Publications
Hydrogen UK Supply Chain Strategic Assessment
Sep 2024
Publication
Hydrogen offers the UK a unique opportunity to deliver on our Net Zero ambitions enabling deep decarbonisation of the parts of the energy system that are challenging to electrify balancing the energy system by providing large scale long duration energy storage and reducing pressure on electricity infrastructure. The UK Government in recognition of the centrality of hydrogen to the future energy system has set a 10GW hydrogen production ambition to be achieved by 2030. This ambition and its supporting policies such as the Hydrogen Business Model the Low Carbon Hydrogen Standard and the Hydrogen Transport and Storage Business Models will unlock private sector investment and kick-start the UK’s hydrogen activity. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside a vibrant Research Development and Innovation (RD&I) and engineering environment has enabled rapid deployment of technologies such as offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stabilization using excess energy and the mitigation of curtailment from intermittent renewable energy sources (RES) such as solar and wind. Advanced combined heat and power (CHP) systems comprise of Solid oxide fuel cell (SOFC) module and a coupled reforming reactor to capture energy contained in the SOFC exhaust gases from SOFC. In present work 3D CFD model of an experimental coupled reactor used for onsite hydrogen production is developed and implemented into ANSYS Fluent® software. The study is aimed at opti mizing the reactor performance by identifying appropriate kinetic models for reforming and combustion re actions. SOFC anode off-gas (AOG) comprising mainly of unconverted hydrogen is combined with methane combustion to enhance thermal efficiency of the reactor and hence the CHP system. Kinetic models for catalytic reforming and combustion are implemented into ANSYS Fluent® through custom-built user defined functions (UDFs) written in C programming language. Simulation results are validated with experimental data and found in good agreement. AOG assisted combustion of methane shows a substantial improvement in thermal efficiency of the system. Improvement in thermal efficiency and reduction in carbon-based fuel demand AOG utilization contributes to sustainable hydrogen production and curtailment of greenhouse gas emissions.
Technoeconomic, Environmental and Multi-criteria Decision Making Investigations for Optimisation of Off-grid Hybrid Renewable Energy System with Green Hydrogen Production
Jan 2024
Publication
The current study presents a comprehensive investigation of different energy system configurations for a remote village community in India with entirely renewable electricity. Excess electricity generated by the systems has been stored using two types of energy storage options: lithium-ion batteries and green hydrogen production through the electrolysers. The hybrid renewable energy system (HRES) configurations have been sized by minimising the levelised cost of energy (LCOE). In order to identify the best-performing HRES configuration economic and environmental performance indicators has been analysed using the multi-criteria decision-making method (MCDM) TOPSIS. Among the evaluated system configurations system-1 with a photovoltaic panel (PV) size of 310.24 kW a wind turbine (WT) size of 690 kW a biogas generator (BG) size of 100 kW a battery (BAT) size of 174 kWh an electrolyser (ELEC) size of 150 kW a hydrogen tank (HT) size of 120 kg and a converter (CONV) size of 106.24 kW has been found to be the best-performing system since it provides the highest relative closeness (RC) value (∼0.817) and also has the lowest fuel consumption rate of 2.31 kg/kWh. However system-6 shows the highest amount of CO2 (143.97 kg/year) among all the studied system configurations. Furthermore a detailed technical economic and environmental analysis has been conducted on the optimal HRES configuration. The minimum net present cost (NPC) LCOE and cost of hydrogen (COH) for system 1 has been estimated to be $1960584 $0.44/kWh and $22.3/kg respectively.
