Publications
Experimental Study of Cycle-by-cycle Variations in a Spark Ignition Internal Combustion Engine Fueled with Hydrogen
Feb 2024
Publication
High fluctuations in the combustion process from one cycle to another referred to as cycle-by-cycle variations can have adverse effects on internal combustion engine performances particularly in spark ignition (SI) engines. These effects encompass incomplete combustion the potential for misfires and adverse impacts on fuel economy. Furthermore the cycle-by-cycle variations can also affect a vehicle’s drivability and overall comfort especially when operating under lean-burn conditions. Although many cycle-by-cycle analyses have been investigated extensively in the past there is limited in-depth knowledge available regarding the causes of cycle-by-cycle (CbC) variations in hydrogen lean-burn SI engines. Trying to contribute to this topic the current study presents a comprehensive analysis of the CbC variations based on the cylinder pressure data. The study was carried out employing a hydrogen single-cylinder research SI engine. The experiments were performed by varying more than fifty operating conditions including the variations in lambda spark advance boost pressure and exhaust gas recirculation however the load and speed were kept constant throughout the experimental campaign. The results indicate that pressure exhibits significant variations during the combustion process and minor variations during non-combustion processes. In the period from the inlet valve close till the start of combustion pressure exhibits the least variations. The coefficient of variation of pressure (COVP) curve depicts three important points in H2-ICE as well: global minima global maxima and second local minima. The magnitude of the COVP curve changes across all the operating conditions however the shape of the COVP curve remains unchanged across all the operating conditions indicating its independence from the operating condition in an H2-ICE. This study presents an alternative approach for a quick combustion analysis of hydrogen engines. Without the need for more complex methodologies like heat release rate analysis the presented cylinder pressure cycle-by-cycle analysis enables a quick and precise identification of primary combustion features (start of combustion center of combustion end of combustion and operation condition stability). Additionally the engine control unit could implement these procedures to automatically adjust cycle-by-cycle variations therefore increasing engine efficiency.
Socio-environmental and Technical Factors Assessment of Photovoltaic Hydrogen Production in Antofagasta, Chile
Apr 2024
Publication
This study introduces a method for identifying territories ideal for establishing photovoltaic (PV) plants for green hydrogen (GH2 ) production in the Antofagasta region of northern Chile a location celebrated for its outstanding solar energy potential. Assessing the viability of PV plant installation necessitates a balanced consideration of technical aspects and socio-environmental constraints such as the proximity to areas of ecological importance and indigenous communities to identify potential zones for solar and non-conventional renewable energy (NCRE)-based hydrogen production. To tackle this challenge we propose a methodology that utilizes geospatial analysis integrating Geographic Information System (GIS) tools with sensitivity analysis to determine the most suitable sites for PV plant installation in the Antofagasta region. Our geospatial analysis employs the QGIS software to identify these optimal locations while sensitivity analysis uses the Sørensen–Dice coefficient method to assess the similarity among chosen socio-environmental variables. Applying this methodology to the Antofagasta region reveals that a significant area within a 15 km radius of existing road networks and electrical substations is favorable for photovoltaic projects. Our sensitivity analysis further highlights the limiting effects of socio-environmental factors and their interactions. Moreover our research finds that enlarging areas of socio-environmental importance could increase the total hydrogen production by about 10% per commune indicating the impact of these factors on the potential for renewable energy production.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
Nuclear Enabled Hydrogen CO-generation: Safety and Regulatory Insight
Sep 2023
Publication
National Nuclear Laboratory (NNL) is aiming to demonstrate through a research and development programme that nuclear enabled hydrogen can be used to support future clean energy systems. Demonstrating the safe operation of hydrogen facilities co-generating with a nuclear reactor will be key to enabling the deployment and success of nuclear enabled hydrogen technologies in the future. During the deployment continuity of supply will be paramount and possibly requires inter-seasonal storage. Co-generation is a means of using a source of energy in this case a nuclear reactor to efficiently produce power and thermal energy. Since a great deal of the heat energy is lost to the environment in a power plant making use of wasted energy for other useful output like the production of hydrogen and direct heating would be advantageous to plant economics and energy system flexibility. The civil nuclear industry is regulated around the world. This approach ensures that all the activities related to the production of power from nuclear and the hazards associated with ionising radiation are controlled in a manner which protects workers members of the public property and the environment. Nuclear safety assessments follow a rigorous process and are required as part of the Nuclear Site Licence. A fundamental requirement which is cited in the UK legislation is that the risks associated with all activities at the licensed site be reduced to As Low As Reasonably Practicable (ALARP). The principle places a requirement on duty holders to implement measures to reduce risk where doing so is considered reasonable and proportionate. The inclusion of risks for hazardous materials associated with the hydrogen production facilities need to be considered and this requires harmonisation of two different safety and regulatory governance regimes which have not previously interacted in this way. The safety demonstration for nuclear facilities is provided through the Safety Case.
