Publications
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
Hydrogen UK Supply Chains Report Executive Summary 2023
Dec 2023
Publication
The strategic importance of hydrogen has gained significant recognition as nations across the world have committed to achieving net zero. Here in the UK there’s a widespread consensus that hydrogen is critical to achieving our net zero target. This commitment culminated in the launch of the UK’s first Hydrogen Strategy and has been reaffirmed by Chris Skidmore’s Independent Review of Net Zero. Both these documents highlight hydrogen’s importance not only to net zero but growing the UK industrial base1 . Analysis by Hydrogen UK estimates up to 20000 jobs could be created by 2030 contributing £26bn in cumulative GVA2. These economic benefits flow from all areas of the value chain ranging from production storage network development and off-taker markets. However with large scale projects still to take final investment decisions current volumes of low-carbon hydrogen produced and consumed fall well below the government’s 2030 ambitions. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside our vibrant RD&I and engineering environment has enabled rapid deployment of technologies like offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment. This report delivers on a recommendation from the Hydrogen Champion Report which encouraged industry to create an industry led supply chain strategy3 . With Hydrogen UK steering the work on behalf of the UK hydrogen industry this study focusses on identifying the actions needed to mature a local supply chain that can support the initial deployment of hydrogen technologies across the value chain. The report is segmented into two sections. The first section outlines a voluntary ambition for local content from industry alongside the potential intervention mechanisms needed to achieve the ambition. The second section exploresthe challenges companies across the hydrogen value chain face in maximising UK supply chain opportunities.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Heat Transfer Modeling of Hydrogen-Fueled Spark Ignition Engine
Jan 2025
Publication
Currently green hydrogen generated through renewable energy sources stands out as one of the best substitutes for fossil fuels in mitigating pollutant emissions and consequent global warming. Particularly the utilization of hydrogen in spark ignition engines has undergone extensive study in recent years. Many aspects have been analyzed: the conversion of gasoline engines to hydrogen operation the combustion duration the heat transfer and in general the engine thermal efficiency. Hydrogen combustion is characterized by a smaller quenching distance compared to traditional hydrocarbon fuels such as gasoline or natural gas and this produces a smaller thermal boundary layer and consequently higher heat transfer. This paper presents findings from experimental trials and numerical simulations conducted on a hydrogen-powered CFR (cooperative fuel research) engine focusing specifically on heat transfer with combustion chamber walls. The engine has also been fueled with methane and isooctane (two reference fuels); both the engine compression ratio and the air/fuel ratio have been changed in a wide range in order to compare the three fuels in terms of heat transfer combustion duration and engine thermal efficiency in different operating conditions. A numerical model has been calibrated with experimental data in order to predict the amount of heat transfer under the best thermal efficiency operating conditions. The results show that when operated with hydrogen the best engine efficiency is obtained with a compression ratio of 11.9 and an excess air ratio (λ) of 2.
Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study
Aug 2019
Publication
Hydrogen is one of the most popular alternatives for energy storage. Because of its low volumetric energy density hydrogen should be compressed for practical storage and transportation purposes. Recently electrochemical hydrogen compressors (EHCs) have been developed that are capable of compressing hydrogen up to P = 1000 bar and have the potential of reducing compression costs to 3 kWh/kg. As EHC compressed hydrogen is saturated with water the maximum water content in gaseous hydrogen should meet the fuel requirements issued by the International Organization for Standardization (ISO) when refuelling fuel cell electric vehicles. The ISO 14687−2:2012 standard has limited the water concentration in hydrogen gas to 5 μmol water per mol hydrogen fuel mixture. Knowledge on the vapor liquid equilibrium of H2O−H2 mixtures is crucial for designing a method to remove H2O from compressed H2. To the best of our knowledge the only experimental high pressure data (P > 300 bar) for the H2O−H2 phase coexistence is from 1927 [J. Am. Chem. Soc. 1927 49 65−78]. In this paper we have used molecular simulation and thermodynamic modeling to study the phase coexistence of the H2O−H2 system for temperatures between T = 283 K and T = 423 K and pressures between P = 10 bar and P = 1000 bar. It is shown that the Peng-Robinson equation of state and the Soave Redlich-Kwong equation of state with van der Waals mixing rules fail to accurately predict the equilibrium coexistence compositions of the liquid and gas phase with or without fitted binary interaction parameters. We have shown that the solubility of water in compressed hydrogen is adequately predicted using force-field-based molecular simulations. The modeling of phase coexistence of H2O−H2 mixtures will be improved by using polarizable models for water. In the Supporting Information we present a detailed overview of available experimental vapor−liquid equilibrium and solubility data for the H2O−H2 system at high pressures.
