Publications
A Study on the Thermal Behavior of Series and Parallel Connection Methods in the Process of Hydrogenation of Ship-Borne Hydrogen Storage Cylinder
Feb 2024
Publication
As a subdivision of the hydrogen energy application field ship-borne hydrogen fuel cell systems have certain differences from vehicle or other application scenarios in terms of their structural type safety environmental adaptability and test verification. The connection method of the ship-borne hydrogen storage cylinder (SHSC) is very important for the hydrogen fuel cell ship and the structural parameters of the SHSC are particularly important in the hydrogen refueling process. To ensure the safe and reliable operation of the hydrogen-powered ship research on the filling of the SHSC under different connection modes was carried out during refueling. In our study a thermal flow physical model of the SHSC was established to research the hydrogen refueling process of the series and parallel SHSCs. The influence of series and parallel modes of the SHSCs on the hydrogen refueling process was explored and the evolution law of the internal flow field pressure and temperature of series and parallel SHSCs under different filling parameters was analyzed by numerical simulation. Our results confirmed the superiority of the parallel modular approach in terms of thermal safety during refueling. The results can supply a technical basis for the future development of hydrogen refueling stations and ship-board hydrogenation control algorithms.
An Improved Artificial Ecosystem Optimization Algorithm for Optimal Configuration of a Hybrid PV/WT/FC Energy System
Oct 2020
Publication
This paper mainly focuses on the optimal design of a grid-dependent and off-grid hybrid renewable energy system (RES). This system consists of Photovoltaic (PV) Wind Turbine (WT) as well as Fuel Cell (FC) with hydrogen gas tank for storing the energy in the chemical form. The optimal components sizes of the proposed hybrid generating system are achieved using a novel metaheuristic optimization technique. This optimization technique called Improved Artificial Ecosystem Optimization (IAEO) is proposed for enhancing the performance of the conventional Artificial Ecosystem Optimization (AEO) algorithm. The IAEO improves the convergence trends of the original AEO gives the best minimum objective function reaches the optimal solution after a few iterations numbers as well as reduces the falling into the local optima. The proposed IAEO algorithm for solving the multiobjective optimization problem of minimizing the Cost of Energy (COE) the reliability index presented by the Loss of Power Supply Probability (LPSP) and excess energy under the constraints are considered. The hybrid system is suggested to be located in Ataka region Suez Gulf (latitude 30.0 longitude 32.5) Egypt and the whole lifetime of the suggested case study is 25 years. To ensure the accurateness stability and robustness of the proposed optimization algorithm it is examined on six different configurations representing on-grid and off-grid hybrid RES. For all the studied cases the proposed IAEO algorithm outperforms the original AEO and generates the minimum value of the fitness function in less execution time. Furthermore comprehensive statistical measurements are demonstrated to prove the effectiveness of the proposed algorithm. Also the results obtained by the conventional AEO and IAEO are compared with those obtained by several well-known optimization algorithms Particle Swarm Optimization (PSO) Salp Swarm Algorithm (SSA) and Grey Wolf Optimizer (GWO). Based on the obtained simulation results the proposed IAEO has the best performance among other algorithms and it has successfully positioned itself as a competitor to novel algorithms for tackling the most complicated engineering problems.
Exploring European Hydrogen Demand Variations under Tactical Uncertainty with Season Hydrogen Storage
Aug 2025
Publication
Achieving a net-zero energy system in Europe by 2050 will likely require large-scale deployment of hydrogen and seasonal energy storage to manage variability in renewable supply and demand. This study addresses two key objectives: (1) to develop a modeling framework that integrates seasonal storage into a stochastic multihorizon capacity expansion model explicitly capturing tactical uncertainty across timescales; and (2) to assess the impact of seasonal hydrogen storage on long-term investment decisions in European power and hydrogen infrastructure under three hydrogen demand scenarios. To this end the multi-horizon stochastic programming model EMPIRE is extended with tactical stages within each investment period enabling operational decisions to be modeled as a multi-stage stochastic program. This approach captures short-term uncertainty while preserving long-term investment foresight. Results show that seasonal hydrogen storage considerably enhances system flexibility displacing the need for up to 600 TWh/yr of dispatchable generation in Europe after 2040 and sizing down cross-border hydrogen transmission capacities by up to 12%. Storage investments increase by factors of 5–14 which increases the investments in variable renewables and improve utilization particularly solar. Scenarios with seasonal storage also show up to 6% lower total system costs and more balanced infrastructure deployment across regions. These findings underline the importance of modeling temporal uncertainty and seasonal dynamics in long-term energy system planning.