The Cost of Clean Hydrogen from Offshore Wind and Electrolysis
Feb 2024
Publication
The decarbonization of industry heating and transportation is a major challenge for many countries’ energy transition. Hydrogen is a direct low-carbon fuel alternative to natural gas offering a higher flexibility in the range of possible applications yet currently most hydrogen is produced using carbonintensive steam methane reforming due to cost considerations. Therefore this study explores the economics of a prominent low-carbon method of hydrogen production comparing the cost of hydrogen generation from offshore wind farms with and without grid electricity imports to conventional hydrogen production methods. A novel techno-economic model for offshore electrolysis production costs is presented which makes hydrogen production fully dispatchable leveraging geological salt-cavern storage. This model determines the lifetime costs aportioned across the system components as well as the Levelized Cost of Hydrogen (LCOH). Using the United Kingdom as a case study LCOH from offshore wind power is calculated to be €8.68 /kgH2 using alkaline electrolysis (AEL) €10.49 /kgH2 using proton exchange membrane electrolysis (PEMEL) and €10.88 /kgH2 with grid electricity to backup the offshore wind power. A stochastic Monte-Carlo model is used to asses the uncertainty on costs and identify the cost of capital electrolyser and wind farm capital costs and cost of electricity as the most important drivers of LCOH across the different scenarios. Reducing the capital cost to comparative levels observed on today’s wind farms alone could see AEL LCOH fall to €5.32 /kgH2 near competitive with conventional generation methods.
Hydrogen Europe Podcast Episode 6 - Exploring Opportunities for EU-Canada Hydrogen Cooperation
Dec 2023
Publication
In the sixth episode titled Exploring Opportunities for EU-Canada Hydrogen Cooperation our CEO Jorgo Chatzimarkakis discusses with John Risley Charmain and CEO of CFFI Ventures and Stefan Kaufmann former Innovation Commissioner for Green Hydrogen of the German government and now adviser to Thyssenkrupp. In the discussion about hydrogen market and technology's development in Canada and in Germany the businessman and the policy advisor bring two different geographical and expertise perspectives about the topic. Taking into consideration the US' IRA Canada's investments in the hydrogen sector and the European plans regarding H2Global and the Hydrogen Bank our guests compare North America and the EU. They debate over the economic and financial support the industry needs to invest in the green energy transition and the role global cooperation and competition play.
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation emerging technologies have vital features such as prominent impact novelty relatively fast growth etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies novelty and prominent impact. After data processing topic modeling and analysis the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts overcoming the wide power fluctuations and large-scale instability of renewable energy power generation and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.
Challenges and Opportunities for Hydrogen Production from Microalgae
Nov 2015
Publication
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050.Together with rising economic growth this is forecast to result in a 50% increase in fueldemand which will have to be met while reducing carbon dioxide (CO 2 ) emissions by 50–80%to maintain social political energy and climate security. This tension between rising fuel demandand the requirement for rapid global decarbonization highlights the need to fast-track thecoordinated development and deployment of efficient cost-effective renewable technologies forthe production of CO 2 neutral energy. Currently only 20% of global energy is provided aselectricity while 80% is provided as fuel. Hydrogen (H 2) is the most advanced CO 2 -free fuel andprovides a ‘common’ energy currency as it can be produced via a range of renewabletechnologies including photovoltaic (PV) wind wave and biological systems such as microalgaeto power the next generation of H 2 fuel cells. Microalgae production systems for carbon-basedfuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating thepotential of microalgal technologies for the commercial production of solar-driven H2 fromwater. It summarizes key global technology drivers the potential and theoretical limits ofmicroalgal H2 production systems emerging strategies to engineer next-generation systems andhow these fit into an evolving H 2 economy.
Hydrogen as an Alternative Fuel: A Comprehensive Review of Challenges and Opportunities in Production, Storage, and Transportation
Jan 2025
Publication
The rapid growth of the global population and industrial activities has significantly increased greenhouse gases (GHGs) emissions with projections indicating a temperature rise of 3–6 ◦C by 2050. Urgent action is needed to limit global warming to 1.5 ◦C above pre-industrial levels. Hydrogen with its high energy density and compatibility with renewable energy systems presents a promising clean energy solution to mitigate GHGs emissions. Yet its widespread adoption faces challenges such as high production costs limited infrastructure and an underdeveloped value chain. At present approximately 96% of global hydrogen production relies on fossil fuels contributing to substantial emissions while only 4% comes from water electrolysis. Green hydrogen produced via electrolysis with 55–80% efficiency remains expensive at $2.28–7.39/kg compared to grey hydrogen at $0.67–1.31/kg which generates 8.5 kg CO₂ per kg of hydrogen production. Hydrogen’s low density poses challenges for storage while transportation risks and insufficient infrastructure create further obstacles. The lack of global standards and investment uncertainties further impede the development of a comprehensive hydrogen economy. This review evaluates hydrogen’s potential as a sustainable energy carrier providing in sights into advancements and ongoing challenges in production storage and transportation. Key findings highlight the necessity of coordinated efforts to enhance storage technologies lower production costs and establish supportive policies highlighting hydrogen’s critical role in achieving a sustainable energy transition.