What will be the Hydrogen and Power Demands of the Process Industry in a Climate-neutral Germany?
Apr 2024
Publication
The defossilization of industry has far-reaching implications regarding the future demand for hydrogen and other forms of energy. This paper presents and applies a fundamental bottom-up model that relies on techno-economic data of industrial production processes. Its aim is to identify across a range of scenarios the most cost-effective low-carbon options considering a variety of production systems. Subsequently it derives the hydrogen and electricity demand that would result from the implementation of these least-cost low-carbon options in process industries in Germany. Aligning with the German government's target year for achieving climate neutrality this study’s reference year is 2045. The primary contribution lies in analyzing which hydrogen-based and direct electrification solutions would be cost-effective for a range of energy price levels under climate-neutral industrial production and what the resulting hydrogen and electricity demand would be. To this end the methodology of this paper comprises the following steps: selection of the relevant industries (I) definition of conventional reference production systems and their low-carbon options (II) investigation and processing of the techno-economic data of the standardized production systems (III) establishment of a scenario framework (IV) determination of the least-cost low-carbon solution of a conventional reference production system under the scenario assumptions made (V) and estimation of the resulting hydrogen and electricity demand (VI). According to the results the expected industrial hydrogen consumption in 2045 ranges from 255 TWh for higher hydrogen prices in or above the range of onshore wind-based green hydrogen supply costs to up to 542 TWh for very low hydrogen prices corresponding to typical blue hydrogen production costs. Meanwhile the direct electricity consumption of the process industries in the results ranges from 122 TWh for these rather low hydrogen prices to 368 TWh for the higher hydrogen prices in the region of or above the hydrogen supply costs from the electrolysis of energy from an onshore wind farm. Most of the break-even hydrogen prices that are relevant to the choice of low-carbon options are in the range of the benchmark purchase costs for blue hydrogen and green hydrogen produced from offshore wind power which span between €40 per MWh and €97 per MWh.
Hydrogen for a Net-Zero Carbon World
Mar 2024
Publication
The concept of the “hydrogen economy” was first coined by Prof. John Bockris during a talk he gave in 1970 at the General Motors Technical Center. Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen resulting in zero emissions at its point of use—be that as a chemical feedstock or as a fuel for industrial or domestic heating for power generation in a gas turbine or in a fuel cell “engine” for transport applications. Despite several waves of significant interest and investment however due to the relative costs and technological immaturity of hydrogen technologies the hydrogen economy was never delivered at scale nor was there sufficient motivation to create the technology needed to overcome these hurdles.<br/>But today as the world seeks to transition to a truly net-zero carbon economy hydrogen has returned to the fore as a key energy carrier—not as a hydrogen economy but as “hydrogen in the economy” synergistically working alongside low- to zero-carbon electricity to decarbonize those parts of the economy that are too expensive or too difficult to be directly decarbonized with electricity. These include:<br/>♦ Transport applications in which large amounts of energy are needed on the vehicle such as planes trains shipping long-distance trucks and heavy-duty vehicles;<br/>♦ Industrial applications such as steelmaking and cement manufacturing;<br/>♦ Long-term energy storage for days to weeks at a time;<br/>♦ The production of green chemicals such as green ammonia and green methanol;<br/>♦ Industrial (and potentially residential) heating.
Optimal Hydrogen Infrastructure Planning for Heat Decarbonisation
Feb 2024
Publication
Energy decarbonisation is essential to achieve Net-Zero emissions goal by 2050. Consequently investments in alternative low-carbon pathways and energy carriers for the heat sector are required. In this study we propose an optimisation framework for the transition of heat sector in Great Britain focusing on hydrogen infrastructure decisions. A spatially-explicit mixed-integer linear programming (MILP) evolution model is developed to minimise the total system’s cost considering investment and operational decisions. The optimisation framework incorporates both long-term planning horizon of 5-year steps from 2035 to 2050 and typical days with hourly resolution. Aiming to alleviate the computational effort of such multiscale model two hierarchical solution approaches are suggested that result in computational time reduction. From the optimisation results it is shown that the installation of gas reforming hydrogen production technologies with CCS and biomass gasification with CCS can provide a cost-effective strategy achieving decarbonisation goal. What-if analysis is conducted to demonstrate further insights for future hydrogen infrastructure investments. Results indicate that as cost is highly dependent on natural gas price Water Electrolysis capacity increases significantly when gas price rises. Moreover the introduction of carbon tax policy can lead to lower CO2 net emissions.
