable the UK to meet its emissions targets for 2050. These scenarios represent holistic analyses based on internally consistent combinations of different technologies which could deliver carbon reductions across different sectors of the economy.<br/>The CCC’s scenarios incorporate projections of the demand for natural gas to 2050. The scenarios imply that the volume of throughput on the gas networks1 and the nature and location of network usage is likely to change significantly to meet emissions targets. They are also characterised by significant uncertainty.<br/>Under some decarbonisation scenarios gas networks could be re-purposed to supply hydrogen instead of natural gas meaning there would be ongoing need for network infrastructure.<br/>In other scenarios gas demand in buildings is largely replaced by electric alternatives meaning portions of the low pressure gas distribution networks could be decommissioned.<br/>Patchwork scenarios are also possible in which there is a mixture of these outcomes across the country.<br/>In this project the CCC wished to assess the potential implications for gas networks under these different demand scenarios; and evaluate the associated challenges for Government and regulatory policy. The challenge for BEIS and Ofgem is how to regulate in a way that keeps options open while uncertainty persists about the best solution for the UK; and at the same time how best to make policy and regulatory decisions which would serve to reduce this uncertainty. Both Government and Ofgem have policy and regulatory levers that they can use – and we identify and evaluate such levers in this report.
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Meeting Carbon Budgets – 2014 Progress Report to Parliament
Jul 2014
Publication
This is our sixth statutory report to Parliament on progress towards meeting carbon budgets. In it we consider the latest data on emissions and their drivers. This year the report also includes a full assessment of how the first carbon budget (2008-2012) was met drawing out policy lessons and setting out what is required for the future to stay on track for the legislated carbon budgets and the 2050 target. The report includes assessment at the level of the economy the non-traded and traded sectors the key emitting sectors and the devolved administrations. Whilst the first carbon budget has been met and progress made on development and implementation of some policies the main conclusion is that strengthening of policies will be needed to meet future budgets.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen
Dec 2021
Publication
This is article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers with which the tested appliances were equipped were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input thermal efficiency combustion quality ignition flame stability and transfer. The article contains an analysis of the test results referring in detail to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding among other things how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions on the basis of the research results answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively without the need for modifying them?
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon optimization to eliminate the adverse effects of their uncertainties and fluctuations. In the first stage the day-ahead optimization is performed based on the predicted outpower of WT and PV the predicted demands of power and hydrogen loads. In the second stage the intra-day optimization is performed based on the actual data to trace the day-ahead operation schemes. Since the intra-day optimization can update the operation scheme based on the latest data of renewable energies and loads the proposed two-stage management model is effective in eliminating the uncertain factors and maintaining the stability of the whole system. Simulations show that the proposed two-stage energy management model is robust and effective in coordinating the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and fluctuations of WT PV and loads. In addition the battery storage can reduce the operation cost alleviate the fluctuations of the exchanged power with the power grid and improve the performance of the energy management model.
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
CFD Computations of Liquid Hydrogen Releases
Sep 2011
Publication
Hydrogen is widely recognized as an attractive energy carrier due to its low-level air pollution and its high mass-related energy density. However its wide flammability range and high burning velocity present a potentially significant hazard. A significant fraction of hydrogen is stored and transported as a cryogenic liquid (liquid hydrogen or LH2) as it requires much less volume compared to gaseous hydrogen. In order to exist as a liquid H2 must be cooled to a very low temperature 20.28 K. LH2 is a common liquid fuel for rocket applications. It can also be used as the fuel storage in an internal combustion engine or fuel cell for transport applications. Models for handling liquid releases both two-phase flashing jets and pool spills have been developed in the CFD-model FLACS. The very low normal boiling point of hydrogen (20 K) leads to particular challenges as this is significantly lower than the boiling points of oxygen (90 K) and nitrogen (77 K). Therefore a release of LH2 in the atmosphere may induce partial condensation or even freezing of the oxygen and nitrogen present in the air. A pool model within the CFD software FLACS is used to compute the spreading and vaporization of the liquid hydrogen depositing on the ground where the partial condensation or freezing of the oxygen and nitrogen is also taken into account. In our computations of two-phase jets the dispersed and continuous phases are assumed to be in thermodynamic and kinematic equilibrium. Simulations with the new models are compared against selected experiments performed at the Health and Safety Laboratory (HSL).