Active Energy Management Based on Meta-Heuristic Algorithms of Fuel Cell/Battery/Supercapacitor Energy Storage System for Aircraft
Mar 2021
Publication
This paper presents the application of an active energy management strategy to a hybrid system consisting of a proton exchange membrane fuel cell (PEMFC) battery and supercapacitor. The purpose of energy management is to control the battery and supercapacitor states of charge (SOCs) as well as minimizing hydrogen consumption. Energy management should be applied to hybrid systems created in this way to increase efficiency and control working conditions. In this study optimization of an existing model in the literature with different meta-heuristic methods was further examined and results similar to those in the literature were obtained. Ant lion optimizer (ALO) moth-flame optimization (MFO) dragonfly algorithm (DA) sine cosine algorithm (SCA) multi-verse optimizer (MVO) particle swarm optimization (PSO) and whale optimization algorithm (WOA) meta-heuristic algorithms were applied to control the flow of power between sources. The optimization methods were compared in terms of hydrogen consumption and calculation time. Simulation studies were conducted in Matlab/Simulink R2020b (academic license). The contribution of the study is that the optimization methods of ant lion algorithm moth-flame algorithm and sine cosine algorithm were applied to this system for the first time. It was concluded that the most effective method in terms of hydrogen consumption and computational burden was the sine cosine algorithm. In addition the sine cosine algorithm provided better results than similar meta-heuristic algorithms in the literature in terms of hydrogen consumption. At the same time meta-heuristic optimization algorithms and equivalent consumption minimization strategy (ECMS) and classical proportional integral (PI) control strategy were compared as a benchmark study as done in the literature and it was concluded that meta-heuristic algorithms were more effective in terms of hydrogen consumption and computational time.
Optimal Scheduling of an Electric-Hydrogen-Integrated Energy System Considering Virtual Energy Storage
Jan 2024
Publication
In this paper a two-layer optimization approach is proposed to facilitate the multi-energy complementarity and coupling and optimize the system configuration in an electric-hydrogen-integrated energy system (EH-IES). Firstly an EH-IES with virtual energy storage is proposed to reduce the cost of physical energy storage equipment. Secondly a two-layer optimal allocation method is proposed under a multi-timescale strategy to examine the comprehensive evaluation index of environmental protection and economy. The upper layer utilizes the NSGA-II multi-objective optimization method for system capacity allocation while the lower layer performs economic dispatch at the lowest cost. Ultimately the output includes the results of the equipment capacity allocation of the EH-IES that satisfies the reliability constraint interval and the daily scheduling results of the equipment. The results demonstrate that the electric-hydrogen-integrated energy system with the coupling of multiple energy equipment not only enhances the utilization of renewable energy sources but also reduces the usage of fossil energy and improves the system’s reliability.
