Publications
From Pure H2 to H2-CO2 Mixtures: A Study of Reductant Strategies in Plasma Iron Smelting Reduction
Sep 2025
Publication
Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption but reduced plasma stability and limited conversion. CO2 addition enhances stability increasing gas temperature from approximately 1900 K (pure H2 ) to 2900 K at 50% CO2 driven by exothermic H2 oxidation. Particle rapidly reach gas temperature (>2000 K within 5 ms). The highest metallization degree (≈37%) achieved at 30% CO2 corresponds to an optimal reductant gas composition balancing hydrogen carbon monoxide and atomic hydrogen availability. Higher dilution (50% CO2 ) significantly decreased the reductant gas availability lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO2 co-feeding and regeneration optimize plasma stability temperature and reductant gas chemistry presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO2 closed loop.
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
Oct 2025
Publication
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides baseload preheating and isothermal holding while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heatintegration targets and duty splits; (ii) assessing scalability through high-pressure reactor design thermal management and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX incorporates carbon pricing and credits and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically linking molten media demonstrations catalyst development and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed recycle and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation thereby mitigating coking sintering and broad particle size distributions. Highpressure operation improves the hydrogen yield and equipment compactness but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price geothermal capacity factor and overall conversion and selectivity. Overall geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment.
A Systematic Review of Energy Recovery and Regeneration Systems in Hydrogen-Powered Vehicles for Deployment in Developing Nations
Aug 2025
Publication
Improving the efficiency and range of hydrogen-powered electric vehicles (HPEVs) is essential for their global adoption especially in developing countries with limited resources. This study systematically evaluates regenerative braking and suspension systems in HPEVs and proposes a deployment-focused framework tailored to the needs of developing nations. A comprehensive search was performed across multiple databases to identify relevant studies. The selected studies are screened assessed for quality and analyzed based on predefined criteria. The data is synthesized and interpreted to identify patterns gaps and conclusions. The findings show that regeneration systems such as regenerative braking and regenerative suspension are the most effective energy recovery systems in most electric and hydrogen-powered vehicles. Although the regenerative braking system (RBS) offers higher energy efficiency gains that enhance cost-effectiveness despite its high initial investment the regenerative suspension system (RSS) involves increased complexity. Still it offers comparatively efficient energy recovery particularly in developing countries with patchy road infrastructure. The gaps highlighted in this review will aid researchers and vehicle manufacturers in designing optimizing developing and commercializing HPEVs for deployment in developing countries.
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
Oct 2025
Publication
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation this review focuses on practical aspects of system development including propulsion architectures system- and component-level modeling approaches and energy management strategies. Key technologies in the future are examined with emphasis on aircraft power-demand prediction multi-timescale control and thermal integrated energy management. This review aims to serve as a reference for configuration design modeling and control simulation as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role the review presents a coherent guidance scheme from architectures through modeling to energy-management control with a practical roadmap toward flight-ready deployment.
Global Research Trends in Catalysis for Green Hydrogen Production from Wastewater: A Bibliometric Study (2010–2024)
Sep 2025
Publication
By turning a waste stream into a clean energy source green hydrogen generation from wastewater provides a dual solution to energy and environmental problems. This study presents a thorough bibliometric analysis of research trends in the field of green hydrogen generation from wastewater between 2010 and 2024. A total of 221 publications were extracted from Scopus database and VOSviewer (1.6.20) was used as a visualization tool to identify influential authors institutions collaborations and thematic focus areas. The analysis revealed a significant increase in research output with a peak of 122 publications in 2024 with a total of 705 citations. China had the most contributions with 60 publications followed by India (30) and South Korea (26) indicating substantial regional involvement in Asia. Keyword co-occurrence and coauthorship network mapping revealed 779 distinct keywords grouped around key themes like electrolysis hydrogen evolution reactions and wastewater treatment. Significantly this work was supported by contributions from 115 publication venues with the International Journal of Hydrogen Energy emerging as the most active and cited source (40 articles 539 citations). The multidisciplinary aspect of the area was highlighted by keyword co-occurrence analysis which identified recurring themes including electrolysis wastewater treatment and hydrogen evolution processes. Interestingly the most-cited study garnered 131 citations and discussed the availability of unconventional water sources for electrolysis. Although there is growing interest in the field it is still in its initial phases indicating a need for additional research particularly in developing countries. This work offers a basic overview for researchers and policymakers who are focused on promoting the sustainable generation of green hydrogen from wastewater.