Renewable Hydrogen Production from Butanol: A Review
Dec 2017
Publication
Hydrogen production from butanol is a promising alternative when it is obtained from bio-butanol or bio-oil due to the higher hydrogen content compared to other oxygenates such as methanol ethanol or propanol. Catalysts and operating conditions play a crucial role in hydrogen production. Ni and Rh are metals mainly used for butanol steam reforming oxidative steam reforming and partial oxidation. Additives such as Cu can improve catalytic activity in many folds. Moreover support–metal interaction and catalyst preparation technique also play a decisive role in the stability and hydrogen production capacity of catalyst. Steam reforming technique as an option is more frequently researched due to higher hydrogen production capability in comparison to other thermochemical techniques despite its endothermic nature. The use of the oxidative steam reforming and partial oxidation has the advantages of requiring less energy and longer stability of catalysts. However the hydrogen yield is less. This article brings together and examines the latest research on hydrogen production from butanol via steam reforming oxidative steam reforming and partial oxidation reactions. In addition the review examines a few thermodynamic studies based on sorption-enhanced steam reforming and dry reforming where there is potential for hydrogen extraction.
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
Requirements for the Safety Assessment for the Approval of a Hydrogen Refueling Station
Sep 2007
Publication
The EC 6th framework research project HyApproval will draft a Handbook which will describe all relevant issues to get approval to construct and operate a Hydrogen Refuelling Station (HRS) for hydrogen vehicles. In WP3 of the HyApproval project it is under investigation which safety information competent authorities require to give a licence to construct an operate an HRS. The paper describes the applied methodology to collect the information from the authorities in 5 EC countries and the USA. The results of the interviews and recommendations for the information to include in the Handbook are presented.
Determination of Clearance Distances for Venting of Hydrogen Storage
Sep 2005
Publication
This paper discusses the results of computational fluid dynamics (CFD) modelling of hydrogen releases and dispersion outdoors during venting of hydrogen storage in real environment and geometry of a hydrogen refuelling or energy station for a given flow rate and dimensions of vent stack. The PHOENICS CFD software package was used to solve the continuity momentum and concentration equations with the appropriate boundary conditions buoyancy model and turbulence models. Also thermal effects resulting from potential ignition of flammable hydrogen clouds were assessed using TNO “Yellow Book” recommended approaches. The obtained results were then applied to determine appropriate clearance distances for venting of hydrogen storage for contribution to code development and station design considerations. CFD modelling of hydrogen concentrations and TNO-based modelling of thermal effects have proven to be reliable effective and relatively inexpensive tools to evaluate the effects of hydrogen releases.
Progress Report 2016: Meeting Carbon Budgets
Jun 2016
Publication
This is the CCC’s eighth annual report on the UK’s progress in meeting carbon budgets.
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
The report shows that greenhouse gas emissions have fallen rapidly in the UK power sector but that progress has stalled in other sectors such as:
- heating in buildings
- transport
- industry
- agriculture
The report also outlines the Committee’s view of key criteria for the government’s ’emissions reduction plan’ published later in 2017
Reducing Emissions in Scotland – 2016 Progress Report
Sep 2016
Publication
This is the Committee’s fifth report on Scotland’s progress towards meeting emission reduction targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.<br/>The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Northern Ireland
Feb 2019
Publication
In this report the Committee sets out how Northern Ireland can reduce its greenhouse gas emissions between now and 2030 in order to meet UK-wide climate change targets.
The report’s key findings are:
The report’s key findings are:
- Existing policies are not enough to deliver this reduction
- There are excellent opportunities to close this gap and go beyond 35%
- Meeting the cost-effective path to decarbonisation in Northern Ireland will require action across all sectors of the economy and a more joined-up approach
Quantifying Greenhouse Gas Emissions
Apr 2017
Publication
In this report Quantifying Greenhouse Gas Emissions the Committee on Climate Change assesses how the UK’s greenhouse gas emissions are quantified where uncertainties lie and the implications for setting carbon budgets and measuring progress against climate change targets. The report finds that:
- The methodology for constructing the UK’s greenhouse gas inventory is rigorous but the process for identifying improvements could be strengthened.
