- Home
- A-Z Publications
- Publications
Publications
The Dawn of Hydrogen - Fuel of the Future
Aug 2021
Publication
This is a time of enormous change for the gas industry as the UK and the world at large attempts to meet the challenges of decarbonisation in the face of climate change. Hydrogen is expected to play a vital role in achieving the government’s commitment of eliminating the UK’s contribution to climate change by 2050 with the industry creating up to 8000 jobs by 2030 and potentially unlocking up to 100000 jobs by the middle of the century. But despite the UK government’s huge ambitions hydrogen is just one piece of the puzzle and it will be necessary to seek solutions that bring the whole energy system together – including not just heat for buildings but hard-to decarbonise areas such as manufacturing road transport aviation and shipping. Here we bring you just a taste of some of the amazing work taking place across the energy sector to understand this fuel more clearly to comprehend its strengths and limitations and to integrate it into our current energy infrastructure. We hope you enjoy this special publication.
Thermodynamic, Economic and Environmental Assessment of Renewable Natural Gas Production Systems
May 2020
Publication
One of the options to reduce the dependence on fossil fuels is to produce gas with the quality of natural gas but based on renewable energy sources. It can encompass among other biogas generation from various types of biomass and its subsequent upgrading. The main aim of this study is to analyze under a combined technical economic and environmental perspective three of the most representative technologies for the production of biomethane (bio-based natural gas): (i) manure fermentation and its subsequent upgrading by CO2 removal (ii) manure fermentation and biogas methanation using renewable hydrogen from electrolysis and (iii) biomass gasification in the atmosphere of oxygen and methanation of the resulted gas. Thermodynamic economic and environmental analyses are conducted to thoroughly compare the three cases. For these purposes detailed models in Aspen Plus software were built while environmental analysis was performed using the Life Cycle Assessment methodology. The results show that the highest efficiency (66.80%) and the lowest break-even price of biomethane (19.2 €/GJ) are reached for the technology involving fermentation and CO2 capture. Concerning environmental assessment the system with the best environmental performance varies depending on the impact category analyzed being the system with biomass gasification and methanation a suitable trade-off solution for biomethane production.
Safety Planning and Management in EU Hydrogen and Fuel Cells Projects - Guidance Document
Sep 2021
Publication
The document provides information on safety planning implementation and reporting for projects involving hydrogen and/or fuel cell technologies. It does not intend to replace or contradict existing regulations which prevail under all circumstances. Neither is it meant to conflict with relevant international or national standards or to replace existing company safety policies codes and procedures. Instead this guidance document aims to assist projects and project partners in identifying hazards and associated risks in prevention and/or mitigation of them through a proper safety plan in implementing the safety plan and reporting safety related events. This shall help in safely delivering the project and ultimately producing inherently safer systems processes and infrastructure.
Industrial Decarbonisation Strategy
Mar 2021
Publication
The UK is a world leader in the fight against climate change. In 2019 we became the first major economy in the world to pass laws to end its contribution to global warming by 2050. Reaching this target will require extensive systematic change across all sectors including industry. We must get this change right as the products made by industry are vital to life in the UK and the sector supports local economies across the country.<br/><br/>This strategy covers the full range of UK industry sectors: metals and minerals chemicals food and drink paper and pulp ceramics glass oil refineries and less energy-intensive manufacturing. These businesses account for around one sixth of UK emissions and transformation of their manufacturing processes is key if we are to meet our emissions targets over the coming decades (BEIS Final UK greenhouse gas emissions from national statistics: 1990 to 2018: Supplementary tables 2020).<br/><br/>The aim of this strategy is to show how the UK can have a thriving industrial sector aligned with the net zero target without pushing emissions and business abroad and how government will act to support this. An indicative roadmap to net zero for UK industry based on the content in this strategy is set out at the end of this summary. This strategy is part of a series of publications from government which combined show how the net zero transition will take place across the whole UK economy.
FCH Programme Review Report 2014
Apr 2015
Publication
The 2014 Review is the fourth review of the FCH JU project portfolio. The reviews began in 2011 following a recommendation arising from the interim evaluation of the FCH JU which identified the need to ensure that the FCH JU project portfolio as a whole fulfilled the objectives of the Multi-Annual Implementation or Work Plan.<br/><br/>An international team of leading experts in the FCH field undertakes each review based on (1) The achievements of the portfolio against the strategic objectives and content of the FCH JU’s MAIP/MAWP and the AIP/AWPs as set out for the transportation and energy innovation pillars and the cross-cutting category; (2) The extent to which the portfolio meets the FCH JU’s remit for promoting the horizontal activities of RCS PNR safety life-cycle and socio-economic analysis education and training and public awareness; (3) The portfolio’s effectiveness in promoting linkages and co-operation between projects and between FCH JU-supported projects and those supported by other European instruments the Member States and internationally. Review panels The 2014 review comprised six panels covering a total of 114 projects. Each panel covered between 10 and 24 projects as shown in Table 1 below. The objective was to assess projects within each panel as a sub-portfolio (within the FCH JU portfolio) and not as individual projects although examples of individual projects representing good practice were highlighted.