Techno-economic Analysis of Green Hydrogen Storage in Salt Caverns: Evaluating Cycling Effects and Cavern Scaling on the Levelized Cost of Hydrogen Storage in Ireland's Power-to-X Landscape
Sep 2025
Publication
This paper examines the techno-economic feasibility of utilising salt caverns for large-scale hydrogen storage in Ireland leveraging wind energy and proton exchange membrane (PEM) electrolysers. The analysis focuses on optimising the integration of wind power with hydrogen production and storage addressing key challenges such as energy curtailment grid transmission constraints and renewable energy intermittency. Findings highlight significant economic considerations with a single hydrogen storage cavern requiring an initial investment of approximately €240 million where geological site preparation and compressor systems constitute the largest cost components. Annual operational expenses (OPEX) are estimated at €4.6 million largely due to compressor energy consumption and cooling requirements. The study emphasizes the critical impact of electrolyser scale on economic viability. Small-scale systems such as a 20 MW PEM electrolyser are economically unfeasible with a levelised cost of hydrogen (LCOH) of around €10/kg and filling times extending up to 2.5 years. However scaling up to a 200 MW PEM electrolyser dramatically improves cost efficiency lowering the LCOH to approximately €0.83/kg and reducing filling times to just 90 days. This research provides a comprehensive framework for hydrogen storage development offering key insights for policymakers and industry stakeholders to drive the renewable energy transition and enhance energy security through cost-effective and sustainable storage solutions.
Engineering Photocatalytic Membrane Reactors for Sustainable Energy and Environmental Applications
Oct 2025
Publication
Photocatalytic membrane reactors (PMRs) which combine photocatalysis with membrane separation represent a pivotal technology for sustainable water treatment and resource recovery. Although extensive research has documented various configurations of photocatalytic-membrane hybrid processes and their potential in water treatment applications a comprehensive analysis of the interrelationships among reactor architectures intrinsic physicochemical mechanisms and overall process efficiency remains inadequately explored. This knowledge gap hinders the rational design of highly efficient and stable reactor systems—a shortcoming that this review seeks to remedy. Here we critically examine the connections between reactor configurations design principles and cutting-edge applications to outline future research directions. We analyze the evolution of reactor architectures relevantreaction kinetics and key operational parameters that inform rational design linking these fundamentals to recent advances in solar-driven hydrogen production CO2 conversion and industrial scaling. Our analysis reveals a significant disconnect between the mechanistic understanding of reactor operation and the system-level performance required for innovative applications. This gap between theory and practice is particularly evident in efforts to translate laboratory success into robust and economically feasible industrial-scale operations. We believe that PMRs willrealize theirtransformative potential in sustainable energy and environmental applications in future.
High-Efficiency, Lightweight, and Reliable Integrated Structures—The Future of Fuel Cells and Electrolyzers
Oct 2025
Publication
The high efficiency light weight and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers as key components have structures and strengths that determine the efficiency of their power generation and the hydrogen production efficiency of electrolyzers. This article summarizes the evolution of membrane electrode and electrolyzer structures and their power and efficiency in recent years highlighting the significant role of integrated structures in promoting proton transport and enhancing performance. Finally it proposes the development direction of integrating electrolyte and electrode manufacturing using phase-change methods.
Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches
Apr 2023
Publication
The main component of the hydrogen production system is the electrolyzer (EL) which is used to convert electrical energy and water into hydrogen and oxygen. The power converter supplies the EL and the controller is used to ensure the global stability and safety of the overall system. This review aims to investigate and analyze each one of these components: Proton Exchange Membrane Electrolyzer (PEM EL) electrical modeling DC/DC power converters and control approaches. To achieve this desired result a review of the literature survey and an investigation of the PEM EL electrical modeling of the empirical and semi-empirical including the static and dynamic models are carried out. In addition other sub-models used to predict the temperature gas flow rates (H2 and O2 ) hydrogen pressure and energy efficiency for PEM EL are covered. DC/DC power converters suitable for PEM EL are discussed in terms of efficiency current ripple voltage ratio and their ability to operate in the case of power switch failure. This review involves analysis and investigation of PEM EL control strategies and approaches previously used to achieve control objectives robustness and reliability in studying the DC/DC converter-PEM electrolyzer system. The paper also highlights the online parameter identification of the PEM electrolyzer model and adaptive control issues. Finally a discussion of the results is developed to emphasize the strengths weaknesses and imperfections of the literature on this subject as well as proposing ideas and challenges for future work.
Unlocking Hydrogen's Potential: Prediction of Adsorption in Metal-organic Frameworks for Sustainable Energy Storage
Oct 2025
Publication
Accurately predicting hydrogen adsorption behavior is essential to developing efficient materials with storage capacities approaching those of liquid hydrogen and surpassing the performance of conventional compressed gas storage systems. Grand canonical Monte Carlo (GCMC) simulations accurately predict adsorption isotherms but are computationally expensive limiting large-scale material screening. We employ GPU-accelerated threedimensional classical density functional theory (DFT) based on the SAFT-VRQ Mie equation of state with a first-order Feynman–Hibbs correction to model hydrogen adsorption in [Zn(bdc)(ted)0.5] MOF-5 CuBTC and ZIF-8 at 30 K 50 K 77 K and 298 K. Our approach generates adsorption isotherms in seconds compared to hours for GCMC simulations with quantum corrections proving crucial for accurate low-temperature predictions. The results show good agreement with GCMC simulations and available experiments demonstrating classical DFT as a powerful tool for high-throughput material screening and optimizing hydrogen storage applications.
Performance Test of a Hydrogen-powered Solid Oxide Fuel Cell System and its Simulation for Vehicle Propulsion Application
Dec 2024
Publication
Solid oxide fuel cells (SOFC) have not received enough attention as a power source in the transportation sector. However with the development of the technology its advantages over other types of fuel cells such as fuel flexibility and high energy efficiency have made SOFC an interesting option. The present study aims at simulation and experimentally validation of the performance of a hydrogen-powered SOFC in an automotive application. A 6 kW SOFC stack is tested and its model is integrated into a series hybrid electric vehicle model. A fuzzy controller is designed to regulate the charging current between the battery and the SOFC in the vehicle model. Experimental tests are also conducted in a few cases on the SOFC based on the simulation results. The performance of the real SOFC stack is then analysed under dynamic loads to see how the desired current is provided in practice. The results demonstrate a good performance of the SOFC stack under variable load conditions.
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
Oct 2025
Publication
Environmental pollution caused by shipping has always received great attention from the international community. Currently due to the difficulty of fully electrifying medium- and large-scale ships the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships as well as the uncertainty of the output power of renewable energy units this paper proposes an improved design for an integrated power system for large cruise ships combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response as well as an energy storage power allocation method that considers the characteristics of energy storage devices is designed. A bi-level power capacity optimization model grounded in comprehensive scenario planning and aiming to optimize maximum return on equity is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs enhance revenue and increase the return on equity from 5.15% to 8.66%.