Methodology for Consequence-based Setback Distance Calculations for Bulk Liquid Hydrogen Storage Systems
Sep 2023
Publication
Updates to the separation distances between different exposures and bulk liquid hydrogen systems are included in the 2023 version of NFPA 2: Hydrogen Technologies Code. This work details the models and calculations leading to those distances. The specific models used including the flow of liquid hydrogen through an orifice within the Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) toolkit are described and discussed to emphasize challenges specific to liquid hydrogen systems. Potential hazards and harm affecting individual exposures (e.g. ignition sources air intakes) for different unignited concentrations overpressures and heat flux levels were considered and exposures were grouped into three bins. For each group the distances to a specific hazard criteria (e.g. heat flux level) for a characteristic leak size informed by a risk-analysis led to a hazard distance. The maximum hazard distance within each group was selected to determine a table of separation distances based on internal pressure and pipe size rather than storage volume similar to the bulk gaseous separation distance tables in NFPA 2. The new separation distances are compared to the previous distances and some implications of the updated distances are given.
Production of Hydrogen Energy from Graphene-based Catalytic Technologies
Jul 2025
Publication
This comprehensive review aims at investigating graphene-based technologies in boosting hydrogen production via three methods including electrocatalysis photocatalysis and plasma-assisted reforming. Graphene stands out as an excellent catalytic material due to its exceptional attributes which include large surface area exceptional electrical and thermal conductivity adjustable electronic properties and outstanding mechanical strength. The research explores graphene’s contributions to hydrogen evolution through three main strategies including lowering energy barriers escalation of active sites and enhanced electrical charge transport. The study also focuses on graphene’s performance when functionalized with metal catalysts and heteroatoms enhancing its capability in charge separation and absorption of light during photocatalysis. The application of plasma to graphene improves catalytic reaction in hydrogen production with improved resistance to energy consumption. Large-scale industrial adoption of this technology remains restricted in terms production cost synthesis scalability and environmental safety issues. The research suggests an outlook for enhancing production technologies improving process sustainability and tackling scale-up technology to boost graphene’s incorporation into green and effective hydrogen energy production.
Lifetime Design, Operation, and Cost Analysis for the Energy System of a Retrofitted Cargo Vessel with Fuel Cells and Batteries
Oct 2024
Publication
Fuel cell-battery electric drivetrains are attractive alternatives to reduce the shipping emissions. This research focuses on emission-free cargo vessels and provides insight on the design lifetime operation and costs of hydrogen-hybrid systems which require further research for increased utilization. A representative round trip is created by analysing one-year operational data based on load ramps and power frequency. A low-pass filter controller is employed for power distribution. For the lifetime cost analysis 14 scenarios with varying capital and operational expenses were considered. The Net Present Value of the retrofitted fuel cell-battery propulsion system can be up to $ 2.2 million lower or up to $ 18.8 million higher than the original diesel mechanical configuration highly dependent on the costs of green hydrogen and carbon taxes. The main propulsion system weights and volumes of the two versions are comparable but the hydrogen tank (68 tons 193 m3 ) poses significant design and safety challenges.