Modulating Selectivity and Stability of the Direct Seawater Electrolysis for Sustainable Green Hydrogen Production
Feb 2025
Publication
Direct seawater electrolysis (DSE) has emerged as a compelling route to sustainable hydrogen production leveraging the vast global reserves of seawater. However the inherently complex composition of seawater—laden with halide ions multivalent cations (Mg2+ Ca2+) and organic/biological impurities—presents formidable challenges in maintaining both selectivity and durability. Chief among these obstacles is mitigating chloride corrosion and suppressing chlorine evolution reaction (ClER) at the anode while also preventing the precipitation of magnesium and calcium hydroxides at the cathode. This review consolidates recent advances in material engineering and cell design strategies aimed at controlling undesired side reactions enhancing electrode stability and maximizing energy efficiency in DSE. We first outline the fundamental thermodynamic and kinetic hurdles introduced by Cl⁻ and other impurities. This discussion highlights how these factors accelerate catalyst degradation and drive suboptimal reaction pathways. We then delve into innovative approaches to improve selectivity and durability of DSE—such as engineering protective barrier layers tuning electrolyte interfaces developing corrosion-resistant materials and techniques to minimize Mg/Ca-related precipitations. Finally we explore emerging reactor configurations including asymmetric and membrane-free electrolyzers which address some barriers for DSE commercialization. Collectively these insights provide a framework for designing next-generation DSE systems which can achieve large-scale cost-effective and environmentally benign hydrogen production.
Governance of Future-making: Green Hydrogen in Namibia and South Africa
Feb 2025
Publication
The green-hydrogen sector has created considerable expectations in the Global South about export-oriented development and industrial path creation. However whether and how these expectations are really materializing requires further scrutiny. This article develops a conceptual approach that we call governance of futuremaking. Thereby we want to understand how actors try to coordinate their expectations about future economic development in different contexts and across scales over time. We conceptualize the emergence of new regional development trajectories as resulting from the use of governance instruments with an increasing bindingness which reflect the interplay between governance of and by expectations. Based on this approach we analyze and compare green-hydrogen activities in Namibia and South Africa. We find that future-making is becoming more binding in both countries but has not resulted in path creation yet.
Hydrogen Revolution: Artificial Intelligence and Machine Learning Driven Policies, Feasibility, Challenges and Opportunities: Insights from Asian Countries
Aug 2025
Publication
Green hydrogen a zero-carbon emission fuel has become a real competitor to transform the energy market thanks to improvements in the electrolysis process decreased costs and the presence of renewable energy resources. Energy industries have shown considerable progress in hydrogen production due to the incorporation of artificial intelligence (AI) knowledge through algorithms AI-based models and data programs. These techniques can greatly enhance the production storage and transportation of hydrogen fuel. The main goal of this article is to demonstrate the recent technological advancements and the influence of various AI techniques algorithms and models on the hydrogen energy sector along with this further examination of the energy policies of countries like China Japan India and South Korea. The key challenges related to these energy policies are addressed through standardized datasets AI models and optimized environmental conditions. This paper serves as a valuable resource for researchers engineers and practitioners interested in applying cutting-edge technologies to enhance hydrogen safety systems. AI-based models contribute to the overall shift towards a sustainable energy future by enhancing efficiency reducing costs and facilitating hydrogen energy commerce for Asian countries. This study accelerates the global investigation and tremendous applications of sophisticated machine-learning methodologies for producing renewable green hydrogen.
Enhancing Efficiency in Photovoltaic Hydrogen Production: A Comparative Analysis of MPPT and Electrolysis Control Strategies
Feb 2025
Publication
With the rapid growth of photovoltaic installed capacity photovoltaic hydrogen production can effectively solve the problem of electricity mismatch between new energy output and load demand. Photovoltaic electrolysis systems pose unique challenges due to their nonlinear multivariable and complex nature. This paper presents a thorough investigation into the control methodologies for such systems focusing on both Maximum Power Point Tracking (MPPT) and electrolysis cell control strategies. Beginning with a comprehensive review of MPPT techniques including classical intelligent optimization and hybrid approaches the study delves into the intricate dynamics of Proton Exchange Membrane Electrolysis Cells (PEMEL). Considering the nonlinear and time-varying characteristics of PEMEL various control strategies such as Proportional-Integral-Derivative (PID) robust Model Predictive Control (MPC) and Fault Tolerant Control (FTC) are analyzed. Evaluation metrics encompass stability accuracy computational complexity and response speed. This paper provides a comparative analysis encapsulating the strengths and limitations of each MPPT and PEM control technique.