Open-Circuit Switch Fault Diagnosis and Accommodation of a Three-Level Interleaved Buck Converter for Electrolyzer Applications
Mar 2023
Publication
This article proposes a novel open-circuit switch fault diagnosis method (FDM) for a three-level interleaved buck converter (TLIBC) in a hydrogen production system based on the water electrolysis process. The control algorithm is suitably modified to ensure the same hydrogen production despite the fault. The TLIBC enables the interfacing of the power source (i.e. low-carbon energy sources) and electrolyzer while driving the hydrogen production of the system in terms of current or voltage. On one hand the TLIBC can guarantee a continuity of operation in case of power switch failures because of its interleaved architecture. On the other hand the appearance of a power switch failure may lead to a loss of performance. Therefore it is crucial to accurately locate the failure in the TLIBC and implement a fault-tolerant control strategy for performance purposes. The proposed FDM relies on the comparison of the shape of the input current and the pulse width modulation (PWM) gate signal of each power switch. Finally an experimental test bench of the hydrogen production system is designed and realized to evaluate the performance of the developed FDM and fault-tolerant control strategy for TLIBC during post-fault operation. It is implemented with a real-time control based on a MicroLabBox dSPACE (dSPACE Paderborn Germany) platform combined with a TI C2000 microcontroller. The obtained simulation and experimental results demonstrate that the proposed FDM can detect open-circuit switch failures in one switching period and reconfigure the control law accordingly to ensure the same current is delivered before the failure.
Optimum Blending Hydrogen Ratio in Spray Combustion to Reduce Emissions of Nitrogen Oxides
Sep 2025
Publication
This study examined the effects of adding hydrogen to flammable liquid fuel droplets on emissions. It was found that an optimal mixing ratio with hydrogen can reduce the amount of NO in the reaction zone which is the area where the primary combustion reactions occur. N-pentane is burnt in air enriched with different amounts of hydrogen and the effects of the amount of hydrogen in the air on the combustion and emission parameters are investigated numerically. The combustion is modelled with the PDF/mixture fraction and standard twoequation turbulence models and thermal NO models are used for this modelling. The determination of the optimum H2 blending ratio is evaluated after the estimation results. It is evident that the addition of H2 led to an increase in spray flame temperatures. As a result the addition of H2 increases the combustion performance of n-pentane. The emissions evaluation results show that a blending ratio of 20% H2 reduces CO emissions at the combustion’s reaction zone and also results in a decrease in the mixture fraction. There is an increase in NO emissions due to the increase in spray flame temperatures. Combustion under air conditions containing 20% H2 by volume resulted in the highest temperature levels reaching 2130 K while the reduced NO levels decreased to approximately 11.3%. The thermal NO model when combined with the combustion model provides a sufficient level of agreement with the experimental data.
Impact of Solar Thermal Energy and Calcium Looping Implementation on Biomass Gasification for Low-carbon Hydrogen Production
Sep 2025
Publication
In the search of low-carbon hydrogen production routes this study evaluates four biomass gasification processes: conventional steam gasification (CSG) sorption-enhanced gasification (SEG) and their solar-assisted variants (SSG and SSEG). The comparison focuses on three key aspects: hydrogen production overall energy efficiency (to H2 and power) and carbon capture potential (generation of a pure CO2 process stream for storage or utilization). For a realistic comparison a pseudo-equilibrium model of a double-bed gasifier was developed based on experimental correlations of char conversion under conventional and SEG conditions. The solar processes were designed for stable year-round operation considering seasonal weather variations by appropriately dimensioning the heliostat field and the thermal and chemical energy storage systems whose inventory dynamics were modelled. Both the gasifier and central solar tower models were rigorously validated with published data enhancing the reliability of the results. Solar-assisted configurations significantly outperform non-solar ones in hydrogen production with SSEG yielding 128 kg H2/ton biomassdaf compared to 90–95 kg for non-solar options. SEG demonstrates superior carbon capture potential (76 %) while solar-assisted systems achieve higher energy efficiency (67–73 % vs. 60–63 % for non-solar). These results underscore the potential of solar-assisted gasification for sustainable hydrogen production offering enhanced yields improved efficiency and substantial carbon capture capabilities. Future work will involve economic and environmental analysis to determine the best overall configuration.
Silicon Nanostructures for Hydrogen Generation and Storage
Oct 2025
Publication
Today hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution since it has a high energy capacity and does not emit carbon oxide when burned. However for the widespread application of hydrogen energy it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 ◦C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles porous Si and Si nanowires. Regardless of their size and surface chemistry the silicon nanocrystals interact with water/alcohol solutions resulting in their complete oxidation the hydrolysis of water and the generation of hydrogen. In addition porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally some recent applications including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases including brain ischemia–reperfusion injury Parkinson’s disease and hepatitis.
