Publications
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Life Cycle Assessment of a 5 MW Polymer Exchange Membrane Water Electrolysis Plant
Jan 2024
Publication
This study performs a cradle-to-grave life cycle assessment of a 5 MW protonexchange membrane water electrolysis plant. The analysis follows a thoroughengineering-based bottom-up design based on the electrochemical model of thesystem. Three scenarios are analyzed comprising a state-of-the-art (SoA) plantoperated with the German electricity grid-mix a SoA plant operated with acompletely decarbonized energy system and a future development plantelectrolyzer with reduced energy and material demand operated in a completelydecarbonized energy system. The results display a global warming potential of34 kg CO2-eq. kg-H 21 and indicate a reduction potential of 89% when the plantis operated in a decarbonized energy system. A further reduction of 9% can beachieved by the technological development of the plant. Due to the reducedimpacts of operation in a completely decarbonized energy system the operationat locations with large offshore wind electricity capacity is recommended. In theconstruction phase the stacks especially the anode catalyst iridium bipolarplates and porous transport layers are identified as dominant sources of theenvironmental impact. A sensitivity analysis shows that the environmentalimpact of the construction phase increases with a decreasing amount ofoperational full load hours of the plant.RESEARCH ARTICLEwww.advenergysustres.comAdv. Energy Sustainability Res. 2024 5 2300135 2300135 (1 of 19) © 2023 The Authors. Advanced Energy and Sustainability Researchpublished by Wiley-VCH GmbH
Effect of Methane Addition on Transition to Detonation in Hydrogen-Air Mixtures Due to Shock Wave Focussing in a 90 - Degree Corner
Sep 2023
Publication
The main purpose of this work is to investigate the influence of methane addition in methane-hydrogen-air mixture (φ = 0.8 – 1.6) on the critical conditions for transition to detonation in a 90-deg wedge corner. Similar to hydrogen-air mixtures investigated previously [1] methane-hydrogen-air mixtures results showed three ignition modes weak ignition followed by deflagration with ignition delay time higher than 1 μs strong ignition with instantaneous transition to detonation and third with deflagrative ignition and delayed transition to detonation. Methane addition caused an increase in the range of 3.25 – 5.03% in the critical shock wave velocity necessary for transition to detonation for all mixtures considered. For example in stoichiometric mixture with 5% methane in fuel (95% hydrogen in fuel) in air the transition to detonation velocity was approx. 752 m/s (an increase of 37 m/s from hydrogen-air) corresponding to M = 1.89 (an increase of 0.14 from hydrogen-air) and 75.7% (an increase of 4.7% from hydrogen-air) of speed of sound in products. Also similar to hydrogen-air mixture the transition to detonation velocity increased for leaner and richer mixture. Moreover it was observed that methane addition in general increased the pressure limit at the corner necessary for transition to detonation.
Hydrogen Refueling Stations Powered by Hybrid PV/Wind Renewable Energy Systems: Techno-socio-economic Assessment
Mar 2024
Publication
Hydrogen is considered as an attractive alternative to fossil fuels in the transportation sector. However the penetration of Fuel Cell Electric Vehicles (FCEV) is hindered by the lack of hydrogen refueling station infrastructures. In this study the feasibility of a hybrid PV/wind system for hydrogen refueling station is investigated. Refueling events data is collected in different locations including industrial residential highway and tourist areas. Station Occupancy Fractions (SOF) and Social-to-Solar Fraction (STSF) indicators are developed to assess the level of synchronization between the hydrogen demand and solar potential. Then a validated computer code is used to optimize the renewable system components for off/on-grid cases based on minimizing the Net Present Cost (NPC) and the Loss of Hydrogen Supply Probability (LHSP). For off grid cases the results show that STSF attains maximum value in the industrial area where 0.62 fraction of refueling events occur during the sunshine hours and minimum NPC is achieved. It is observed that when STSF attains lower values of 0.52 0.41 and 0.38 for residential highway and tourist areas NPC increases by 8 16 and 31% respectively. This is associated with lower level of coordination between the hydrogen demand and solar potential. The same conclusion can be stated for the on-grid cases. Therefore for green hydrogen production via solar energy utilization it is recommended that a tariff should be applied to encourage refueling hydrogen vehicles during the availability of solar radiation while reducing the environmental impact storage requirements and eventually the cost of hydrogen production.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study
Nov 2024
Publication