The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis
Jan 2024
Publication
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis utilizing pure water has proven to be a robust technology for clean hydrogen production. Recently seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However seawater electrolysis faces several challenges including the slow kinetics of the oxygen evolution reaction (OER) the competing chlorine evolution reaction (CER) processes electrode degradation caused by chloride ions and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl− under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
Aug 2025
Publication
The maritime industry while indispensable to global trade is a significant contributor to greenhouse gas (GHG) emissions accounting for approximately 3% of global emissions. As international regulatory bodies particularly the International Maritime Organization (IMO) push for ambitious decarbonization targets hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods storage technologies onboard propulsion systems and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogenpowered vessels with conventional diesel engines revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs storage limitations and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies technological innovation and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector.
Everything About Hydrogen Podcast: Electric or Hydrogen? It's 'AND' not 'OR'
May 2023
Publication
On this weeks episode we have Juergen Guldner General Program Manager Hydrogen Technology at BMW. The role of hydrogen in passenger vehicles has for many years been seen as a lonely pursuit for Toyota and Hyundai but the landscape is changing. With the Warrego from startup H2X the Ford H2 pick up the Grenadier/Defender F-Cell from INEOS and now the BMW IX5 it is clear that the race to net zero is far from settled!
In this episode the team dive into the what why and how of the BMW story towards one of the world’s most exciting zero emission vehicle offerings. We explore the details of the vehicle and its performance the reasons why BMW are exploring the potential for hydrogen and why now is the time they feel for hydrogen as a passenger vehicle solution to compliment BEV and finally the How or rather the plan for the testing and broader roll-out of not only the IX5 but also the infrastructure that supports it.
The podcast can be found on their website.
In this episode the team dive into the what why and how of the BMW story towards one of the world’s most exciting zero emission vehicle offerings. We explore the details of the vehicle and its performance the reasons why BMW are exploring the potential for hydrogen and why now is the time they feel for hydrogen as a passenger vehicle solution to compliment BEV and finally the How or rather the plan for the testing and broader roll-out of not only the IX5 but also the infrastructure that supports it.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Getting Steel in the Ground in an IRA Driven H2 Market
May 2023
Publication
On this episode we speak with Scott Weiss Senior Vice President for Corporate Strategy and Ashleigh Cotting Senior Manager for Green Fuels Marketing with Apex Clean Energy. Apex has a history of developing utility scale renewables with more than 2GW under management and with nearly 8GW of renewables financed. Apex also partnered with Plug Power in April 2021 to develop a 345MW wind facility to support a 30 tonne per day green hydrogen production facility.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
Geomechanical and Geochemical Considerations for Hydrogen Storage in Shale and Tight Reservoirs
Aug 2025
Publication
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage playing a critical role in the transition to a hydrogenbased economy. However the successful deployment of UHS in these low-permeability formations depends on a thorough understanding of the geomechanical and geochemical factors that affect storage integrity injectivity and long-term stability. This review critically examines the geomechanical aspects including stress distribution rock deformation fracture propagation and caprock integrity which govern hydrogen containment under subsurface conditions. Additionally it explores key geochemical challenges such as hydrogen-induced mineral alterations adsorption effects microbial activity and potential reactivity with formation fluids to evaluate their impact on storage feasibility. A comprehensive analysis of experimental studies numerical modeling approaches and field applications is presented to identify knowledge gaps and future research directions.