Selecting Appropriate Energy Source Options for an Arctic Research Ship
Dec 2023
Publication
Interest in more sustainable energy sources has increased rapidly in the maritime industry and ambitious goals have been set for decreasing ship emissions. All industry stakeholders have reacted to this with different approaches including the optimisation of ship power plants the development of new energy-improving sub-systems for existing solutions or the design of entirely novel power plant concepts employing alternative fuels. This paper assesses the feasibility of different ship energy sources for an icebreaking Arctic research ship. To that end possible energy sources are assessed based on fuel infrastructure availability and operational endurance criteria in the operational area of interest. Promising alternatives are analysed further using the evidence-based Strengths Weaknesses Opportunities and Threats (SWOT) method. Then a more thorough investigation with respect to the required fuel tank space life cycle cost and CO2 emissions is implemented. The results demonstrate that marine diesel oil (MDO) is currently still the most convenient solution due to the space operational range and endurance limitations although it is possible to use liquefied natural gas (LNG) and methanol if the ship’s arrangement is radically redesigned which will also lead to reduced emissions and life cycle costs. The use of liquefied hydrogen as the only energy solution for the considered vessel was excluded from the potential options due to low volumetric energy density and high life cycle and capital costs. Even if it is used with MDO for the investigated ship the reduction in CO2 emissions will not be as significant as for LNG and methanol at a much higher capital and lifecycle cost. The advantage of the proposed approach is that unrealistic alternatives are eliminated in a systematic manner before proceeding to detailed techno-economic analysis facilitating the decision-making and investigation of various options in a more holistic manner.
Techno-economic and Environmental Assessment of a Solar-powered Multi-generation System for a Sustainable Energy, Hydrogen and Fresh-water Production
Jul 2025
Publication
This study presents a comprehensive 4E (energy exergy economic and exergo-environmental) analysis of a solar-powered multi-generation system (MGS) that integrates parabolic trough collectors (PTCs) thermal energy storage (TES) an organic Rankine cycle (ORC) an absorption refrigeration cycle (ARC) a proton exchange membrane electrolyzer (PEME) and a reverse osmosis (RO) unit to simultaneously produce electricity cooling potable water and hydrogen. A complete thermodynamic model is developed in Engineering Equation Solver (EES) to evaluate the system from technical economic and environmental perspectives. Results indicate that the MGS can convert solar energy into multiple outputs with energy and exergy efficiencies of 12.2% and 4.3% respectively. The highest and lowest energy efficiencies are found in PEME (58.6%) and ORC (7.4%) while the highest and lowest exergy efficiencies are related to PEME (57.4%) and PTC (11.9%) respectively. Despite notable environmental impacts from the complex subsystems (particularly PTC and PEME) the system demonstrates strong economic performance with a net present value of approximately USD 8 million an internal rate of return of 30% and a payback period of 3.8 years. Sensitivity analysis shows that increasing solar radiation reduces the number of required PTCs and shortens payback time with less effect on energy and exergy efficiencies due to increased thermal and radiative losses.
A Novel Hydrogen Supply Chain Optimization Model - Case Study of Texas and Louisiana
Jun 2024
Publication
The increasing political momentum advocating for decarbonization efforts has led many governments around the world to unveil national hydrogen strategies. Hydrogen is viewed as a potential enabler of deep decarbonization notably in hard-to-abate sectors such as the industry. A multi-modal hourly resolved linear programming model was developed to assess the infrastructure requirements of a low-carbon supply chain over a large region. It optimizes the deployment of infrastructure from 2025 up to 2050 by assessing four years: 2025 2030 2040 and 2050 and is location agnostic. The considered infrastructure encompasses several technologies for production transmission and storage. Model results illustrate supply chain requirements in Texas and Louisiana. Edge cases considering 100% electrolytic production were analyzed. Results show that by 2050 with an assumed industrial demand of 276 TWh/year Texas and Louisiana would require 62 GW of electrolyzers 102 GW of onshore wind and 32 GW of solar panels. The resulting levelized cost of hydrogen totaled $5.6–6.3/kgH2 in 2025 decreasing to $3.2–3.5/ kgH2 in 2050. Most of the electricity production occurs in Northwest Texas thanks to high capacity factors for both renewable technologies. Hydrogen is produced locally and transmitted through pipelines to demand centers around the Gulf Coast instead of electricity being transmitted for electrolytic production co-located with demand. Large-scale hydrogen storage is highly beneficial in the system to provide buffer between varying electrolytic hydrogen production and constant industrial demand requirements. In a system without low-cost storage liquid and compressed tanks are deployed and there is a significant renewable capacity overbuild to ensure greater electrolyzer capacity factors resulting in higher electricity curtailment. A system under carbon constraint sees the deployment of natural gas-derived hydrogen production. Lax carbon constraint target result in an important reliance on this production method due to its low cost while stricter targets enforce a great share of electrolytic production.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