Life cycle assessment which evaluates the complete life cycle of a product is considered the standard methodological framework to evaluate the environmental performance of climate change solutions. However significant challenges exist related to datasets used to quantify these environmental indicators. Although extensive research and commercial data on climate change technologies pathways and facilities exist they are not readily available to practitioners of life cycle assessment in the right format and structure using an open platform. In this study we propose a new open data hub platform for life cycle assessment considering a hierarchical data flow starting with raw data collected on climate change technologies at laboratory pilot demonstration or commercial scales to provide the information required for policy and decision-making. This platform makes data accessible at multiple levels for practitioners of life cycle assessment while making data interoperable across platforms. The proposed data hub platform and workflow are explained through the polymer electrolyte membrane electrolysis hydrogen production as a case study. The climate change environment impact of 1.17 ± 0.03 kg CO2 eq./kg H2 was calculated for the case study. The current data hub platform is limited to evaluating environmental impacts; however future additions of economic and social aspects are envisaged.
Municipal Wastewater Reclamation: Reclaimed Water for Hydrogen Production by Electrolysis - A Case Study
Apr 2023
Publication
This paper presents an analysis of a treatment system selection for municipal wastewater stream based on the DuPont Water Solutions WAVE software. The results obtained based on an analysis of 7 different processing cases studies (ultrafiltration and reverse osmosis) confirmed that the application of 2-pass membrane systems enables the reclamation of water from municipal wastewater that fulfills the requirements concerning the quality of water intended as electrolyzer feedstock as the obtained water exhibited a conductivity of < 5 µS/cm. Depending on the analyzed case study the attainable level of water reclamation ranged from 68.8 to 84.1 % at an energy consumption of 606.1 – 2 694 kWh/d. The results of this work not only confirm that the selected pro cessing solutions make it possible to reclaim water from municipal wastewater but also confirm the necessity of using software to simulate the membrane system operation to select the most economic and cost-effective solution.
Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review
Aug 2021
Publication
High-pressure hydrogen tanks which are composed of an aluminum alloy liner and a carbon fiber wound layer are currently the most popular means to store hydrogen on vehicles. Nevertheless the aluminum alloy is easily affected by high-pressure hydrogen which leads to the appearance of hydrogen embrittlement (HE). Serious HE of hydrogen tank represents a huge dangers to the safety of vehicles and passengers. It is critical and timely to outline the mainstream approach and point out potential avenues for further investigation of HE. An analysis including the mechanism (including hydrogen-enhanced local plasticity model hydrogen-enhanced decohesion mechanism and hydrogen pressure theory) the detection (including slow strain rate test linearly increasing stress test and so on) and methods for the prevention of HE on aluminum alloys of hydrogen vehicles (such as coating) are systematically presented in this work. Moreover the entire experimental detection procedures for HE are expounded. Ultimately the prevention measures are discussed in detail. It is believed that further prevention measures will rely on the integration of multiple prevention methods. Successfully solving this problem is of great significance to reduce the risk of failure of hydrogen storage tanks and improve the reliability of aluminum alloys for engineering applications in various industries including automotive and aerospace.
Towards Safer Hydrogen Refuelling Stations: Insights from Computational Fluid Dynamics LH2 Leakage
May 2024
Publication
The transition to a sustainable future with hydrogen as a key energy carrier necessitates a comprehensive understanding of the safety aspects of hydrogen including liquid hydrogen (LH₂). Hence this study presents a detailed computational fluid mechanics analysis to explore accidental LH₂ leakage and dispersion in a hydrogen refuelling station under varied conditions which is essential to prevent fire and explosion. The correlated impact of influential parameters including wind direction wind velocity leak direction and leak rate were analysed. The study shows that hydrogen dispersion is significantly impacted by the combined effect of wind direction and surrounding structures. Additionally the leak rate and leak direction have a significant effect on the development of the flammable cloud volume (FCV) which is critical for estimating the explosion hazards. Increasing wind velocity from 2 to 4 m/s at a constant leak rate of 0.06 kg/s results in an 82% reduction in FCV. The minimum FCV occurs when leak and wind directions oppose at 4 m/s. The most critical situation concerning FCV arises when the leak and wind directions are perpendicular with a leak rate of 0.06 kg/s and a wind velocity of 2 m/s. These findings can aid in the development of optimised sensing and monitoring systems and operational strategies to reduce the risk of catastrophic fire and explosion consequences.