A New Dimensionless Number for Type IV Composite Pressure Vessel Designer to Increase Efficiency and Reduce Cost
Sep 2023
Publication
A new dimensionless number (DN) is proposed in order to evaluate the performance of a high-pressure vessel composite structure. It shows that very few composite part is used at its maximum loading potential during bursting. Today for 70 MPa on-board type IV composite tanks DN values close to 20%. The suggested DN will be a useful indicator for an industrial application. By maximizing the DN at the design phase it is possible to minimize the mass of the composite structure of a CPV to reduce the manufacturing time and cost. To increase the DN as close as possible to 100% it is necessary to succeed in increasing the overall loading of the composite structure to have better oriented fibre. For this it seems necessary to find new processes which make it possible to better orient the fibre.
Effect of Wall Friction on Shock-flame Interactions in a Hydrogen-air Mixture
Sep 2023
Publication
Shock-flame interactions (SFI) occur in a variety of combustion scenarios of scientific and engineering interest which can distort the flame extend the flame surface area and subsequently enhance heat release. This process is dominated by Richtmyer-Meshkov instability (RMI) that features the perturbation growth of a density-difference interface (flame) after the shock passage. The main mechanism of RMI is the vorticity deposition results from a misalignment between pressure and density gradients. This paper focuses on the multi-dimensional interactions between shock wave and flame in a hydrogen-air mixture. The simulations of this work were conducted by solving three-dimensional fully-compressible reactive Navier-Stokes equations using a high-order numerical method on a dynamically adapting mesh. The effect of wall friction on the SFI was examined by varying wall boundary condition (free-slip/no-slip) on sidewall. The results show that the global flame perturbation grows faster with the effect of wall friction in the no-slip case than that in the free-slip case in the process of SFI. Two effects of wall friction on SFI were found: (1) flame stretching close to the no-slip wall and (2) damping of local flame perturbation at the no-slip wall. The flame stretch effect leads to a significantly higher growth rate in the global flame perturbation. By contrast the damping effect locally moderates the flame perturbation induced by RMI in close proximity to the no-slip wall because less vorticity is deposited on this part of flame during SFI.
Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage
Jul 2024
Publication
The circular economy and the clean-energy transition are inextricably linked and interdependent. One of the most important areas of the energy transition is the development of hydrogen energy. This study aims to review and systematize the data available in the literature on the environmental and economic parameters of hydrogen storage and transportation technologies (both mature and at high technological readiness levels). The study concluded that salt caverns and pipeline transportation are the most promising methods of hydrogen storage and transportation today in terms of a combination of all parameters. These methods are the most competitive in terms of price especially when transporting hydrogen over short distances. Thus the average price of storage will be 0.35 USD/kg and transportation at a distance of up to 100 km is 0.3 USD/kg. Hydrogen storage underground in a gaseous state and its transportation by pipelines have the least consequences for the environment: emissions and leaks are insignificant and there is no environmental pollution. The study identifies these methods as particularly viable given their lower environmental impact and potential for seamless integration into existing energy systems therefore supporting the transition to a more sustainable and circular economy.
Public Perception of Hydrogen: Response to an Open-ended Questions
Sep 2023
Publication
Widespread use of hydrogen and hydrogen-based fuels as energy carriers in society may enable the gradual replacement of fossil fuels by renewable energy sources. Although the development and deployment of the associated technologies and infrastructures represent a considerable bottleneck it is generally acknowledged that neither the technical feasibility nor the economic viability alone will determine the extent of the future use of hydrogen as an energy carrier. Public perception beliefs awareness and knowledge about hydrogen will play a significant role in the further development of the hydrogen economy. To this end the present study examines public perception and awareness of hydrogen in Norway. The approach adopted entailed an open-ended question examining spontaneous associations with the term ‘hydrogen’. The question was fielded to 2276 participants in Wave 25 of the Norwegian Citizen Panel (NCP) an on-line panel that derives random samples from the general population registry. The analysis focused on classifying the responses into negative associations (i.e. barriers towards widespread implementation of hydrogen in society) neutral associations (e.g. basic facts) and positive associations (i.e. drivers towards widespread implementation of hydrogen in society). Each of the 2194 responses were individually assessed by five researchers. The majority of the responses highlighted neutral associations using words such as ‘gas’ ‘water’ and ‘element’. When considering barriers vs. drivers the overall responses tend towards positive associations. Many respondents perceive hydrogen as a clean and environmentally friendly fuel and hydrogen technologies are often associated with the future. The negative sentiments were typically associated with words such as ‘explosive’ ‘hazardous’ and ‘expensive’. Despite an increase in the mentioning of safety-related properties relative to a previous study in the same region the frequency of such references was rather low (4%). The responses also reveal various misconceptions such as hydrogen as a prospective ‘source’ of clean energy.