Mutli-scale Solar-to-hydrogen System Design: An Open-source Modeling Framework
Sep 2025
Publication
Hydrogen produced from renewable energy holds significant potential in providing sustainable solutions to achieve Net-Positive goals. However one technical challenge hindering its widespread adoption is the absence of open-source precise modeling tools for sizing and simulating integrated system components under realworld conditions. In this work we developed an adaptable user-friendly and open-source Python® model that simulates grid-connected battery-assisted photovoltaic-electrolyzer systems for green hydrogen production and conversion into high-value chemicals and fuels. The code is publicly available on GitHub enabling users to predict solar hydrogen system performance across various sizes and locations. The model was applied to three locations with distinct climatic patterns – Sines (Portugal) Edmonton (Canada) and Crystal Brook (Australia) – using commercial photovoltaic and electrolyzer systems and empirical data from different meteorological databases. Sines emerged as the most productive site with an annual photovoltaic energy yield 39 % higher than Edmonton and 9 % higher than Crystal Brook. When considering an electrolyzer load with 0.5 WEC/Wp PV capacity solely powered by the photovoltaic park the solar-to-hydrogen system in Sines can reach an annual green hydrogen production of 27 g/Wp PV and export 283 Wh/Wp PV of surplus electricity to the grid. Continuous 24/7 electrolyzer operation increased the annual hydrogen output to 33 g/Wp PV with a reduced Levelized Cost of Hydrogen of €6.42/kgH2. Overall this work aims to advance green hydrogen production scale-up fostering a more sustainable global economy.
Recent Updates in Direct Radiation Water-splitting Methods of Hydrogen Production
Dec 2023
Publication
The exploration of green energy is a demanding issue due to climate change and ecology. Green energy hydrogen is gaining importance in the area of alternative energy sources. Many methods are being explored for this but most of them are utilizing other sources of energy to produce hydrogen. Therefore these approaches are not economic and acceptable at the industrial level. Sunlight and nuclear radiation as free or low-cost energy sources to split water for hydrogen. These methods are gaining importance in recent times. Therefore attempts are made to explore the latest updates in direct radiation water-splitting methods of hydrogen production. This article discusses the advances made in green hydrogen production by water splitting using visible and UV radiations as these are freely available in the solar spectrum. Besides water splitting by gamma radiation (a low-cost energy source) is also reviewed. Eforts are also made to describe the water-splitting mechanism in photo- and gamma-mediated water splitting. In addition to these challenges and future perspectives have also been discussed to make this article useful for further advanced research.
A Review of Hydrogen Storage and Transportation: Progresses and Challenges
Aug 2024
Publication
This review aims to summarize the recent advancements and prevailing challenges within the realm of hydrogen storage and transportation thereby providing guidance and impetus for future research and practical applications in this domain. Through a systematic selection and analysis of the latest literature this study highlights the strengths limitations and technological progress of various hydrogen storage methods including compressed gaseous hydrogen cryogenic liquid hydrogen organic liquid hydrogen and solid material hydrogen storage as well as the feasibility efficiency and infrastructure requirements of different transportation modes such as pipeline road and seaborne transportation. The findings reveal that challenges such as low storage density high costs and inadequate infrastructure persist despite progress in high-pressure storage and cryogenic liquefaction. This review also underscores the potential of emerging technologies and innovative concepts including metal–organic frameworks nanomaterials and underground storage along with the potential synergies with renewable energy integration and hydrogen production facilities. In conclusion interdisciplinary collaboration policy support and ongoing research are essential in harnessing hydrogen’s full potential as a clean energy carrier. This review concludes that research in hydrogen storage and transportation is vital to global energy transformation and climate change mitigation.
Thermo-economic Optimization of a Hybrid Solar-wind Energy System for the Production of Clean Hydrogen and Electricity
Feb 2025
Publication
With the increasing warming of the atmosphere and the growth of energy consumption in the world new methods and highly efficient energy systems take precedence over conventional methods. This study concentrates on the proposition and techno-economical investigation of a hybrid wind-solar energy system encompassing flat plate solar collector for the purpose of clean hydrogen and electricity generation. The proposed system is a combination of flat plate solar collectors wind turbine organic Rankine cycle and proton exchange membrane electrolyser. Wind speed turbine inlet temperature incident solar irradiation and collector-related parameters including its surface area and fluid mass flow rate are selected decision variables the impacts of which on the exergy efficiency and exergy loss of the scheme are examined. The objective functions included total cost rate and total exergy efficiency. The Nelder-Mead optimization method and EES software were utilized to achieve the mentioned goals followed by a comparative case study was conducted for two cities with high potential in Iran. According to the optimization results the exergy efficiency of 13.35% was achieved while the cost rate was equal to $25.48 per hour respectively. According to the sensitivity analysis the increment in the solar collector area incident solar irradiation wind speed and turbine inlet temperature improved the system's technical performance. Furthermore the exergy loss analysis pointed out that the increment in the turbine inlet temperature not only improves the system's performance but also reduces the exergy loss. A comparison of the electricity production in Semnan and Isfahan showed that 1192613.4 and 1188897.6 of electricity were produced in the two cities in one year respectively. The city of Semnan with the production of 2762.86 kg/h of hydrogen presented better system performance compared to the city of Isfahan with 2757.004 kg/h of hydrogen.