Mid-century Net-zero Emissions Pathways for Japan: Potential Roles of Global Mitigation Scenarios in Informing National Decarbonisation Strategies
Jan 2024
Publication
Japan has formulated a net-zero emissions target by 2050. Existing scenarios consistent with this target generally depend on carbon dioxide removal (CDR). In addition to domestic mitigation actions the import of low-carbon energy carriers such as hydrogen and synfuels and negative emissions credits are alternative options for achieving net-zero emissions in Japan. Although the potential and costs of these actions depend on global energy system transition characteristics which can potentially be informed by the global integrated assessment models they are not considered in current national scenario assessments. This study explores diverse options for achieving Japan's net-zero emissions target by 2050 using a national energy system model informed by international energy trade and emission credits costs estimated with a global energy system model. We found that demand-side electrification and approximately 100 Mt-CO2 per year of CDR implementation equivalent to approximately 10% of the current national CO2 emissions are essential across all net-zero emissions scenarios. Upscaling of domestically generated hydrogen-based alternative fuels and energy demand reduction can avoid further reliance on CDR. While imports of hydrogen-based energy carriers and emission credits are effective options annual import costs exceed the current cost of fossil fuel imports. In addition import dependency reaches approximately 50% in the scenario relying on hydrogen imports. This study highlights the importance of considering global trade when developing national net-zero emissions scenarios and describes potential new roles for global models.
Safe Pipelines for Hydrogen Transport
Jun 2024
Publication
The hydrogen compatibility of two X65 pipeline steels for transport of hydrogen gas is investigated through microstructural characterization hydrogen permeation measurements and fracture mechanical testing. The investigated materials are a quenched and tempered pipeline steel with a fine-grained homogeneously distributed ferrite-bainite microstructure and hot rolled pipeline steel with a ferrite-pearlite banded microstructure. All tests are performed both under electrochemical and gaseous hydrogen charging conditions. A correlation between electrochemical hydrogen charging and gaseous charging is determined. The results point to inherent differences in the interaction between hydrogen and the two material microstructures. Further research is needed to unveil the influence of material microstructure on hydrogen embrittlement.
Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies
Jan 2025
Publication
Hydrogen has emerged as a critical energy carrier for achieving global decarbonization and supporting a sustainable energy future. This review explores key advancements in hydrogen production technologies including electrolysis biomass gasification and thermochemical processes alongside innovations in storage methods like metal hydrides and liquid organic hydrogen carriers (LOHCs). Despite its promise challenges such as high production costs scalability issues and safety concerns persist. Biomass gasification stands out for its dual benefits of waste management and carbon neutrality yet hurdles like feedstock variability and energy efficiency need further attention. This review also identifies opportunities for improvement such as developing cost-effective catalysts and hybrid storage systems while emphasizing future research on improving storage efficiency and tackling production bottlenecks. By addressing these challenges hydrogen can play a central role in the global transition to cleaner energy systems.
OIES Podcast - Aviation Fuels and the Potential of Hydrogen
Feb 2024
Publication
In the latest OIES podcast from the Hydrogen Programme James Henderson talks to Abdurahman Alsulaiman about his latest paper entitled “Navigating Turbulence: Hydrogen’s Role in the Decarbonisation of the Aviation Sector.” In the podcast we discuss the current balance of fuels in the aviation sector the importance of increasing efficiency of aero-engines and the impact of increasing passenger miles travelled. The podcast then considers different decarbonisation options for the sector focussing on a change of engine technology to allow the use of alternative fuels such as hydrogen or electricity but also looking at the potential for hydrogen to play an important role in the development of Sustainable Aviation Fuels (SAFs) for use with current engine technology. We also look at Low Carbon Aviation Fuels which are essentially existing fuels derived from a significantly decarbonised supply chain and assess whether they have an important role to play as the aviation sector targets a net zero outcome.
The podcast can be found on their website.
The podcast can be found on their website.