Economics of Renewable Hydrogen Production Using Wind and Solar Energy: A Case Study for Queensland, Australia
Dec 2023
Publication
This study presents a technoeconomic analysis of renewables-based hydrogen production in Queensland Australia under Optimistic Reference and Pessimistic scenarios to address uncertainty in cost predictions. The goal of the work was to ascertain if the target fam-gate cost of AUD 3/kg (approx. USD 2/kg) could be reached. Economies of scale and the learning rate concept were factored into the economic model to account for the effect of scale-up and cost reductions as electrolyser manufacturing capacity grows. The model assumes that small-scale to large-scale wind turbine (WT)-based and photovoltaic (PV)-based power generation plants are directly coupled with an electrolyser array and utilises hourly generation data for the Gladstone hydrogen-hub region. Employing first a commonly used simplified approach the electrolyser array was sized based on the maximum hourly power available for hydrogen production. The initial results indicated that scale-up is very beneficial: the levelised cost of green hydrogen (LCOH) could decrease by 49% from $6.1/kg to $3.1/kg when scaling PV-based plant from 10 MW to 1 GW and for WT-based plant by 36% from $5.8/kg to $3.7/kg. Then impacts on the LCOH of incorporating curtailment of ineffective peak power and electrolyser overload capacity were investigated and shown to be significant. Also significant was the beneficial effect of recognising that electrolyser efficiency depends on input power. The latter two factors have mostly been overlooked in the literature. Incorporating in the model the influence on the LCOH of real-world electrolyser operational characteristics overcomes a shortcoming of the simplified sizing method namely that a large portion of electrolyser capacity is under-utilised leading to unnecessarily high values of the LCOH. It was found that AUD 3/kg is achievable if the electrolyser array is properly sized which should help to incentivise large-scale renewable hydrogen projects in Australia and elsewhere.
Conceptual Design of a Hydrogen-Hybrid Dual-Fuel Regional Aircraft Retrofit
Jan 2024
Publication
A wide range of aircraft propulsion technologies is being investigated in current research to reduce the environmental impact of commercial aviation. As the implementation of purely hydrogenpowered aircraft may encounter various challenges on the airport and vehicle side combined hydrogen and kerosene energy sources may act as an enabler for the first operations with liquid hydrogen propulsion technologies. The presented studies describe the conceptual design of such a dual-fuel regional aircraft featuring a retrofit derived from the D328eco under development by Deutsche Aircraft. By electrically assisting the sustainable aviation fuel (SAF) burning conventional turboprop engines with the power of high-temperature polymer-electrolyte fuel cells the powertrain architecture enables a reduction of SAF consumption. All aircraft were modeled and investigated using the Bauhaus Luftfahrt Aircraft Design Environment. A description of this design platform and the incorporated methods to model the hydrogen-hybrid powertrain is given. Special emphasis was laid on the implications of the hydrogen and SAF dual-fuel system design to be able to assess the potential benefits and drawbacks of various configurations with the required level of detail. Retrofit assumptions were applied particularly retaining the maximum takeoff mass while reducing payload to account for the propulsion system mass increase. A fuel cell power allocation of 20% led to a substantial 12.9% SAF consumption decrease. Nonetheless this enhancement necessitated an 18.1% payload reduction accompanied by a 34.5% increment in propulsion system mass. Various additional studies were performed to assess the influence of the power split. Under the given assumptions the design of such a retrofit was deemed viable.