Hydrogen's Potential and Policy Pathways for Indonesia's Energy Transition: The Actor-network Analysis
Mar 2025
Publication
This research examines potential uses of hydrogen as an alternative energy source in Indonesia. Hydrogen presents a more environmentally friendly energy alternative with markedly reduced greenhouse gas emissions leading the Indonesian government to align its interests with the worldwide excitement for hydrogen-based energy transitions within the sustainable development context. Nevertheless despite its intriguing potential as an alternative fuel for transportation industry and power generation pilot programs have demonstrated that hydrogen energy remains expensive and demands substantial advancements in technology. This study used a qualitative methodology incorporating documentary analysis semi-structured interviews and focus group discussions within the actor-network theory framework aimed to investigate the current positioning of hydrogen energy in Indonesia’s policy pathways and to examine its potential and challenge. The findings indicate two primary insights: firstly Indonesia’s energy transformation is presently centered on formulating action plans and regulatory frameworks with hydrogen seen as one of the proposed alternatives. The investigation of hydrogen’s current progress through the actor-network theory framework has yielded two separate actor networks: the proponent network consisting of the national government and the national oil company and the opposing network which encompasses academics businesses and industries.
Techno-economic Analysis of the Effect of a Novel Price-based Control System on the Hydrogen Production of an Offshore 1.5 GW Wind-hydrogen System
Feb 2024
Publication
The cost of green hydrogen production is very dependent on the price of electricity. A control system that can schedule hydrogen production based on forecast wind speed and electricity price should therefore be advantageous for large-scale wind-hydrogen systems. This work presents a novel price-based control system integrated in a techno-economic analysis of hydrogen production from offshore wind. A polynomial regression model that predicts wind power production from wind speed input was developed and tested with real-world datasets from a 2.3 MW floating offshore wind turbine. This was combined with a mathematical model of a PEM electrolyzer and used to simulate hydrogen production. A novel price-based control system was developed to decide when the system should produce hydrogen and when it should sell electricity to the grid. The model and control system can be used in real-world wind-hydrogen systems and require only the forecast wind speed electricity price and selling price of hydrogen as inputs. 11 test scenarios based on 10 years of real-world wind speed and electricity price data are proposed and used to evaluate the effect the price-based control system has on the levelized cost of hydrogen (LCOH). Both current and future (2050) costs and technologies are used and the results show that the novel control system lowered the LCOH in all scenarios by 10–46%. The lowest LCOH achieved with current technology and costs was 6.04 $/kg H2. Using the most optimistic forecasts for technology improvements and cost reductions in 2050 the model estimated a LCOH of 0.96 $/kg H2 for a grid-connected offshore wind farm and onshore hydrogen production 0.82 $/kg H2 using grid electricity (onshore) and 4.96 $/kg H2 with an offgrid offshore wind-hydrogen system. When the electricity price from the period 2013–2022 was used on the 2050 scenarios the resulting LCOH was approximately twice as high.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Exergy Analysis in Intensification of Sorption-enhanced Steam Methane Reforming for Clean Hydrogen Production: Comparative Study and Efficiency Optimisation
Feb 2024
Publication
Hydrogen has a key role to play in decarbonising industry and other sectors of society. It is important to develop low-carbon hydrogen production technologies that are cost-effective and energy-efficient. Sorption-enhanced steam methane reforming (SE-SMR) is a developing low-carbon (blue) hydrogen production process which enables combined hydrogen production and carbon capture. Despite a number of key benefits the process is yet to be fully realised in terms of efficiency. In this work a sorption-enhanced steam methane reforming process has been intensified via exergy analysis. Assessing the exergy efficiency of these processes is key to ensuring the effective deployment of low-carbon hydrogen production technologies. An exergy analysis was performed on an SE-SMR process and was then subsequently used to incorporate process improvements developing a process that has theoretically an extremely high CO2 capture rate of nearly 100 % whilst simultaneously demonstrating a high exergy efficiency (77.58 %) showcasing the potential of blue hydrogen as an effective tool to ensure decarbonisation in an energy-efficient manner.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