Lifecycle Management of Hydrogen Pipelines: Design, Maintenance, and Rehabilitation Strategies for Canada’s Clean Energy Transition
Jan 2025
Publication
This paper examines the crucial elements of pipeline-based hydrogen transportation highlighting the particular difficulties and technical developments required to guarantee the sustainable effective and safe supply of hydrogen. This study lists the essential phases of hydrogen pipeline management from design to repair as the relevance of hydrogen infrastructure in the worldwide energy transition continues to rise. It discusses the upkeep monitoring operation and rehabilitation procedures for aged pipelines with an emphasis on the cutting-edge techniques and technology used to mitigate the dangers related to hydrogen’s unique features such as leakage and embrittlement. Together with highlighting the legislative and regulatory frameworks that enable the infrastructure this paper also discusses the material economic and environmental difficulties related to hydrogen pipelines. Lastly it emphasizes how crucial it is to fund research create cutting-edge materials and implement sophisticated monitoring systems to guarantee the long-term dependability and safety of hydrogen pipelines. These initiatives will be crucial in allowing hydrogen’s contribution to the future of renewable energy together with international collaboration on regulatory standards.
A Computational Analysis of Cryogenic Hydrogen Release Under Various Conditions
Dec 2023
Publication
Cryogenic liquid hydrogen offers a promising solution for achieving high-density hydrogen storage and efficient on-site distribution. However the potential hazards associated with hydrogen leakages necessitate thorough investigations. This research aims to model cryogenic hydrogen release from circular and high aspect ratio (HAR) nozzles tested by Sandia. The test conditions cover reservoir pressures and temperatures corresponding to cryogenic hydrogen storage. The study conducts computational simulations using OpenFOAM to examine hydrogen concentration temperature fields mass fraction and temperature distributions achieving good agreement with the experimental data. To further explore the study of velocity variations shows a consistent decay rate with room-temperature jets. The numerical data reveals comparable inverse centreline hydrogen mass fractions (0.254 for HAR and 0.26 for circular) and normalised centreline temperature decay rates (0.031 for HAR and 0.032 for circular). The present computational model holds the potential for further analysis of cryogenic hydrogen in large-scale facilities.
Machine Learning Models for the Prediction of Turbulent Combustion Speed for Hydrogen-natural Gas Spark Ignition Engines
May 2024
Publication
The work carried out in this paper focused on “Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines”. The aim of this work is to develop and verify the ability of machine learning models to solve the problem of estimating the turbulent flame speed for a spark-ignition internal combustion engine operating with a hydrogen-natural gas mixture then evaluate the relevance of these models in relation to the usual approaches. The novelty of this work is the possibility of a direct calculation of turbulent combustion speed with a good precision using only machine learning model. The obtained models are also compared to each other by considering in turn as a comparison criterion: the precision of the result calculation time and the ability to assimilate original data (which has not undergone preprocessing). An important particularity of this work is that the input variables of the machine learning models were chosen among the variables directly measurable experimentally based on the opinion of experts in combustion in internal combustion engines and not on the usual approaches to dimensionality reduction on a dataset. The data used for this work was taken from a MINSEL 380 a 380-cc single-cylinder engine. The results show that all the machine learning models obtained are significantly faster than the usual approach and Random Forest (R2: R-squared = 0.9939 and RMSE: Root Mean Square Error = 0.4274) gives the best results. With a forecasting accuracy of over 90 % both approaches can make reasonable predictions for most industrial applications such as designing engine monitoring and control systems firefighting systems simulation and prototyping tools.
Numerical Estimation of the Structural Integrity in an Existing Pipeline Network for the Transportation of Hydrogen Mixture in the Future
Jan 2025
Publication
Hydrogen is gaining attention due to its potential to address key challenges in the sectors of energy transportation and industry since it is a much cleaner energy source when compared to fossil fuels. The transportation of hydrogen from the point of its production to the point of use can be performed by road rail sea pipeline networks or a combination of the abovementioned. Being in the preliminary stage of hydrogen use the utilization of the already existing natural gas pipeline networks for hydrogen mixtures transportation has been suggested as an efficient means of expanding hydrogen infrastructure. Yet exploring this alternative major challenges such as the pre-existence of cracks in the pipelines and the effect of hydrogen embrittlement on the material of the pipelines exist. In this paper the macroscopic numerical modeling of pipeline segments with the use of the finite element method is performed. In more details the structural integrity of intact and damaged pipeline segments of different geometry and mechanical properties was estimated. The effect of the pipeline geometry and material has been investigated in terms of stress contours with and without the influence of hydrogen. The results suggest that the structural integrity of the pipeline segments is more compromised by pre-existing longitudinal cracks which might lead to an increase in the maximum value of equivalent Von Mises stress by up to four times depending on their length-tothickness ratio. This effect becomes more pronounced with the existence of hydrogen in the pipeline network.