Net Zero Fuel (Mixed Hydrogen and Biofuels) Cement Clinker: Characterisation, Microstructure, and Performance
Oct 2024
Publication
Over 35% of the CO2 associated with cement production comes from operational energy. The cement industry needs alternative fuels to meet its net zero emissions target. This study investigated the influence of hydrogen mixed with biofuels herein designated net zero fuel as an alternative to coal on the clinker quality and performance of cement produced in an industrial cement plant. Scanning electron microscopy X-ray diffraction and nuclear magnetic resonance were coupled to study the clinker mineralogy and polymorphs. Hydration and microstructure development in plain and slag blended cements based on the clinker were compared to commercial cement equivalent. The results revealed a lower alite/belite ratio but a significant proportion of the belite was of the α’H-C2S polymorph. These reacted faster and compensated for the alite/belite ratio. Gel and micro-capillary pores were densified which reduced total porosity and attained comparable strength to the reference plain and blended cement. This study demonstrates that the investigated net zero fuel-produced clinker meets compositional and strength requirements for plain and blended cement providing a feasible pathway for the cement industry to lower its operational carbon significantly.
Towards Sustainable Mobility: A Systematic Review of Hydrogen Refueling Station Security Assessment and Risk Prevention
Jan 2025
Publication
The signing of the Paris Agreement in 2016 established the goals of countries around the world for the transition from traditional fossil energy to sustainable energy in the 21st century. Reduce carbon emissions using new sustainable energy sources while safeguarding the energy needs of social development. The advantages of hydrogen fuel cell vehicles such as no carbon emissions long battery life and short hydrogenation time make them the development direction of new energy vehicles in many countries. Many countries such as the United Kingdom China and Japan have formulated hydrogen energy development plans. As the hub and supply station of the hydrogen energy transportation network the hydrogen refueling station is crucial to the development of the hydrogen economy. This paper summarizes the current main hydrogen storage methods and the existing risks analyzes the main security threats of hydrogen refueling stations and discusses the security system to prevent hydrogen embrittlement and hydrogen explosion. Finally the hydrogen refueling station is compared with the petrol station and the future security development and management pattern of the hydrogen refueling station is summarized. The security assessment of the hydrogen refueling station is carried out in this paper which provides theoretical support for the development of hydrogen refueling stations from the perspective of security.
Hydrogen Risk Assessment Studies: A Review Toward Environmental Sustainability
Jan 2025
Publication
The transition to hydrogen as a clean energy source is critical for addressing climate change and supporting environmental sustainability. This review provides an accessible summary of general research trends in hydrogen risk assessment methodologies enabling diverse stakeholders including researchers policymakers and industry professionals to gain insights into this field. By examining representative studies across theoretical experimental and simulation-based approaches the review highlights prominent trends and applications within academia and industry. The key focus is on evaluating risks in stationary and transportation applications paying particular attention to hydrogen storage systems transportation infrastructures and energy systems. By offering a concise yet informative summary of hydrogen risk assessment trends this paper aims to serve as a foundational resource for fostering safer and more sustainable hydrogen systems.
Economic Analysis of Supply Chain for Offshore Wind Hydrogen Production for Offshore Hydrogen Refueling Stations
Jan 2025
Publication
In order to solve the problem of large-scale offshore wind power consumption the development of an offshore wind power hydrogen supply chain has become one of the trends. In this study 10 feasible options are proposed to investigate the economics of an offshore wind hydrogen supply chain for offshore hydrogen refueling station consumption from three aspects: offshore wind hydrogen production storage and transportation and application. The study adopts a levelized cost analysis method to measure the current and future costs of the hydrogen supply chain. It analyses the suitable transport modes for delivering hydrogen to offshore hydrogen refueling stations at different scales and distances as well as the profitability of offshore hydrogen refueling stations. The study draws the following key conclusions: (1) the current centralised wind power hydrogen production method is economically superior to the distributed method; (2) gas-hydrogen storage and transportation is still the most economical method at the current time with a cost of CNY 32.14/kg which decreases to CNY 13.52/kg in 2037 on a par with the cost of coal-based hydrogen production using carbon capture technology; and (3) at the boundaries of an operating load factor of 70% and a selling price of CNY 25/kg the offshore hydrogen refueling station. The internal rate of return (IRR) is 21% showing good profitability; (4) In terms of the choice of transport mode for supplying hydrogen to the offshore hydrogen refueling station gas-hydrogen ships and pipeline transport will mainly be used in the near future while liquid organic hydrogen carriers and synthetic ammonia ships can be considered in the medium to long term.