- There is high confidence over large parts of the inventory. A small number of sectors contribute most to uncertainty and research efforts should be directed at improving these estimates.
- UK greenhouse gas emissions for 2014 were within ±3% of the estimated level with 95% confidence which is a low level of uncertainty by international standards.
- Methodology revisions in recent years have tended to increase estimated emissions but these changes have been within uncertainty margins.
- Statistical uncertainty in the current greenhouse gas inventory is low but could rise in future.
- Uncertainty also arises from sources of emissions not currently included in the inventory and from potential changes to IPCC guidelines.
- Independent external validation of greenhouse gas emissions is important and new monitoring techniques should be encouraged.
- Government should continue to monitor consumption-based greenhouse gas estimates and support continued research to improve methodology and reduce uncertainty in these estimates.
Integral Models for High Pressure Hydrogen - Methane Releases
Sep 2009
Publication
The development of hydrogen as energy carrier is promoted by the increasing in energy demand depletion of fossil resources and the global warming. However this issue relies primarily on the safety aspect which requires the knowledge in the case of gas release of the quantities such as the flammable cloud size release path and the location of the lower flammability limit of the mixture. The integral models for predicting the atmospheric dispersion were extensively used in previous works for low pressure releases such as pollutant and flammable gas transport. In the present investigation this approach is extended to the high pressure gas releases. The model is developed in the non-Boussinesq approximation and is based on Gaussian profiles for buoyant variable density jet or plume in stratified atmosphere with a crossflow. Validations have been performed on a broad range of hydrogen methane and air dispersion cases including vertical or horizontal jets or plumes into a quiescent atmosphere or with crosswind.
Reducing Emissions in Scotland – 2017 Progress Report
Sep 2017
Publication
The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Reducing Emissions in Scotland 2019 Progress Report
Dec 2019
Publication
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions.<br/>Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020. Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland. The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.<br/>Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Hydrogen in a Low-carbon Economy
Nov 2018
Publication
This report by the Committee on Climate Change (CCC) assesses the potential role of hydrogen in the UK’s low-carbon economy.
It finds that hydrogen:
It finds that hydrogen:
- is a credible option to help decarbonise the UK energy system but its role depends on early Government commitment and improved support to develop the UK’s industrial capability
- can make an important contribution to long-term decarbonisation if combined with greater energy efficiency cheap low-carbon power generation electrified transport and new ‘hybrid’ heat pump systems which have been successfully trialled in the UK
- could replace natural gas in parts of the energy system where electrification is not feasible or is prohibitively expensive for example in providing heat on colder winter days industrial heat processes and back-up power generation
- is not a ‘silver bullet’ solution; the report explores some commonly-held misconceptions highlighting the need for careful planning
- Government must commit to developing a low-carbon heat strategy within the next three years
- Significant volumes of low-carbon hydrogen should be produced in a carbon capture and storage (CCS) ‘cluster’ by 2030 to help the industry grow
- Government must support the early demonstration of the everyday uses of hydrogen in order to establish the practicality of switching from natural gas to hydrogen
- There is low awareness amongst the general public of reasons to move away from natural gas heating to low-carbon alternatives
- A strategy should be developed for low-carbon heavy goods vehicles (HGVs) which encourages a move away from fossil fuels and biofuels to zero-emission solutions by 2050
Safety Demands for Automotive Hydrogen Storage Systems
Sep 2005
Publication
Fuel storage systems for vehicles require a fail-safe design strategy. In case of system failures or accidents the control electronics have to switch the system into a safe operation mode. Failure Mode and Effect Analysis (FMEA) or Failure Tree Analysis (FTA) are performed already in the early design phase in order to minimize the risk of design failures in the fuel storage system. Currently the specifications of requirements for pressurized and liquid hydrogen fuel tanks are based on draft UN-ECE Regulations developed by the European Integrated Hydrogen Project (EIHP). Used materials and accessories shall be compatible with hydrogen. A selection of metallic and non-metallic materials will be presented. Complex components have to be optimised by FEM simulations in order to determine weak spots in the design which will be overstressed in case of pressure thermal expansion or dynamic vibrations. According to automotive standards the performance of liquid hydrogen fuel tank systems has to be verified in various destructive and non-destructive tests.