Getting Net Zero Done- The Crucial Role of Decarbonised Gas and How to Support It
May 2020
Publication
The term ‘decarbonised gas’ refers to biogases hydrogen and carbon capture utilisation and storage (CCUS). This strategy paper sets out how decarbonised gas can help to get net zero done by tackling the hard-to-decarbonise sectors – industry heavy transport and domestic heating – which together account for around 40% of UK greenhouse gas emissions. It also illustrates the crucial importance of supportive public opinion and sets out in detail how decarbonised gas can help to ensure that net zero is achieved with public support. The report is based on extensive quantitative and qualitative opinion research on climate change in general net zero emissions in the UK and the specific decarbonised gas solutions in homes transport and industry. The full quantitative data is contained in the Supplements tab.<br/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/>
North East Network & Industrial Cluster Development – Summary Report A Consolidated Summary Report by SGN & Wood
Nov 2021
Publication
In response to the global climate emergency governments across the world are aiming to lower greenhouse gas emissions to slow the damaging effects of climate change.<br/>The Scottish Government has set a target of net zero emissions by 2045. Already a global leader in renewable energy and low-carbon technology deployment Scotland’s energy landscape is set to undergo more change as it moves toward becoming carbon-neutral. Key to that change will be the transition from natural gas to zero-carbon gases like hydrogen and biomethane.<br/>Scotland’s north-east and central belt are home to some of its largest industrial carbon emitters. The sector’s reliance on natural gas means that it emits 11.9Mt of CO2 emissions per year says NECCUS: the equivalent of 2.6 million cars or roughly all the cars in Scotland. Most homes and businesses across Scotland also use natural gas for heating.<br/>Our North-East Network and Industrial Cluster project is laying the foundations for the rapid decarbonisation of this high-emitting sector. We’ve published a report outlining the practical steps needed to rapidly decarbonise a significant part of Scotland’s homes and industry. It demonstrates how hydrogen can play a leading role in delivering the Scottish Government’s target of one million homes with low carbon heat by 2030.<br/>The research published with global consulting and engineering advisor Wood sets out a transformational and accelerated pathway to 100% hydrogen for Scotland’s gas networks which you can see on the map below. It also details the feasibility of a CO2 collection network to securely capture transport and store carbon dioxide emissions deep underground.
Combustion and Exhaust Emission Characteristics, and In-cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
Feb 2017
Publication
This paper presents a study undertaken on a naturally aspirated direct injection diesel engine investigating the combustion and emission characteristics of CH4-CO2 and CH4-CO2 -H2 mixtures. These aspirated gas mixtures were pilot-ignited by diesel fuel while the engine load was varied between 0 and 7 bar IMEP by only adjusting the flow rate of the aspirated mixtures. The in-cylinder gas composition was also investigated when combusting CH4-CO2 and CH4-CO2-H2 mixtures at different engine loads with in cylinder samples collected using two different sampling arrangements. The results showed a longer ignition delay period and lower peak heat release rates when the proportion of CO2 was increased in the aspirated mixture. Exhaust CO2 emissions were observed to be higher for 60 CH4:40CO2 mixture but lower for the 80CH4:20CO2 mixture as compared to diesel fuel only combustion at all engine loads. Both exhaust and in-cylinder NOx levels were observed to decrease when the proportion of CO2 was increased; NOx levels increased when the proportion of H2 was increased in the aspirated mixture. In-cylinder NOx levels were observed to be higher in the region between the sprays as compared to within the spray core attributable to higher gas temperatures reached post ignition in that region.
Highly Porous Organic Polymers for Hydrogen Fuel Storage
Apr 2019
Publication
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However the storage of H2presents a major challenge. There are two methods for storing H2 fuel chemical and physical both of which have some advantages and disadvantages. In physical storage highly porous organic polymers are of particular interest since they are low cost easy to scale up metal-free and environmentally friendly.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
In this review highly porous polymers for H2 fuel storage are examined from five perspectives:
(a) brief comparison of H2 storage in highly porous polymers and other storage media;
(b) theoretical considerations of the physical storage of H2 molecules in porous polymers;
(c) H2 storage in different classes of highly porous organic polymers;
(d) characterization of microporosity in these polymers; and
(e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Pathways to Net-Zero: Decarbonising the Gas Networks in Great Britain
Oct 2019
Publication
Natural gas plays a central role in the UK energy system today but it is also a significant source of greenhouse gas (GHG) emissions. The UK committed in 2008 to reduce GHG emissions by at least 80% compared to 1990 levels by 2050. In June 2019 a more ambitious target was adopted into law and the UK became the first major economy to commit to “net-zero” emissions by 2050. In this context the Energy Networks Association (ENA) commissioned Navigant to explore the role that the gas sector can play in the decarbonisation of the Great Britain (GB) energy system. In this report we demonstrate that low carbon and renewable gases can make a fundamental contribution to the decarbonisation pathway between now and 2050.
Prospects for the Use of Hydrogen in the Armed Forces
Oct 2021
Publication
The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050 which will also necessitate an increase in the size of the armed forces. In this context energy extraction distribution and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions Power to Hydrogen (P2H) is one of the most appealing options. However despite the potential many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used which was based on a literature survey identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment not only in the armed forces
The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas
May 2020
Publication
Presently there is a paradoxical situation in the global energy market related to a gap between the image of hydrocarbon resources (HCR) and their real value for the economy. On the one hand we face an increase in expected HCR production and consumption volumes both in the short and long term. On the other hand we see the formation of the image of HCR and associated technologies as an unacceptable option without enough attention to the differences in fuels and the ways of their usage. Due to this it seems necessary to take a step back to review the vitality of such a political line. This article highlights an alternative point of view with regard to energy development prospects. The purpose of this article is to analyse the consistency of criticism towards HCR based on exploration of scientific literature analytical documents of international corporations and energy companies as well as critical assessment of technologies offered for the HCR substitution. The analysis showed that: (1) it is impossible to substitute the majority of HCR with alternative power resources in the near term (2) it is essential that the criticism of energy companies with regard to their responsibility for climate change should lead not to destruction of the industry but to the search of sustainable means for its development (3) the strategic benchmarks of oil and coal industries should shift towards chemical production but their significance should not be downgraded for the energy sector (4) liquified natural gas (LNG) is an independent industry with the highest expansion potential in global markets in the coming years as compared to alternative energy options and (5) Russia possesses a huge potential for the development of the gas industry and particularly LNG that will be unlocked if timely measures on higher efficiency of the state regulation system are implemented.