Leakage Rates of Hydrogen-methane Gas Blends under Varying Pressure Conditions
Nov 2024
Publication
Integration of hydrogen into the existing natural gas infrastructure is considered a potential pathway that can accelerate the incorporation of hydrogen into the energy sector. While blending renewable hydrogen with natural gas offers advantages such as reduced carbon intensity and the ability to utilize existing infrastructure for hydrogen storage and transportation there are several concerns including leakage and associated issues. Un derstanding the behavior of hydrogen blended with natural gas in the existing infrastructure is crucial to ensure safe and efficient integration. In this study the leakage rates of mixtures of hydrogen and methane at different molar concentrations (5% 10% 20% and 50% hydrogen) through both precision machined orifices and com mon pipe fitting threads were investigated. The experiments showed that the leakage rates of these mixtures increased as the hydrogen content increased; however gas chromatography (GC) analysis showed that hydrogen did not leak preferentially at a greater rate than methane. The results indicate that mixing hydrogen with methane can increase the volume of gas leakage under the same pressure conditions. These findings suggest that mixing hydrogen with natural gas may result in increased volumetric flow rate of gas leaks but hydrogen alone does not leak preferentially to methane.
Exploiting the Ocean Thermal Energy Conversion (OTEC) Technology for Green Hydrogen Production and Storage: Exergo-economic Analysis
Nov 2024
Publication
This study presents and analyses three plant configurations of the Ocean Thermal Energy Conversion (OTEC) technology. All the solutions are based on using the OTEC system to obtain hydrogen through an electrolyzer. The hydrogen is then compressed and stored. In the first and second layouts a Rankine cycle with ammonia and a mixture of water and ethanol is utilised respectively; in the third layout a Kalina cycle is considered. In each configuration the OTEC cycle is coupled with a polymer electrolyte membrane (PEM) electrolyzer and the compression and storage system. The water entering the electrolyzer is pre-heated to 80 ◦C by a solar collector. Energy exergy and exergo-economic studies were conducted to evaluate the cost of producing compressing and storing hydrogen. A parametric analysis examining the main design constraints was performed based on the temperature range of the condenser the mass flow ratio of hot and cold resource flows and the mass fraction. The maximum value of the overall exergy efficiency calculated is equal to 93.5% for the Kalina cycle and 0.524 €/kWh is the minimum cost of hydrogen production achieved. The results were compared with typical data from other hydrogen production systems.
Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization
Feb 2024
Publication
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed HE may lead to catastrophic environmental failures in vessels containing hydrogen such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility toughness and strength mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption hydrogen diffusion and hydrogen interactions with intrinsic trapping sites like dislocations voids grain boundaries and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile double cantilever beam bent beam and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior mechanisms and characterization techniques.
Knowledge Production in Technological Innovation System: A Comprehensive Evaluation using a Multi-criteria Framework based on Patent Data - A Case Study on Hydrogen Storage
Jan 2025
Publication
Knowledge production activity is central within a technological innovation system. The number of patent ap plications is commonly used to evaluate this activity. However it is subject to bias and inaccurate evaluations can occur. This article proposes a multi-criteria framework based on seven complementary patent indicators taking into account the persistence commitment and coherence of knowledge production activities for a more comprehensive evaluation. We demonstrate the value of our proposal through a case study on hydrogen storage comparing patent data since 2000 about three technological solutions: physical chemical and adsorption technologies. Our framework clearly shows that physical hydrogen storage is the most advanced in terms of knowledge production despite not having the highest number of patent applications.
No more items...