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
Experimental Investigation of Hydrogen Jet Fire Mitigation by Barrier Walls
Sep 2009
Publication
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences the walls may introduce other hazards if not properly configured. This paper describes experiments carried out to characterize the effectiveness of different barrier wall configurations at reducing the hazards created by jet fires. The hazards that are evaluated are the generation of overpressure during ignition the thermal radiation produced by the jet flame and the effectiveness of the wall at deflecting the flame.<br/>The tests were conducted against a vertical wall (1-wall configuration) and two “3-wall” configurations that consisted of the same vertical wall with two side walls of the same dimensions angled at 135° and 90°. The hydrogen jet impinged on the center of the central wall in all cases. In terms of reducing the radiation heat flux behind the wall the 1-wall configuration performed best followed by the 3-wall 135° configuration and the 3-wall 90°. The reduced shielding efficiency of the three-wall configurations was probably due to the additional confinement created by the side walls that limited the escape of hot gases to the sides of the wall and forced the hot gases to travel over the top of the wall.<br/>The 3-wall barrier with 135° side walls exhibited the best overall performance. Overpressures produced on the release side of the wall were similar to those produced in the 1-wall configuration. The attenuation of overpressure and impulse behind the wall was comparable to that of the three-wall configuration with 90° side walls. The 3-wall 135° configuration’s ability to shield the back side of the wall from the heat flux emitted from the jet flame was comparable to the 1-wall and better than the 3-wall 90° configuration. The ratio of peak overpressure (from in front of the wall and from behind the wall) showed that the 3-wall 135° configuration and the 3-wall 90° configuration had a similar effectiveness. In terms of the pressure mitigation the 3-wall configurations performed significantly better than the 1-wall configuration
Reducing Emissions in Scotland – 2018 Progress Report
Sep 2019
Publication
This is the Committee’s seventh report on Scotland’s progress towards meetings emissions targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
Overall Scotland continues to outperform the rest of the UK in reducing its greenhouse gas emissions but successful strategies for energy and waste mask a lack of progress in other parts of the Scottish economy.
The report shows that Scotland’s total emissions fell by 10% in 2016 compared to 2015. The lion’s share of this latest drop in emissions came from electricity generation.
The key findings are:
- Overall Scotland met its annual emissions targets in 2016.
- Scotland’s progress in reducing emissions from the power sector masks a lack of action in other areas particularly transport agriculture forestry and land use.
- Low-carbon heat transport agriculture and forestry sector policies need to improve in order to hit 2032 emissions targets.
- The Scottish Government’s Climate Change Plan – published in February 2018 – now has sensible expectations across each sector to reduce emissions.
The New Facility for Hydrogen and Fuel Cell Vehicle Safety Evaluation
Sep 2005
Publication
For the evaluation of hydrogen and fuel cell vehicle safety a new comprehensive facility was constructed in our institute. The new facility includes an explosion resistant indoor vehicle fire test building and high pressure hydrogen tank safety evaluation equipment. The indoor vehicle fire test building has sufficient strength to withstand even an explosion of a high pressure hydrogen tank of 260 liter capacity and 70 MPa pressure. It also has enough space to observe vehicle fire flames of not only hydrogen but also other conventional fuels such as gasoline or compressed natural gas. The inside dimensions of the building are a 16 meter height and 18 meter diameter. The walls are made of 1.2 meter thick reinforced concrete covered at the insides with steel plate. This paper shows examples of hydrogen vehicle fires compared with other fuel fires and hydrogen high pressure tank fire tests utilizing several kinds of fire sources. Another facility for evaluation of high pressure hydrogen tank safety includes a 110 MPa hydrogen compressor with a capacity of 200 Nm3/h a 300 MPa hydraulic compressor for burst tests of 70 MPa and higher pressure tanks and so on. This facility will be used for not only the safety evaluation of hydrogen and fuel cell vehicles but also the establishment of domestic/international regulations codes and standards.