Reducing Emissions in Scotland – 2016 Progress Report
Sep 2016
Publication
This is the Committee’s fifth report on Scotland’s progress towards meeting emission reduction targets as requested by Scottish Ministers under the Climate Change (Scotland) Act 2009.<br/>The Scottish Act sets a long-term target to reduce emissions of greenhouse gases (GHGs) by at least 80% in 2050 relative to 1990 with an interim target to reduce emissions by 42% in 2020. Secondary legislation passed in October 2010 and October 2011 also set a series of annual emission reduction targets for 2010 to 2022 and 2023 to 2027 respectively. We advised the Scottish Government on annual targets for the period 2028 to 2032 in March 2016 and July 2016.<br/>The report reveals that Scotland’s annual emissions reduction target for 2014 was met with gross Scottish greenhouse gas emissions including international aviation and shipping falling by 8.6% in 2014. This compares to a 7.3% fall for the UK as a whole. Since 1990 gross Scottish emissions have fallen nearly 40% compared to nearly 33% at a UK level.
Hydrogen Production in Methane Decomposition Reactor Using Solar Thermal Energy
Nov 2021
Publication
This study investigates the decomposition of methane using solar thermal energy as a heat source. Instead of the direct thermal decomposition of the methane at a temperature of 1200 ◦C or higher a catalyst coated with carbon black on a metal foam was used to lower the temperature and activation energy required for the reaction and to increase the yield. To supply solar heat during the reaction a reactor suitable for a solar concentrating system was developed. In this process a direct heating type reactor with quartz was initially applied and a number of problems were identified. An indirect heating type reactor with an insulated cavity and a rotating part was subsequently developed followed by a thermal barrier coating application. Methane decomposition experiments were conducted in a 40 kW solar furnace at the Korea Institute of Energy Research. Conversion rates of 96.7% and 82.6% were achieved when the methane flow rate was 20 L/min and 40 L/min respectively.
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Alberta Hydrogen Roadmap
Nov 2021
Publication
Alberta is preparing for a lower emission future. The Hydrogen Roadmap is a key part of that future and Alberta's Recovery Plan. The roadmap is our path to building a provincial hydrogen economy and accessing global markets. It contains several policy actions that will be introduced in the coming months and years and it provides support to the sector as technology and markets develop.<br/>Alberta is already the largest hydrogen producer in Canada. We have all the resources expertise and technology needed to quickly become a global supplier of clean low-cost hydrogen. With a worldwide market estimated to be worth over $2.5 trillion a year by 2050 hydrogen can be the next great energy export that fuels jobs investment and economic opportunity across our province.
Metal Hydroborates: From Hydrogen Stores to Solid Electrolyte
Nov 2021
Publication
The last twenty years of an intense research on metal hydroborates as solid hydrogen stores and solid electrolytes are reviewed. It is shown that from the most promising application in hydrogen storage due to their high gravimetric and volumetric capacities the focus has moved to solid electrolytes due to high cation mobility in disordered structures with rotating or tumbling anions-hydroborate clusters. Various strategies of overcoming the strong covalent bonding of hydrogen in hydroborates for hydrogen storage and disordering their structures at room temperature for solid electrolytes are discussed. The important role of crystal chemistry and crystallography knowledge in material design can be read in the cited literature.
Deep-Decarbonisation Pathways for UK Industry
Dec 2020
Publication
The Climate Change Committee (CCC) commissioned Element Energy to improve our evidence base on the potential of industrial deep-decarbonisation measures (fuel switching CCS/BECCS measures to reduce methane emissions) and develop pathways for their application. This report summarises the evidence and results of the work including:
- Evidence on the key constraints and costs for technology and infrastructure deployment
- The methodology and new Net Zero Industry Pathway (N-ZIP) model used to determine deep-decarbonisation pathways for UK industry (drawing on the evidence above)
- A set of pathways and wider sensitivities produced using the N-ZIP model which fed into the CCC’s Sixth Carbon Budget pathways
- Recommended actions and policy measures as informed by the study.
Webinar to Launch New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
On 26 June the World Energy Council held a webinar presenting the results of its latest Innovation Insights Brief on hydrogen engaging three key experts on the topic:
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Sep 2020
Publication
Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind solar etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically new process designs uniquely exploit intermittent renewable energy for CO2 conversion enabling thermal integration H2 and O2 utilization and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction municipal waste incineration biomass gasification fermentation pulp production biogas upgrading and calcination and are an essential step forward in reducing anthropogenic CO2 emissions.
Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe
Nov 2016
Publication
Among the several typologies of storage technologies mainly on different physical principles (mechanical electrical and chemical) hydrogen produced by power to gas (P2G) from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe analysing current and potential locations regulatory framework governments’ outlooks economic issues and available renewable energy amounts. The expert opinion survey already used in many research articles on different topics including energy has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.
Concept of Hydrogen Fired Gas Turbine Cycle with Exhaust Gas Recirculation: Assessment of Process Performance
Nov 2019
Publication
High hydrogen content fuels can be used in gas turbine for power generation with CO2 capture IGCC plants or with hydrogen from renewables. The challenge for the engine is the high reactive combustion properties making dilution necessary to mitigate NOx emissions at the expense of a significant energy cost. In the concept analysed in this study high Exhaust Gas Recirculation (EGR) rate is applied to the gas turbine to generate oxygen depleted air. As a result combustion temperature is inherently limited keeping NOx emissions low without the need for dilution or unsafe premixing. The concept is analysed by process simulation based on a reference IGCC plant with CO2 Capture. Results with dry and wet EGR options are presented as a function EGR rate. Efficiency performance is assessed against the reference power cycle with nitrogen dilution. All EGR options are shown to represent an efficiency improvement. Nitrogen dilution is found to have a 1.3% efficiency cost. Although all EGR options investigated offer an improvement dry EGR is considered as the preferred option despite the need for higher EGR rate as compared with the wet EGR. The efficiency gain is calculated to be of 1% compared with the reference case.
Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways
Jul 2016
Publication
Power-to-gas is a promising option for storing interment renewables nuclear baseload power and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways” including Power to Hydrogen Power to Natural Gas End-users Power to Renewable Content in Petroleum Fuel Power to Power Seasonal Energy Storage to Electricity Power to Zero Emission Transportation Power to Seasonal Storage for Transportation Power to Micro grid Power to Renewable Natural Gas (RNG) to Pipeline (“Methanation”) and Power to Renewable Natural Gas (RNG) to Seasonal Storage. In order to compare the different pathways the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems
Differentiating Gas Leaks from Normal Appliance Use
Jun 2021
Publication
DNV has carried out an investigation into potential uses for smart gas meter data as part of Phase 1 of the Modernising Energy Data Applications competition as funded by UK Research & Innovation. In particular a series of calculations have been carried out to investigate the possibility of differentiating accidental gas leaks from normal appliance use in domestic properties. This is primarily with the aim of preventing explosions but the detection of leaks also has environmental and financial benefits.
Three gases have been considered in this study:
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Three gases have been considered in this study:
- A representative UK natural gas composition.
- A blend of 80% natural gas and 20% hydrogen.
- Pure hydrogen.
- Small holes of up to 1 mm rarely reach flammable gas/air concentrations for any gas except under the most unfavourable conditions such as small volumes combined with low ventilation rates. These releases would likely be detected within 6 to 12 hours.
- Medium holes between 1 mm and 6 mm give outflow rates equivalent to a moderate to high level of gas use by appliances. The ability to detect these leaks is highly dependent on the hole size the time at which the leak begins and the normal gas use profile in the building. The larger leaks in this category would be detected within 30 to 60 minutes while the smaller leaks could take several hours to be clearly differentiated from appliance use. This is quick enough to prevent some explosions.
- Large holes of over 6 mm give leak rates greater than any gas use by appliances. These releases rapidly reach a flammable gas/air mixture in most cases but would typically be detected within the first 30-minute meter output period. Again some explosions could be prevented in this timescale.
An examination of detailed historical incident information suggests that the explosions that lead to fatalities or significant damage to houses are typically of the type that would be more likely to be detected and prevented. It is estimated that between 25% and 75% of the more severe explosions could be prevented depending on which potential improvements are implemented.
Based on the conservative estimates of explosion prevention a cost benefit analysis suggests that it is justifiable to spend between around £1 and £10 per meter installed to implement the proposed technology. This is based purely on lives saved and does not take account of other benefits.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Materials for Hydrogen Storage
Aug 2003
Publication
Hydrogen storage is a materials science challenge because for all six storage methods currently being investigated materials with either a strong interaction with hydrogen or without any reaction are needed. Besides conventional storage methods i.e. high pressure gas cylinders and liquid hydrogen the physisorption of hydrogen on materials with a high specific surface area hydrogen intercalation in metals and complex hydrides and storage of hydrogen based on metals and water are reviewed.
Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry
Nov 2021
Publication
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining “green hydrogen”. The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
Read the Executive Summary here at the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
Read the Executive Summary here at the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Impact Assessment of Hydrogen on Transmission Pipeline BPDs in IGEM/TD/1
Jul 2021
Publication
As part of the LTS Futures HyTechnical project IGEM requested that DNV GL undertake an assessment of the possible impact of hydrogen transmission on BPDs to support the development of supplements to the existing suite of natural gas standards to accommodate the possible future use of hydrogen. The current state of knowledge of the behaviour of large scale high pressure hydrogen releases is limited in comparison with the considerable body of data from research and operational experience of natural gas but is adequate to undertake an impact assessment to take account of the different gas outflow and fire characteristics of 100% hydrogen vs. natural gas.<br/>Calculations of the BPDs for 100% hydrogen pipeline fires on an equivalent basis to those in IGEM/TD/1 for natural gas have been performed with a degree of confidence in the results and demonstrated that the equivalent BPDs for 100% hydrogen are approximately 10% smaller than for natural gas. The results are presented graphically in this report.<br/>However hydrogen introduces the potential for substantially higher overpressures than natural gas due to the higher flame speed and wider flammable limits if delayed ignition is a credible event. The overpressure estimates presented in this report are intended to be scoping calculations to put the likely overpressures into context. The results suggest that significant overpressures are possible at the BPDs but there is a lack of evidence to support the estimation of the overpressures following delayed ignition of a large turbulent hydrogen release in the open (in contrast to explosions in confined or congested regions) and there is a high degree of uncertainty in the predictions presented here. It is therefore recommended that large scale pipeline rupture experiments are performed similar to those undertaken previously for hydrogen natural gas and natural gas/hydrogen mixtures but with ignition engineered to take place after a short delay in order to measure the overpressures and provide the means to validate or refine the predictions made.<br/>The analysis has highlighted limitations in the original method of calculating BPDs in IGEM/TD/1 which reflects the techniques available at the time approximately 40 years ago. Since then understanding of the hazards from pipeline failures and the ability to model the consequences and predict the associated risks to people in the surrounding area have advanced very considerably facilitated by software tools and documented in standards such as IGEM/TD/2. These methods allow the highly transient nature of a high pressure gas pipeline rupture release to be modelled more accurately and for the thermal effects of fires on people and buildings to be calculated taking account of the time-varying thermal dose.<br/>For these reasons a simple comparison of the possible overpressure effects of delayed ignition of a 100% hydrogen release at the BPDs can be misleading and implies that the overpressure hazards could be more severe than those for fires which may not be the case. Example calculations have been performed for a representative pipeline case which indicate that using current methods the predicted thermal hazard distances for 100% hydrogen pipeline fires (house burning and escape for people) are substantially greater than those estimated for overpressures following delayed ignition for similar levels of vulnerability. This report addresses buried pipelines only – the potential for more severe explosion overpressure effects for hydrogen releases may be more significant for Above Ground Installations (AGIs) especially where congestion or confinement may be present. It is recommended that similar studies are conducted to quantify the effect of hydrogen conversion on the consequences and risks associated with hydrogen releases at AGIs.<br/>Finally it is stressed that the analysis in this report does not consider the relative risks for 100% hydrogen and the equivalent natural gas pipelines. There remain uncertainties in the failure frequencies for steel pipelines transporting hydrogen and particularly the probability of immediate and delayed ignition. The likelihood of delayed ignition of a large turbulent high pressure hydrogen gas pipeline rupture release may be very low due to the wider flammability limits and lower minimum ignition energy for hydrogen compared with natural gas. Additional research is currently ongoing or planned to address the gaps in knowledge for 100% hydrogen which should allow more robust comparisons of the relative risks to be made in the future.
Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems
Nov 2020
Publication
Many countries consider hydrogen as a promising energy source to resolve the energy challenges over the global climate change. However the potential of hydrogen explosions remains a technical issue to embrace hydrogen as an alternate solution since the Hindenburg disaster occurred in 1937. To ascertain safe hydrogen energy systems including production storage and transportation securing the knowledge concerning hydrogen flammability is essential. In this paper we addressed a comprehensive review of the studies related to predicting hydrogen flammability by dividing them into three types: experimental numerical and analytical. While the earlier experimental studies had focused only on measuring limit concentration recent studies clarified the extinction mechanism of a hydrogen flame. In numerical studies the continued advances in computer performance enabled even multi-dimensional stretched flame analysis following one-dimensional planar flame analysis. The different extinction mechanisms depending on the Lewis number of each fuel type could be observed by these advanced simulations. Finally historical attempts to predict the limit concentration by analytical modelling of flammability characteristics were discussed. Developing an accurate model to predict the flammability limit of various hydrogen mixtures is our remaining issue.
Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus
Feb 2017
Publication
Electrifying transportation is a promising approach to alleviate climate change issues arising from increased emissions. This study examines a system for the production of hydrogen using renewable energy sources as well as its use in buses. The electricity requirements for the production of hydrogen through the electrolysis of water are covered by renewable energy sources. Fuel cells are being used to utilize hydrogen to power the bus. Exergy analysis for the system is carried out. Based on a steady-state model of the processes exergy efficiencies are calculated for all subsystems. The subsystems with the highest proportion of irreversibility are identified and compared. It is shown that PV panel has exergetic efficiency of 12.74% wind turbine of 45% electrolysis of 67% and fuel cells of 40%.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
Roadmap to Decarbonising European Shipping
Nov 2018
Publication
Shipping is one of the largest greenhouse gas (GHG) emitting sectors of the global economy responsible for around 1 Gt of CO2eq every year. If shipping were a country it would be the 6th biggest GHG emitter. EU related shipping is responsible for about 1/5 of global ship GHG emissions emitting on average 200 Mt/year. This report assesses potential technology pathways for decarbonising EU related shipping through a shift to zero carbon technologies and the impact such a move could have on renewable electricity demand in Europe. It also identifies key policy and sustainability issues that should be considered when analysing and supporting different technology options to decarbonise the maritime sector. The basis of the study is outbound journeys under the geographical scope of the EU ship MRV Regulation.
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
Validation of Flacs-Hydrogen CFD Consequence Prediction Model Against Large Scale H2 Explosion Experiments in the Flame Facility
Sep 2005
Publication
The FLACS CFD-tool for consequence prediction has been developed continuously since 1980. The initial focus was explosion safety on offshore oil platforms in recent years the tool is also applied to study dispersion hydrogen safety dust explosions and more. A development project sponsored by Norsk Hydro Statoil and Ishikawajima Heavy Industries (IHI) was carried out to improve the modelling and validation of hydrogen dispersion and explosions. In this project GexCon carried out 200 small-scale experiments on dispersion and explosion with H2 and mixtures with H2 and CO or N2. Experiments with varying confinement congestion concentration and ignition location were performed. Since the main purpose of the tests was to produce good validation data all tests were simulated with the FLACS-HYDROGEN tool. The simulations confirmed the ability to predict explosions effects for the wide range of scenarios studied. A few examples of comparisons will be shown. To build confidence in a consequence prediction model it is important that the scales used for validation are as close as possible to reality. Since the hazard to people and facilities and the risk will generally increase with scale validation against large-scale experiments is important. In the 1980s a series of large-scale explosion experiments with H2 was carried out in the Sandia FLAME facility and sponsored by the US Nuclear Regulatory Commission. The FLAME facility is a 30.5m x 1.83m x 2.44m channel tests were performed with H2 concentrations from 7% to 30% with varying degree of top venting (0% 13% and 50%) and congestion (with or without baffles blocking 33% of the channel cross-section). A wide range of flame speeds and overpressures were observed. Comparisons are made between FLACS simulations and FLAME tests. The main conclusion from this validation study is that the precision when predicting H2 explosion consequences with FLACS has been improved to a very acceptable level
Hydrogen Fuelling Station, CEP-Berlin – Safety Risk Assessment and Authority Approval Experience and Lessons Learned
Sep 2005
Publication
The CEP (Clean Energy Partnership) – Berlin is one of the most diversified hydrogen demonstration projects at present. The first hydrogen fuelling station serving 16 cars is fully integrated in an ordinary highly frequented Aral service station centrally located at Messedamm in Berlin. Hydro has supplied and is the owner of the electrolyser with ancillary systems. This unit produces gaseous hydrogen at 12 bar with use of renewable energy presently serving 13 of the cars involved. The CEP project is planned to run for a period of five years and is supported by the German Federal Government and is part of the German sustainability strategy. During the planning and design phase there have been done several safety related assessments and analyses:
- Hydro has carried out a HAZOP (HAZard and OPerability) analysis of the electrolyser and ancillary systems delivered by Hydro Electrolysers.