Techno-economic Analysis of Territorial Case Studies for the Integration of Biorefineries and Green Hydrogen
Nov 2024
Publication
To achieve sustainable development the transition from a fossil-based economy to a circular economy is essential. The use of renewable energy sources to make the overall carbon foot print more favorable is an important pre-requisite. In this context it is crucial to valorize all renewable resources through an optimized local integration. One opportunity arises through the synergy between bioresources and green hydrogen. Through techno-economic assessments this work analyzes four local case studies that integrate bio-based processes with green hydrogen produced via electrolysis using renewable energy sources. An analysis of the use of webGIS tools (i.e. Atlas of Biorefineries of IEA Bioenergy) to identify existing biorefineries that require hydrogen in relation to territories with a potential availability of green hydrogen has never been conducted before. This paper provides an evaluation of the production costs of the target products as a function of the local green hydrogen supply costs. The results revealed that the impact of green hydrogen costs could vary widely ranging from 1% to 95% of the total production costs depending on the bio-based target product evaluated. Additionally hydrogen demand in the target area could require an installed variable renewable energy capacity of 20 MW and 500 MW. On the whole the local integration of biorefineries and green hydrogen could represent an optimal opportunity to make hydrogenated bio-based products 100% renewable.
H2-powered Aviation - Design and Economics of Green LH2 Supply for Airports
Aug 2023
Publication
The economic competitiveness of hydrogen-powered aviation highly depends on the supply costs of green liquid hydrogen to enable true-zero CO2 flying. This study uses non-linear energy system optimization to analyze three main liquid hydrogen (LH2) supply pathways for five locations. Final liquid hydrogen costs at the dispenser supply costs could reach 2.04 USD/kgLH2 in a 2050 base case scenario for locations with strong renewable energy source conditions. This could lead to cost-competitive flying with hydrogen. Reflecting techno-economic uncertainties in two additional scenarios the liquid hydrogen cost span at all five airport locations ranges between 1.37–3.48 USD/kgLH2 if hydrogen import options from larger hydrogen markets are also available. Import setups are of special importance for airports with a weaker renewable energy source situation e.g. selected Central European airports. There on-site supply might not only be too expensive but space requirements for renewable energy sources could be too large for feasible implementation in densely populated regions. Furthermore main costs for liquid hydrogen are caused by renewable energy sources electrolysis systems and liquefaction plants. Seven detailed design rules are derived for optimized energy systems for these and the storage components. This and the cost results should help infrastructure planners and general industry and policy players prioritize research and development needs
The Development of a Green Hydrogen Economy: Review
Jun 2024
Publication
Building a hydrogen economy is perceived as a way to achieve the decarbonization goals set out in the Paris Agreement to limit global warming as well as to meet the goals resulting from the European Green Deal for the decarbonization of Europe. This article presents a literature review of various aspects of this economy. The full added value chain of hydrogen was analyzed from its production through to storage transport distribution and use in various economic sectors. The current state of knowledge about hydrogen is presented with particular emphasis on its features that may determine the positives and negatives of its development. It was noted that although hydrogen has been known for many years its production methods are mainly related to fossil fuels which result in greenhouse gas emissions. The area of interest of modern science is limited to green hydrogen produced as a result of electrolysis from electricity produced from renewable energy sources. The development of a clean hydrogen economy is limited by many factors the most important of which are the excessive costs of producing clean hydrogen. Research and development on all elements of the hydrogen production and use chain is necessary to contribute to increasing the scale of production and use of this raw material and thus reducing costs as a result of the efficiencies of scale and experience gained. The development of the hydrogen economy will be related to the development of the hydrogen trade and the centers of this trade will differ significantly from the current centers of energy carrier trade.