Hydrogen from Wastewater by Photocatalytic and Photoelectrochemical Treatment
Dec 2020
Publication
In recent years the intensification of human activities has led to an increase in waste production and energy demand. The treatment of pollutants contained in wastewater coupled to energy recovery is an attractive solution to simultaneously reduce environmental pollution and provide alternative energy sources. Hydrogen represents a clean energy carrier for the transition to a decarbonized society. Hydrogen can be generated by photosynthetic water splitting where oxygen and hydrogen are produced and the process is driven by the light energy absorbed by the photocatalyst. Alternatively hydrogen may be generated from hydrogenated pollutants in water through photocatalysis and the overall reaction is thermodynamically more favourable than water splitting for hydrogen. This review is focused on recent developments in research surrounding photocatalytic and photoelectrochemical hydrogen production from pollutants that may be found in wastewater. The fundamentals of photocatalysis and photoelectrochemical cells are discussed along with materials and efficiency determination. Then the review focuses on hydrogen production linked to the oxidation of compounds found in wastewater. Some research has investigated hydrogen production from wastewater mixtures such as olive mill wastewater juice production wastewater and waste activated sludge. This is an exciting area for research in photocatalysis and semiconductor photoelectrochemistry with real potential for scale up in niche applications.
Energy and Cost Analysis of a Hydrogen Driven High Speed Passenger Ferry
Apr 2020
Publication
BACKGROUND: Norway is facing the challenge of reducing transport emissions. High speed crafts(HSC) are the means of transport with highest emissions. Currently there is little literature or experienceof using hydrogen systems for HSC.OBJECTIVE: Evaluate the economic feasibility of fuel cell (FC) powered HSC vs diesel and biodieseltoday and in a future scenario based on real world operation profile.<br/>METHOD: Historical AIS position data from the route combined with the speed-power characteristicsof a concept vessel was used to identify the energy and power demand. From the resulting data a suitableFC system was defined and an economic comparison made based on annual costs including annualizedinvestment and operational costs.<br/>RESULTS: HSC with a FC-system has an annual cost of 12.6 MNOK. It is 28% and 12% more expensivethan diesel and biodiesel alternative respectively. A sensitivity analysis with respect to 7 key design pa-rameters indicates that highest impact is made by hull energy efficiency FC system cost and hydrogen fuelcost. In a future scenario (2025–2030) with moderate technology improvements and cost developmentthe HSC with FC-systems can become competitive with diesel and cheaper than biodiesel.<br/>CONCLUSIONS: HSC with FC-systems may reach cost parity with conventional diesel in the period2025–2030.
Everything About Hydrogen Podcast: Opportunities in Africa
Sep 2023
Publication
For the second episode in this new season the team interviews Oghosa Erhahon to discuss hydrogen opportunities in Africa including the African Climate Summit in September and what to look forward to at COP28.
The podcast can be found on their website.
The podcast can be found on their website.
Optimization and Dynamic Responses of an Integrated Fuel Cell and Battery System for an 800 kW Ferry: A Case Study
Aug 2022
Publication
The recent targets by different countries to stop the sales or registrations of internal combustion engines (ICE) have led to the further development of battery and fuel cell technologies to provide power for different applications. The main aim of this study is to evaluate the possibility of using an integrated Lithium-Ion battery and proton exchange membrane fuel cell (PEMFC) as the prime mover for a case study of a 800 kW ferry with a total length of 50.8 m to transport 780 passengers for a distance of 24 km in 70 min. Accounting for five types of Lithium-Ion batteries and different numbers of PEMFCs twenty-five scenarios are suggested based on a quasi-static model. To perform the optimization the Performance Criterion of the Fuel cell–Battery integrated systems (PCFB) is introduced to include the effects of the sizes weights costs hydrogen consumption efficiency and power in addition to the number of fuel cells and the battery capacity. Results indicate that the maximum PCFB value of 10.755 (1/kg2m3 $) can be obtained once the overall size weight efficiency hydrogen consumption and cost of the system are 18 m3 11160 kg 49.25% 33.6 kg and 119.58 k$ respectively using the Lithium Titanite Oxide (LTO) Lithium-Ion battery with nine PEMFCs.
No more items...