Advancements in Hydrogen Storage Vessels: A Bibliometric Analysis
Feb 2025
Publication
This bibliometric study examines the evolution of compressed-hydrogen storage technologies over the last 20 years revealing exponential growth in research and highlighting key advancements in compressed-hydrogen storage materials-based solutions and integration with renewable energy systems. The analysis highlights the pivotal role of composite material tanks and the filament-winding process in revolutionizing storage technology. These innovations have enhanced safety reduced weight and facilitated adaptation for use in automotive and industrial applications. Global research efforts are characterized by substantial international collaboration spearheaded by a small cohort of highly productive researchers and supported by a broader network of contributors. Notwithstanding the ongoing challenges pertaining to safety considerations and cost scalability the potential of hydrogen as a clean energy carrier and its role in balancing renewable energy systems serve to reinforce its importance in the transition to sustainable energy.
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
Aug 2025
Publication
Given the urgent need to decarbonize the global energy system green hydrogen has emerged as a key alternative in the transition to renewables. However its production via electrolysis demands high water quality and raises environmental concerns particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm) moderate (411–900 µS/cm) and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency energy use waste generation and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment stressing the need for clear environmental guidelines to ensure project sustainability.
In-house Green Hydrogen Production for Steelmaking Decarbonisation using Steel Slag as Thermal Energy Storage Material: A Life Cycle Assessment
Nov 2024
Publication
Steel production is a highly energy-intensive industry responsible for significant greenhouse gas emissions. Electrification of this sector is challenging making green hydrogen technology a promising alternative. This research performs a thermodynamic analysis of green hydrogen production for steel manufacturing using the direct reduction method. Four solid oxide electrolyzer (SOE) modules replace the traditional reformer to produce 2.88 kg/s of hydrogen gas serving as a reducing agent for iron pellets to yield 30 kg/s of molten steel. These modules are powered by 37801 photovoltaic units. Additionally a thermal storage system utilizing 1342 tons of steel slag stores waste heat from Electric Arc Furnace (EAF) exhaust gases. This stored energy preheats iron scraps charged into the EAF reducing energy consumption by 5%. A life cycle assessment conducted using open LCA software reveals that the global warming potential (GWP) for the entire process with a capacity of 30 kg/s equates to 93 kg of CO2. The study also assesses other environmental impacts such as acidification potential ozone formation fine particle formation and human toxicity. Results indicate that the EAF significantly contributes to global warming and fine particle formation while the direct reduction process notably impacts ozone formation and acidification potential.
A Comprehensive Review of the State-of-the-art of Proton Exchange Membrane Water Electrolysis
Jul 2024
Publication
Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides PEMWE cells are characterized by a fast system response to fluctuating renewable power enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently much effort has been devoted to improving the efficiency performance durability and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials protective coatings and material characterizations as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further many modeling studies have been reported to analyze cell performance considering cell electrochemistry overvoltage and thermodynamics. Thus it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition the electrochemical activity and stability of various catalyst materials are reviewed. Further the thermodynamics and electrochemistry of electrolytic water splitting are described and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling aimed at analyzing the performance of PEMWE cells is compiled. Overall this article provides the advancements in cell components materials electrocatalysts and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.