- Hydro arranged with support from the partners a HAZOP analysis of the interface between the electrolyser and the compressor an interface with two different suppliers on each side.
- A QRA (Quantitative Risk Assessment) of the entire fuelling station has been carried out.
- Hydro has carried out a quantitative explosion risk analysis of the electrolyser container supplied by Hydro Electrolysers.
Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review)
Nov 2021
Publication
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 wt% and 145–147 kg cm3 ). However the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 C–580 C) sluggish kinetics and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done mainly including: additives or catalysts doping nanoconfining Mg(BH4)2 in nanoporous hosts forming reactive hydrides systems multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride including: synthesis methods crystal structures decomposition behaviors as well as emphasized performance improvements for hydrogen storage.
World Energy Transitions Outlook: 1.5°C Pathway
Mar 2021
Publication
Dolf Gielen,
Ricardo Gorini,
Rodrigo Leme,
Gayathri Prakash,
Nicholas Wagner,
Luis Janeiro,
Sean Collins,
Maisarah Kadir,
Elisa Asmelash,
Rabia Ferroukhi,
Ulrike Lehr,
Xavier Garcia Casals,
Diala Hawila,
Bishal Parajuli,
Elizabeth Press,
Paul Durrant,
Seungwoo Kang,
Martina Lyons,
Carlos Ruiz,
Trish Mkutchwa,
Emanuele Taibi,
Herib Blanco,
Francisco Boshell,
Arina Anise,
Elena Ocenic,
Roland Roesch,
Gabriel Castellanos,
Gayathri Nair,
Barbara Jinks,
Asami Miketa,
Michael Taylor,
Costanza Strinati,
Michael Renner and
Deger Saygin
The World Energy Transitions Outlook preview outlines a pathway for the world to achieve the Paris Agreement goals and halt the pace of climate change by transforming the global energy landscape. This preview presents options to limit global temperature rise to 1.5°C and bring CO2 emissions closer to net zero by mid-century offering high-level insights on technology choices investment needs and the socio-economic contexts of achieving a sustainable resilient and inclusive energy future.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
Meeting CO2 reduction targets by 2050 will require a combination of: technology and innovation to advance the energy transition and improve carbon management; supportive and proactive policies; associated job creation and socio-economic improvements; and international co-operation to guarantee energy availability and access.
Among key findings:
- Proven technologies for a net-zero energy system already largely exist today. Renewable power green hydrogen and modern bioenergy will dominate the world of energy of the future.
- A combination of technologies is needed to keep us on a 1.5°C climate pathway. These include increasingly efficient energy production to ensure economic growth; decarbonised power systems that are dominated by renewables; increased use of electricity in buildings industry and transport to support decarbonisation; expanded production and use of green hydrogen synthetic fuels and feedstocks; and targeted use of sustainably sourced biomass.
- In anticipation of the coming energy transition financial markets and investors are already directing capital away from fossil fuels and towards other energy technologies including renewables.
- Energy transition investment will have to increase by 30% over planned investment to a total of USD 131 trillion between now and 2050 corresponding to USD 4.4 trillion on average every year.
- National social and economic policies will play fundamental roles in delivering the energy transition at the speed required to restrict global warming to 1.5°C.
This preview identifies opportunities to support informed policy and decision making to establish a new global energy system. Following this preview and aligned with the UN High-Level Dialogue process the International Renewable Energy Agency (IRENA) will release the full report which will provide a comprehensive vision and accompanying policy measures for the transition.
Public Acceptability of the Use of Hydrogen for Heating and Cooking in the Home: Results from Qualitative and Quantitative Research in UK<br/>Executive Summary
Nov 2018
Publication
This report for the CCC by Madano and Element Energy assesses the public acceptability of two alternative low-carbon technologies for heating the home: hydrogen heating and heat pumps.
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
These technologies could potentially replace natural gas in many UK households as part of the government’s efforts to decrease carbon emissions in the UK.
The report’s key findings are:
- carbon emissions reduction is viewed as an important issue but there is limited awareness of the need to decarbonise household heating or the implications of switching over to low-carbon heating technologies
- acceptability of both heating technologies is limited by a lack of perceived tangible consumer benefit which has the potential to drive scepticism towards the switch over more generally
- heating technology preferences are not fixed at this stage although heat pumps appear to be the favoured option in this research studythree overarching factors were identified as influencing preferences for heating technologies.
- perceptions of the negative installation burden
- familiarity with the lived experience of using the technologies for heating
- perceptions of how well the technologies would meet modern heating needs both hydrogen heating and heat pumps face significant challenges to secure public acceptability
Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters
Jun 2020
Publication
Power-to-gas technology plays a key role in the success of the energy transformation. This paper addresses issues related to the legal and technical regulations specifying the rules for adding hydrogen to the natural gas network. The main issue reviewed is the effects of the addition of hydrogen to natural gas on the durability of diaphragm gas meters. The possibility of adding hydrogen to the gas network requires confirmation of whether within the expected hydrogen concentrations long-term operation of gas meters will be ensured without compromising their metrological properties and operational safety. Methods for testing the durability of gas meters applied at test benches and sample results of durability tests of gas meters are presented. Based on these results a metrological and statistical analysis was carried out to establish whether the addition of hydrogen affects the durability of gas meters over time. The most important conclusion resulting from the conducted study indicates that for the tested gas meter specimens there was no significant metrological difference between the obtained changes of errors of indications after testing the durability of gas meters with varying hydrogen content (from 0% to 15%).