Analysis of Equipment Failures as a Contributor to Hydrogen Refuelling Stations Incidents
Oct 2025
Publication
Hydrogen is a sustainable clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However hydrogen’s inherent properties present a significant safety challenge and there have been several hydrogen incidents noted with severe impacts to people and assets reported from operational hydrogen refuelling stations worldwide. This paper presents the outcome of an analysis of hydrogen incidents that occurred at hydrogen refuelling stations. For this purpose the HIAD 2.1 and H2tool.org databases were used for the collection of hydrogen incidents. Forty-five incidents were reviewed and analysed to determine the frequent equipment failures in the hydrogen refuelling stations and the underlying causes. This study adopted a mixed research approach for the analysis of the incidents in the hydrogen refuelling stations. The analysis reveals that storage tank failures accounted for 40% of total reported incidents hydrogen dispenser failures accounted for 33% compressors accounted for 11% valves accounted for 9% and pipeline failures accounted for 7%. To enable the safe operation of hydrogen refuelling stations hazards must be understood effective barriers implemented and learning from past incidents incorporated into safety protocols to prevent future incidents.
New Insights into the Improvement of Hydrogen Embrittlement Resistance of Heat-treated Carbon Steels by Shot Peening
Oct 2025
Publication
The effectiveness of shot peening in suppressing hydrogen embrittlement (HE) of the heat-treated steels with different strength levels 790 MPa (115 ksi) and 930 MPa (135 ksi) was comprehensively investigated. A plastically deformed layer on the surface facilitated an increased number of dislocations and refined grain morphology. This hindered hydrogen transportation as confirmed by the results of electrochemical permeation exhibiting a decrease in the effective diffusion coefficient up to 47 %. The trapping behaviour of the steels scrutinized through Thermal Desorption Spectroscopy (TDS) proposed that dislocations are primary traps. Along with this residual compressive stresses (RCS) were introduced into the materials reaching a maximum of − 650 MPa and a depth of 250 μm. This prevented fracture of the steels under constant load in a plastic regime (1.05xYS) and 120 bar H2 environment. Slow Strain Rate Tensile (SSRT) tests indicated superior mechanical properties of the shot-peened steels under electrochemical charging reducing HE susceptibility by 15 %. Fracture morphology confirmed the protective nature of the plastically deformed layer highlighting a higher ductility of the fracture. RCS has been indicated as a determining factor in suppressing HE by shot peening regardless of the strength level of the steel.
Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach
Aug 2025
Publication
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources using an integrated multi-criteria decisionmaking approach that combines Proknow-C AHP and PROMETHEE. Eight alternatives were identified: full conversion to natural gas full conversion to biomass coal and natural gas hybridization coal and biomass hybridization electricity and hydrogen cogeneration coal and solar energy hybridization post-combustion carbon capture systems and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental structural technical technological economic and social) the most viable option was full conversion to natural gas (ϕ = +0.0368) followed by coal and natural gas hybridization (ϕ = +0.0257) and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction infrastructure reuse and cost efficiency. In contrast decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13 highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives.
What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future
Mar 2022
Publication
As highlighted by the recent roadmaps from the European Union and the United States water electrolysis is the most valuable high-intensity technology for producing green hydrogen. Currently two commercial low-temperature water electrolyzer technologies exist: alkaline water electrolyzer (A-WE) and proton-exchange membrane water electrolyzer (PEM-WE). However both have major drawbacks. A-WE shows low productivity and efficiency while PEM-WE uses a significant amount of critical raw materials. Lately the use of anion-exchange membrane water electrolyzers (AEM-WE) has been proposed to overcome the limitations of the current commercial systems. AEM-WE could become the cornerstone to achieve an intense safe and resilient green hydrogen production to fulfill the hydrogen targets to achieve the 2050 decarbonization goals. Here the status of AEM-WE development is discussed with a focus on the most critical aspects for research and highlighting the potential routes for overcoming the remaining issues. The Review closes with the future perspective on the AEM-WE research indicating the targets to be achieved.
No more items...