Comparative Assessment of Hydrogen and Methanol-Derived Fuel Co-Combustion for Improved Natural Gas Boiler Performance and Sustainability
Jan 2025
Publication
Faced with a global consensus on net-zero emissions the use of clean fuels to entirely or substantially replace traditional fuels has emerged as the industry’s primary development direction. Alcohol–hydrogen fuels primarily based on methanol are a renewable and sustainable energy source. This research focuses on energy sustainability and presents a boiler fuel blending system that uses methanol–hydrogen combinations. This system uses the boiler’s waste heat to catalytically decompose methanol into a gas mostly consisting of H2 and CO which is then co-combusted with the original fuel to improve thermal efficiency and lower emissions. A comparative experimental study considering natural gas (NG) blending with hydrogen and dissociated methanol gas (DMG) was carried out in a small natural gas boiler. The results indicate that with a controlled mixed fuel flow of 10 m3/h and an excess air coefficient of 1.2 a 10% hydrogen blending ratio maximizes the boiler’s thermal efficiency (ηt) resulting in a 3.5% increase. This ratio also results in a 1% increase in NOx emissions a 25% decrease in HC emissions and a 5.66% improvement in the equivalent economics (es). Meanwhile blending DMG at 15% increases the boiler’s ηt by 3% reduces NOx emissions by 13.8% and HC emissions by 20% and improves the es by 8.63%. DMG as a partial substitute for natural gas outperforms hydrogen in various aspects. If this technology can be successfully applied and promoted it could pave a new path for the sustainable development of energy in the boiler sector.
Future Technological Directions for Hydrogen Internal Combustion Engines in Transport Applications
Oct 2024
Publication
The paper discusses some of the requirements drivers and resulting technological paths for manufacturers to develop hydrogen combustion engines for use in two types of market application – onroad heavy- and light-duty. One of the main requirements is legislative certainty and this has now been afforded – at least in the major market of Europe – by the European Union’s recent adoption into law of tailpipe emissions limits specifically designed to encourage the uptake of hydrogen engines in heavy-duty vehicles giving manufacturers the confidence they need to invest in productionized solutions to offer to customers. It then discusses combustion systems and boosting systems for the two market types emphasizing that heavy-duty vehicles need best efficiency throughout their operating map while light-duty ones since they are rarely operated at full load will mainly primarily need efficiency in the part-load region. This difference will likely cause a divergence in solutions with heavy-duty engines running very lean everywhere and light-duty ones likely operating at the stoichiometric air-fuel ratio at least for most of the map. The impacts of the strategies on engine systems and vehicle integration are discussed. It is postulated that due to reasons of preignition avoidance and efficiency hydrogen engines will rapidly adopt direct injection and that the long-term heavy-duty types will migrate towards the typical current spark-ignition-type cylinder head architecture where tumble rather than swirl will ultimately be needed for air motion in the cylinder for these reasons. They may also adopt active pre-chamber technology to ignite extremely lean mixtures for maximum efficiency and minimum emissions of oxides of nitrogen. It is suggested that light-duty engines will evolve less from their current gasoline architectural norm since they already contain all of the necessary fundamentals for hydrogen combustion. However since partload efficiency will be important some new strategies may become desirable. Developing dual-fuel light-duty engines could accelerate their uptake as the heavy-duty market simultaneously accelerates the creation of the fuel supply infrastructure. The likely technological evolution suggests that variable valve trains and specifically cam profile switching technology would be extremely useful for all types of hydrogen engine especially since they are readily available in different gasoline engines now. New operating strategies afforded by variable valve trains would benefit both heavy- and light-duty engines and these strategies will become more sophisticated. There will therefore likely be a convergence of technologies for the two markets albeit with some key differences maintained due to their vehicle applications and their differing operation in the field.