In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds
Aug 2021
Publication
This work discusses the design and demonstration of an in-situ test setup for testing pipeline steels in a high pressure gaseous hydrogen (H2 ) environment. A miniature hollow pipe-like tensile specimen was designed that acts as the gas containment volume during the test. Specific areas of the specimen can be forced to fracture by selective notching as performed on the weldment. The volume of H2 used was minimised so the test can be performed safely without the need of specialised equipment. The setup is shown to be capable of characterising Hydrogen Embrittlement (HE) in steels through testing an X60 pipeline steel and its weldment. The percentage elongation (%El) of the base metal was found to be reduced by 40% when tested in 100 barg H2 . Reduction of cross-sectional area (%RA) was found to decrease by 28% and 11% in the base metal and weld metal respectively when tested in 100 barg H2 . Benchmark test were performed at 100 barg N2 pressure. SEM fractography further indicated a shift from normal ductile fracture mechanisms to a brittle transgranular (TG) quasi-cleavage (QC) type fracture that is characteristic of HE.
Reducing UK Emissions Progress Report to Parliament
Jun 2020
Publication
This is the Committee’s 2020 report to Parliament assessing progress in reducing UK emissions over the past year. This year the report includes new advice to the UK Government on securing a green and resilient recovery following the COVID-19 pandemic. The Committee’s new analysis expands on its May 2020 advice to the UK Prime Minister in which it set out the principles for building a resilient recovery. In its new report the Committee has assessed a wide set of measures and gathered the latest evidence on the role of climate policies in the economic recovery. Its report highlights five clear investment priorities in the months ahead:
- Low-carbon retrofits and buildings that are fit for the future
- Tree planting peatland restoration and green infrastructure
- Energy networks must be strengthened
- Infrastructure to make it easy for people to walk cycle and work remotely
- Moving towards a circular economy.
- Reskilling and retraining programmes
- Leading a move towards positive behaviours
- Targeted science and innovation funding
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
UK Climate Action Following the Paris Agreement
Oct 2016
Publication
The Paris Agreement marks a significant positive step in global action to tackle climate change. This report considers the domestic actions the UK Government should take as part of a fair contribution to the aims of the Agreement.<br/>The report concludes that the Paris Agreement is a significant step forward in global efforts to tackle climate change. It is more ambitious in its aims to limit climate change than the basis of the UK’s existing climate targets. However it is not yet appropriate to set new UK targets. Existing targets are already stretching and the priority is to take action to meet them.
Hydrogen Production: State of Technology
May 2020
Publication
Presently hydrogen is for ~50% produced by steam reforming of natural gas – a process leading to significant emissions of greenhouse gas (GHG). About 30% is produced from oil/naphtha reforming and from refinery/chemical industry off-gases. The remaining capacity is covered for 18% from coal gasification 3.9% from water electrolysis and 0.1% from other sources. In the foreseen future hydrogen economy green hydrogen production methods will need to supply hydrogen to be used directly as fuel or to generate synthetic fuels to produce ammonia and other fertilizers (viz. urea) to upgrade heavy oils (like oil sands) and to produce other chemicals. There are several ways to produce H2 each with limitations and potential such as steam reforming electrolysis thermal and thermo-chemical water splitting dark and photonic fermentation; gasification and catalytic decomposition of methanol. The paper reviews the fundamentals and potential of these alternative process routes. Both thermo-chemical water splitting and fermentation are marked as having a long term but high "green" potential.
Optimal Operation of the Hydrogen-based Energy Management System with P2X Demand Response and Ammonia Plant
Jul 2021
Publication
Hydrogen production is the key in utilizing an excess renewable energy. Many studies and projects looked at the energy management systems (EMSs) that allow to couple hydrogen production with renewable generation. In the majority of these studies however hydrogen demand is either produced for powering fuel cells or sold to the external hydrogen market. Hydrogen demand from actual industrial plants is rarely considered. In this paper we propose an EMS based on the industrial cluster of GreenLab Skive (GLS) that can minimize the system’s operational cost or maximize its green hydrogen production. EMS utilizes a conventional and P2X demand response (DR) flexibility from electrolysis plant hydrogen storage tank electric battery and hydrogen-consuming plants to design the optimal schedule with maximized benefits. A potential addition to the existing components at GLS - an ammonia plant is modelled to identify its P2X potential and assess the economic viability of its construction. The results show a potential reduction of 51.5–61.6% for the total operational cost of the system and an increase of the share of green hydrogen by 10.4–37.6% due to EMS operation.