Propulsion of a Hydrogen-fuelled LH2 Tanker Ship
Mar 2022
Publication
This study aims to present a philosophical and quantitative perspective of a propulsion system for a large-scale hydrogen-fuelled liquid-hydrogen (LH2) tanker ship. Established methods are used to evaluate the design and performance of an LH2-carrier propulsion system for JAMILA a ship designed with four cylindrical LH2 tanks bearing a total capacity of ~280000 m3 along with cargo and using the boil-off as propulsion and power fuel. Additionally the ship propulsion system is evaluated based on the ship resistance requirements and a hydrogen-fuelled combined-cycle gas turbine is modelled to achieve the dual objectives of high efficiency and zero-carbon footprint. The required inputs primarily involve the off-design and degraded performance of the gas-turbine topping cycle and the proposed power plant operates with a total output power of 50 M.W. The results reveal that the output power allows ship operation at a great speed even with a degraded engine and adverse ambient conditions.
Zero Emission HGV Infrastructure Requirements
May 2019
Publication
The Committee on Climate Change commissioned Ricardo Energy and Environment to carry out research to assess the infrastructure requirements and costs for the deployment of different zero emission heavy goods vehicle (HGV) technology options. The infrastructure considered includes hydrogen refuelling stations ultra-rapid charge points at strategic locations electric overhead recharging infrastructure on the roads and hybrid solutions combining these options.
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
The research concluded:
It is feasible to build refuelling infrastructure to support the deployment of zero emission HGVs so that they constitute the vast majority of vehicles on the roads by 2050.
Looking at infrastructure alone deploying hydrogen refuelling stations is the cheapest of the options costing a total of £1.7bn in capital expenditure in the time period from now until 2060. The strategic deployment of ultra-rapid charge points is the most expensive at £10.7bn. In all scenarios a significant number of smaller electric HGVs are deployed as these options are available and operating on the streets today. The cost of installing chargers at depots for these vehicles is included.
When the costs of the fuel as well as the infrastructure are included the costs of deploying electricity or hydrogen HGVs are cheaper compared to the continued use of diesel.
Moving to zero-carbon infrastructure for HDVs is a significant challenge and requires planning co-ordination supply chains resource and materials and a skilled workforce as well as strong government policy to enable the market to deliver.
The Report can be found here
Safety of Hydrogen-fueled Motor Vehicles with IC Engines.
Sep 2005
Publication
Clarification of questions of safety represents a decisive contribution to the successful introduction of vehicles fuelled by hydrogen. At the moment the safety of hydrogen is being discussed and investigated by various bodies. The primary focus is on fuel-cell vehicles with hydrogen stored in gaseous form. This paper looks at the safety of hydrogen-fuelled vehicles with an internal combustion engine and liquefied hydrogen storage. The safety concept of BMW’s hydrogen vehicles is described and the specific aspects of the propulsion and storage concepts discussed. The main discussion emphasis is on the utilization of boil-off parking of the vehicles in an enclosed space and their crash behaviour. Theoretical safety observations are complemented by the latest experimental and test results. Finally reference is made to the topic-areas in the field of hydrogen safety in which cooperative research work could make a valuable contribution to the future of the hydrogen-powered vehicle.
The Future of Hydrogen
Jun 2019
Publication
At the request of the government of Japan under its G20 presidency the International Energy Agency produced this landmark report to analyse the current state of play for hydrogen and to offer guidance on its future development.
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
UK Business Opportunities of Moving to a Low-carbon Economy
Mar 2017
Publication
The following report accompanies the Committee on Climate Change’s 2017 report on energy prices and bills. It was written by Ricardo Energy and Environment.