Fuel Cell-based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects
Aug 2023
Publication
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) whose exhaust pipes emit nothing are examples of zero-emission automobiles. FCEVs should be considered an additional technology that will help battery-powered vehicles to reach the aspirational goal of zero-emissions electric mobility particularly in situations where the customers demand for longer driving ranges and where using batteries would be insufficient due to bulky battery trays and time-consuming recharging. This study stipulates a current evaluation of the status of development and challenges related to (i) research gap to promote fuel-cell based HEVs (ii) key barriers of fuel-cell based HEVs (iii) advancement of electric mobility and their power drive (iv) electrochemistry of fuel cell technology for FCEVs (v) power transformation topologies communication protocols and advanced charging methods (vi) recommendations and future prospects of fuel-cell HEVs and (vii) current research trends of EVs and FCEVs. This article discusses key challenges with fuel cell electric mobility such as low fuel cell performance cold starts problems with hydrogen storage cost-reduction safety concerns and traction systems. The operating characteristics and applications of several fuel-cell technologies are investigated for FCEVs and FCHEVs. An overview of the fuel cell is provided which serves as the primary source of energy for FCHEVs along with comparisons and its electrochemistry. The study of power transformation topologies communication protocols and enhanced charging techniques for FCHEVs has been studied analytically. Recent technology advancements and the prospects for FCHEVs are discussed in order to influence the future vehicle market and to attain the aim of zero emissions.
The Influence of the Changes in Natural Gas Supplies to Poland on the Amount of Hydrogen Produced in the SMR Reactor
Mar 2024
Publication
Thanks to investments in diversifying the supply of natural gas Poland did not encounter any gas supply issues in 2022 when gas imports from Russia were ceased due to the Russian Federation’s armed intervention in Ukraine. Over the past few years the supply of gas from routes other than the eastern route has substantially grown particularly the supplies of liquefied natural gas (LNG) via the LNG terminal in Swinouj´scie. The growing proportion of LNG in Poland’s gas supply ´ leads to a rise in ethane levels in natural gas as verified by the review of data taken at a specific location within the gas system over the years 2015 2020 and 2022. Using measurements of natural gas composition the effectiveness of the steam hydrocarbon reforming process was simulated in the Gibbs reactor via Aspen HYSYS. The simulations confirmed that as the concentration of ethane in the natural gas increased the amount of hydrogen produced and the heat required for reactions in the reformer also increased. This article aims to analyze the influence of the changes in natural gas quality in the Polish transmission network caused by changes in supply structures on the mass and heat balance of the theoretical steam reforming reactor. Nowadays the chemical composition of natural gas may be significantly different from that assumed years ago at the plant’s design stage. The consequence of such a situation may be difficulties in operating especially when controlling the quantity of incoming natural gas to the reactor based on volumetric flow without considering changes in chemical composition.
Analysis for the Implementation of Surplus Hydropower for Green Hydrogen Production in Ecuador
Dec 2024
Publication
This study investigates the feasibility of utilizing surplus hydropower from Ecuador’s major hydroelectric plants to produce green hydrogen a clean energy source that can be used to meet a large percentage of energy needs. Given Ecuador’s significant hydropower infrastructure this approach leverages untapped energy resources for hydrogen production with potential impacts on decarbonization strategies. A Pareto analysis identified five key hydroelectric plants that contribute the most to the national surplus. Using historical data from 2019 to 2023 a stochastic model was applied to estimate future surplus availability through 2030. The findings indicate that although Ecuador’s surplus hydropower peaked in 2021 the general trend shows a decline suggesting an urgent need to capitalize on these resources efficiently. The results indicate a projected annual surplus of hydroelectric energy in Ecuador ranging from 7475 to 3445 GWh over the next five years which could be utilized for green hydrogen production. Ecuador thus has promising potential to become a green hydrogen producer enhancing both regional energy security and carbon reduction goals. The reduction in energy availability for hydrogen production is attributed to the increasing energy demand and variable climatic conditions.
No more items...