A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel
Jul 2021
Publication
Reversible solid oxide cells (rSOC) enable the efficient cyclic conversion between electrical and chemical energy in the form of fuels and chemicals thereby providing a pathway for longterm and high-capacity energy storage. Amongst the different fuels under investigation hydrogen methane and ammonia have gained immense attention as carbon-neutral energy vectors. Here we have compared the energy efficiency and the energy demand of rSOC based on these three fuels. In the fuel cell mode of operation (energy generation) two different routes have been considered for both methane and ammonia; Routes 1 and 2 involve internal reforming (in the case of methane) or cracking (in the case of ammonia) and external reforming or cracking respectively. The use of hydrogen as fuel provides the highest round-trip efficiency (62.1%) followed by methane by Route 1 (43.4%) ammonia by Route 2 (41.1%) methane by Route 2 (40.4%) and ammonia by Route 1 (39.2%). The lower efficiency of internal ammonia cracking as opposed to its external counterpart can be attributed to the insufficient catalytic activity and stability of the state-of-the-art fuel electrode materials which is a major hindrance to the scale-up of this technology. A preliminary cost estimate showed that the price of hydrogen methane and ammonia produced in SOEC mode would be ~1.91 3.63 and 0.48 $/kg respectively. In SOFC mode the cost of electricity generation using hydrogen internally reformed methane and internally cracked ammonia would be ~52.34 46.30 and 47.11 $/MWh respectively.
Probabilistic Analysis of Green Hydrogen Production from a Mix of Solar and Wind Energy
Sep 2024
Publication
This article describes an example of using the measurement data from photovoltaic systems and wind turbines to perform practical probabilistic calculations around green hydrogen generation. First the power generated in one month by a ground-mounted photovoltaic system with a peak power of 3 MWp is described. Using the Metalog family of probability distributions the probability of generating selected power levels corresponding to the amount of green hydrogen produced is calculated. Identical calculations are performed for the simulation data allowing us to determine the power produced by a wind turbine with a maximum power of 3.45 MW. After interpolating both time series of the power generated by the renewable energy sources to a common sampling time they are summed. For the sum of the power produced by the photovoltaic system and the wind turbine the probability of generating selected power levels corresponding to the amount of green hydrogen produced is again calculated. The presented calculations allow us to determine with probability distribution accuracy the amount of hydrogen generated from the energy sources constituting a mix of photovoltaics and wind. The green hydrogen production model includes the hardware and the geographic context. It can be used to determine the preliminary assumptions related to the production of large amounts of green hydrogen in selected locations. The calculations presented in this article are a practical example of Business Intelligence.
Techno-economic Assessment of Pressure Swing Adsorption Tail Gas Decarbonisation for Blue Hydrogen Production
Jun 2025
Publication
Steam methane reforming (SMR) is a leading technology for hydrogen production. However this technology is still carbon-intensive since in current SMR units the PSA tail gas containing H2 CO and CH4 is burned at the reformer with air and exits the stack at a CO2 purity of less than 5% which is not feasible to capture. In this paper we aim to either harness the energy content of this gas to generate power in a solid oxide fuel cell (SOFC) or burn it via chemical looping combustion (CLC) or oxy-combustion process to produce off-gas with high CO2 purity ready to storage. Therefore an industrial-scale PSA with 72000 Nm3/h feed capacity was modelled to obtain the tail gas flow rate and composition. Then CLC SOFC and oxy-combustion were modelled to use tail gas. Finally a techno-economic analysis was conducted to calculate each technology's levelised cost of hydrogen (LCOH). It was observed that CO2 purity for CLC meets the criteria for storage (>95%) without further purification. On the other hand from the economic point of view all three technologies show a promising performance with an LCOH of 1.9 €/kg.
Roadmap to Reach Global Net Zero Emissions for Developing Regions by 2085
Jan 2025
Publication
As climate change intensifies determining a developing region’s role in achieving net-zero emissions worldwide is crucial. However regional efforts considering historical emissions remain underexplored. Here we assess energy system changes technology adoption and investments needed for developing regions including five major- and minor-emitting nations. Our analysis using an integrated assessment model shows a large gap in regional efforts toward global net-zero emissions stemming from the necessary shift of energy systems to low-carbon resources. The use of new technologies like electric vehicles hydrogen and carbon capture varies by region with the highest adoption required between 2020 and 2030. Financing this shift needs an average gross domestic product (GDP) investment rise of 0.464% in minor-emitting regions and up to 2.1% in major-emitting regions by 2085. Our results could guide policies and support setting quantifiable targets for developing nations. The findings are key to facilitating strategic technology use and finance mobilization to achieve a carbon-neutral future.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
No more items...