CFD Simulation Study to Investigate the Risk from Hydrogen Vehicles in Tunnels
Sep 2007
Publication
When introducing hydrogen-fuelled vehicles an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly and not lead to any significant explosion hazard. The situation may be different for more confined situations such as parking garages workshops or tunnels. Experiments and computer modelling are both important for understanding the situation better. This paper reports a simulation study to examine what if any is the explosion risk associated with hydrogen vehicles in tunnels. Its aim was to further our understanding of the phenomena surrounding hydrogen releases and combustion inside road tunnels and furthermore to demonstrate how a risk assessment methodology developed for the offshore industry could be applied to the current task. This work is contributing to the EU Sixth Framework (Network of Excellence) project HySafe aiding the overall understanding that is also being collected from previous studies new experiments and other modelling activities. Releases from hydrogen cars (containing 700 bar gas tanks releasing either upwards or downwards or liquid hydrogen tanks releasing only upwards) and buses (containing 350 bar gas tanks releasing upwards) for two different tunnel layouts and a range of longitudinal ventilation conditions have been studied. The largest release modelled was 20 kg H2 from four cylinders in a bus (via one vent) in 50 seconds with an initial release rate around 1000 g/s. Comparisons with natural gas (CNG) fuelled vehicles have also been performed. The study suggests that for hydrogen vehicles a typical worst-case risk assessment approach assuming the full gas inventory being mixed homogeneously at stoichiometry could lead to severe explosion loads. However a more extensive study with more realistic release scenarios reduced the predicted hazard significantly. The flammable gas cloud sizes were still large for some of the scenarios but if the actual reactivity of the predicted clouds is taken into account very moderate worst-case explosion pressures are predicted. As a final step of the risk assessment approach a probabilistic QRA study is performed in which probabilities are assigned to different scenarios time dependent ignition modelling is applied and equivalent stoichiometric gas clouds are used to translate reactivity of dispersed nonhomogeneous clouds. The probabilistic risk assessment study is based on over 200 dispersion and explosion CFD calculations using the commercially available tool FLACS. The risk assessment suggested a maximum likely pressure level of 0.1-0.3 barg at the pressure sensors that were used in the study. Somewhat higher pressures are seen elsewhere due to reflections (e.g. under the vehicles). Several other interesting observations were found in the study. For example the study suggests that for hydrogen releases the level of longitudinal tunnel ventilation has only a marginal impact on the predicted risk since the momentum of the releases and buoyancy of hydrogen dominates the mixing and dilution processes.
Decarbonisation of Heat in Great Britain
Oct 2021
Publication
This study was conducted for a group of 15 clients in the public and private sectors interested in potential pathways for decarbonising residential heating and the impact of these pathways on the energy system. The ambition for all new heating installations to be low carbon from 2035 is essential to meeting the net zero target in 2050 and our study found that electricity demand for home heating is set to quadruple by 2050 as part of the shift away from gas-fired boilers.
The key findings from the study include:
The key findings from the study include:
- Phasing out natural gas boiler installations by 2035 is crucial for eliminating CO2 from home heating; delaying to 2040 could leave us with ¼ of today’s home heat emissions in 2050
- Achieving deployment of 600k heat pumps per year by 2028 will require policy intervention both to lower costs and to inform and protect consumers Almost £40bn could be saved in cumulative system costs by 2050 through adoption of more efficient and flexible electric heating technologies like networked heat pumps and storage
- Electricity demand from heating could quadruple by 2050 to over 100TWh per year almost a third of Great Britain’s current total annual electricity demand Using hydrogen for a share of heating could lower peak power demand although producing most of this hydrogen from electrolysis would raise overall power demand.
Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry
Apr 2017
Publication
This paper analyses some possible means by which renewable power could be integrated into the steel manufacturing process with techniques such as blast furnace gas recirculation (BF-GR) furnaces that utilize carbon capture a higher share of electrical arc furnaces (EAFs) and the use of direct reduced iron with hydrogen as reduction agent (H-DR). It is demonstrated that these processes could lead to less dependence on—and ultimately complete independence from—coal. This opens the possibility of providing the steel industry with power and heat by coupling to renewable power generation (sector coupling). In this context it is shown using the example of Germany that with these technologies reductions of 47–95% of CO2 emissions against 1990 levels and 27–95% of primary energy demand against 2008 can be achieved through the integration of 12–274 TWh of renewable electrical power into the steel industry. Thereby a substantial contribution to reducing CO2 emissions and fuel demand could be made (although it would fall short of realizing the German government’s target of a 50% reduction in power consumption by 2050).
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this work steam co-gasification of landfill waste with biochar or biomass was carried out in a lab-scale reactor. The effect of the fuel blending ratio was investigated by varying the auxiliary fuel content in the range of 15e35 wt%. Moreover co-gasification tests were carried out at temperatures between 800 and 1000°C. The results indicate that adding either biomass or biochar enhances the H2 yield where the latter accounts for the syngas with the highest H2 concentration. At 800°C the addition of 35 wt% biochar can enhance the H2 concentration from 38 to 54 vol% and lowering the tar yield from 0.050 to 0.014 g/g-fuel-daf. No apparent synergetic effect was observed in the case of biomass co-gasification which might cause by the high Si content of landfill waste. In contrast the H2 production increases non-linearly with the biochar share in the fuel which indicates that a significant synergetic effect occurs during co-gasification due to the reforming of tar over biochar. Increasing the temperature of biochar co-gasification from 800 to 1000°C elevates the H2 concentration but decreases the H2/CO ratio and increases the tar yield. Furthermore the addition of biochar also enhances the gasification efficiency as indicated by increased values of the energy yield ratio.
Hydrogen Onboard Storage: An Insertion of the Probabilistic Approach Into Standards & Regulations?
Sep 2005
Publication
The growing attention being paid by car manufacturers and the general public to hydrogen as a middle and long term energy carrier for automotive purpose is giving rise to lively discussions on the advantages and disadvantages of this technology – also with respect to safety. In this connection the focus is increasingly and justifiably so on the possibilities offered by a probabilistic approach to loads and component characteristics: a lower weight obliged with a higher safety level basics for an open minded risk communication the possibility of a provident risk management the conservation of resources and a better and not misleading understanding of deterministic results. But in the case of adequate measures of standards or regulations completion there is a high potential of additional degrees of freedom for the designers obliged with a further increasing safety level. For this purpose what follows deals briefly with the terminological basis and the aspects of acceptance control conservation of resources misinterpretation of deterministic results and the application of regulations/standards.<br/>This leads into the initial steps of standards improvement which can be taken with relatively simple means in the direction of comprehensively risk-oriented protection goal specifications. By this it’s not focused on to provide to much technical details. It’s focused on the context of different views on probabilistic risk assessment. As main result some aspects of the motivation and necessity for the currently running pre-normative research studies within the 6th frame-work program of the EU will be shown.
No more items...