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
Flame Characteristics of High-Pressure Hydrogen Gas Jet
Sep 2005
Publication
It is expected that hydrogen will serve as a nonpolluting carrier of energy for the next generation of vehicles and guidelines for its safe use are required. Hydrogen-gas service stations for supplying fuel cell vehicles will have to handle high-pressure hydrogen gas but safety regulations for such installations have not received much investigation. In this study we experimentally investigated the flame characteristics of a rapid leakage of high-pressure hydrogen gas. A hydrogen jet diffusion flame was injected horizontally from convergent nozzles of various diameters between 0.1 and 4 mm at reservoir over pressures of between 0.01 and 40 MPa. The sizes of the flame were measured and experimental equations were obtained for the length and the width of the flame. Flame sizes depend not only on the nozzle diameter but also on the spouting pressure. Blow-off limits exists and are determined by the nozzle diameter and the spouting pressure. Furthermore the radiation from a hydrogen flame can be predicted from the flow rate of the gas and the distance from the flame.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Sectoral Scenarios for the Fifth Carbon Budget
Nov 2015
Publication
This report forms part of the Committee’s advice on the level of the fifth carbon budget.<br/>The report describes the scenarios used by the Committee to inform its judgements over the cost-effective path to meeting the UK’s greenhouse reduction targets in the period 2028-2032.
Role of Chemical Kinetics on the Detonation Properties of Hydrogen, Natural Gas & Air Mixtures
Sep 2005
Publication
The first part of the present work is to validate a detailed kinetic mechanism for the oxidation of hydrogen – methane – air mixtures in a detonation waves. A series of experiments on auto-ignition delay times have been performed by shock tube technique coupled with emission spectrometry for H2 / CH4 / O2 mixtures highly diluted in argon. The CH4/H2 ratio was varied from 0 to 4 and the equivalence ratio from 0.4 up to 1. The temperature range was from 1250 K to 2000 K and the pressure behind reflected shock waves was between 0.15 and 1.6 MPa. A correlation was proposed between temperature (K) concentration of chemical species (mol m-3) and ignition delay times. The experimental auto-ignition delay times were compared to the modelled ones using four different mechanisms from the literature: GRI [22] Marinov et al. [23] Hughes et al. [24] Konnov [25]. A large discrepancy was generally found between the different models. The Konnov’s model that predicted auto-ignition delay times close to the measured ones has been selected to calculate the ignition delay time in the detonation waves. The second part of the study concerned the experimental determination of the detonation properties namely the detonation velocity and the cell size. The effect of the initial composition hydrogen to methane ratio and the amount of oxygen in the mixture as well as the initial pressure on the detonation velocity and on the cell size were investigated. The ratio of methane / (methane + hydrogen) varied between 0 and 0.6 for 2 different equivalence ratio (0.75 and 1) while the initial pressure was fixed to 10 kPa. A correlation was established between the characteristic cell size and the ignition delay time behind the leading shock of the detonation. It was clearly showed that methane has an important inhibitor effect on the detonation of these combustible mixtures.
Hydrogen – Analysis
Jun 2020
Publication
Hydrogen technologies maintained strong momentum in 2019 awakening keen interest among policy makers. It was a record year for electrolysis capacity becoming operational and several significant announcements were made for upcoming years. The fuel cell electric vehicle market almost doubled owing to outstanding expansion in China Japan and Korea. However low-carbon production capacity remained relatively constant and is still off track with the SDS. More efforts are needed to: scale up to reduce costs; replace high-carbon with low-carbon hydrogen in current applications; and expand hydrogen use to new applications.
Link to Document on IEA Website
Link to Document on IEA Website
Scenarios for Deployment of Hydrogen in Meeting Carbon Budgets (E4tech)
Nov 2015
Publication
This research considers the potential role of hydrogen in meeting the UK’s carbon budgets. It was written by consultancy E4tech.<br/>The CCC develops scenarios for the UK’s future energy system to assess routes to decarbonisation and to advise UK Government on policy options. Uncertainty to 2050 is considerable and so different scenarios are needed to assess different trajectories targets and technology combinations. Some of these scenarios assess specific technologies or fuels which have the potential to make a significant contribution to future decarbonisation.<br/>Hydrogen is one such fuel. It has been included in limited quantities in some CCC scenarios but not extensively examined in part due to perceived or anticipated higher costs than some other options. But as hydrogen technology is developed and deployed the cost projections and other performance indicators have become more favourable.
Experimental Study of Hot Inert Gas Jet Ignition of Hydrogen-Oxygen Mixture
Sep 2005
Publication
Experiments were performed to investigate the diffusion ignition process that occurs when hot inert gas (argon or nitrogen) is injected into the stoichiometric hydrogen-oxygen mixture at the test section. Detonation wave initiated by spark plug in the driver section in stoichiometric acetylene-oxygen mixture At P=0.5 MPa and room temperature propagates as incident shockwave in the driven section through inert gas after bursting the diaphragm separating the sections. At the end wall of driver section the inert gas is heated behind the reflected shock wave and then injected in to the test section with the stoichiometric hydrogen-oxygen mixture through the hole 8mm in diameter. An increase of the initial pressure of the combustible mixture in the test section from 0.2 to 0.6MPa resulted in decrease of the minimum temperature of injected gas causing ignition from 1650K to 850K. At the same time the induction time for ignition process has increased from 190 to 320μs when hot argon was injected. For the injection of hot nitrogen an increase of the initial pressure of the combustible mixture from 0.2 to 0.4 MPa resulted in decrease of the minimum temperature of injected inert gas giving ignition from 1150K to 850Kand an increase of the induction time from 170 to 240μs.The results of experiments indicate that ignition occurs when the static enthalpy of injected mass of inert gas exceeds some critical value. The mechanism of ignition process was also studied by schlieren photography.
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technology with 11 High Voltage Direct Current (HVDC) systems calculating the following techno-economic 12 indicators; Levelised Cost Of Electricity (LCOE) and Levelised Cost Of Storage (LCOS). The 13 results suggest that the LCOE of the HIS is competitive with HVDC for construction in 2050 14 with distance beyond 350km in case of all scenarios for a 1GW system. The LCOS is lower 15 than an HVDC system using large scale hydrogen storage in 6 out of 12 scenarios analysed 16 including for construction from 2025. The HIS was also applied to three case studies with 17 the results showing that the system outperforms HVDC from LCOS perspectives in all cases 18 and has 15-20% lower investment costs in 2 studies analysed.
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Measuring and Modelling Unsteady Radiation of Hydrogen Combustion
Sep 2005
Publication
Burning hydrogen emits thermal radiation in UV NIR and IR spectral range. Especially in the case of large cloud explosion the risk of heat radiation is commonly underestimated due to the non-visible flame of hydrogen-air combustion. In the case of a real explosion accident organic substances or inert dust might be entrained from outer sources to produce soot or heated solids to substantially increase the heat release by continuum radiation. To investigate the corresponding combustion phenomena different hydrogen-air mixtures were ignited in a closed vessel and the combustion was observed with fast scanning spectrometers using a sampling rate up to 1000 spectra/s. In some experiments to take into account the influence of organic co-combustion a spray of a liquid glycol-ester and milk powder was added to the mixture. The spectra evaluation uses the BAM code of ICT to model bands of reaction products and thus to get the temperatures. The code calculates NIR/IR-spectra (1 - 10 μm) of non-homogenous gas mixtures of H2O CO2 CO NO and HCl taking into consideration also emission of soot particles. It is based on a single line group model and makes also use of tabulated data of H2O and CO2 and a Least Squares Fit of calculated spectra to experimental ones enables the estimation of flame temperatures. During hydrogen combustion OH emits an intense spectrum at 306 nm. This intermediary radical allows monitoring the reaction progress. Intense water band systems between 1.2 and 3 μm emit remarkable amounts of heat radiation according to a measured flame temperature of 2000 K. At this temperature broad optically-thick water bands between 4.5 μm and 10 μm contribute only scarcely to the total heat output. In case of co-combustion of organic materials additional emission bands of CO and CO2 as well as a continuum radiation of soot and other particles occur and particularly increase the total thermal output drastically.
No more items...