Insights into Site Evaluation for Underground Hydrogen Storage (UHS) on Gas Mixing-the Effects of Meter-Scale Heterogeniety and Associated Reservoir Characterization Parameters
Feb 2025
Publication
Underground Hydrogen Storage (UHS) as an emerging large-scale energy storage technology has shown great promise to ensure energy security with minimized carbon emission. A set of comprehensive UHS site evaluation criteria based on important factors that affect UHS performances is needed for its potential commercialization. This study focuses on the UHS site evaluation of gas mixing. The economic implications of gas mixing between injected hydrogen gas and the residual or cushion gas in a porous storage reservoir is an emerging problem for Underground Hydrogen Storage (UHS). It is already clear that reservoir scale heterogeneity such as formation structure (e.g. formation dip angle) and facies heterogeneity of the sedimentary rock may considerably affect the reservoir-scale mechanical dispersion-induced gas mixing during UHS in high permeability braided-fluvial systems (a common depleted reservoir type for UHS). Following this finding the current study uses the processmimicking modeling software to build synthetic meandering-fluvial reservoir models. Channel dimensions and the presence of abandoned channel facies are set as testing parameters resulting in 4 simulation cases with 200 realizations. Numerical flow simulations are performed on these models to investigate and compare the effects of reservoir and metre-scale heterogeneity on UHS gas mixing. Through simulation channel dimensions (reservoir-scale heterogeneity) are found to affect the uncertainty of produced gas composition due to mixing (represented by the P10-P90 difference of hydrogen fraction in a produced stream) by up to 42%. The presence of abandoned channel facies (metre-scale heterogeneity) depending on their architectural relationship with meander belts could also influence the gas mixing process to a comparable extent (up to 40%). Moreover we show that there is no clear statistical correlation between gas mixing and typical reservoir characterization parameters such as original gas in place (OGIP) average reservoir permeability and the Dykstra-Parsons coefficient. Instead the average time of travel of all reservoir cells calculated from flow diagnostics shows a negative correlation with the level of gas mixing. These results reveal the importance of 3D reservoir architecture analysis (integration of multiple levels of heterogeneity) to UHS site evaluation on gas mixing in depleted gas reservoirs. This study herein provides valuable insights into UHS site evaluation regarding gas mixing.
Does the Public Want Green Hydrogen in Industry? Local and National Acceptance of Methanol and Steel Transitions in Germany
Feb 2025
Publication
Public perceptions might determine the ease of the transition from a fossil-based to a green hydrogen-based production pathway in the industrial sector. The primary objective of this paper is to empirically identify the antecedents of the acceptance of two relevant industrial applications of green hydrogen: green methanol and green steel. The analysis relying on linear regression models utilises survey data from samples of residents near a chemical park and a steel plant (509 and 502 participants respectively) contrasting them with a representative sample of 1502 individuals in Germany. The findings suggest that acceptance of the transitions to green methanol and green steel is high both locally and nationally. In all surveys >59 % of the participants are in favour while the share of those who are opposed to the respective transitions is below 9 %. Key antecedents of acceptance which are conducive in all models relate to individuals’ attitudes towards green hydrogen and perceptions of the legitimacy of the industry actors involved with varying results across legitimacy types. In general the findings were similar across industrial applications and across levels of observation but varied across regions. This study highlights the importance of civil society perceptions and suggests that relationship management efforts aimed at maintaining positive perceptions of industrial hydrogen applications should consider their broader physical and social contexts.
Optimizing Flexibility and Low-carbon Emissions in Integrated Energy Systems: A Two-stage Robust Optimization Model Invrporating Hydrogen and Carbon Trading
Jan 2025
Publication
Source-load output uncertainty poses significant risks to the stable operation of Integrated Energy Systems (IESs). To ensure safe and stable system operation while optimizing the balance among robustness economic viability and low-carbon emissions this paper presents a two-stage robust optimal scheduling model for IESs. This model is supported by hydrogen-containing electric dual-energy conversion characteristics under source-load uncer tainty. Additionally to promote the low-carbon characteristics of the system a ladder carbon trading mechanism is introduced on the source side of the carbon source equipment. Furthermore the integration of hydrogen energy enhances the clean characteristics of source-side multi-energy coupling. The proposed utilization mode Power-to-Hydrogen Hydrogen-to-Power Hydrogen Energy Storage and Hydrogen Load (P2H-H2P-HES-HL) allows for bidirectional conversion thereby increasing the flexibility and responsiveness of overall system scheduling. Finally to ensure that the model closely reflects actual operational and scheduling conditions a twophase robust approach is employed to address source-load uncertainties. This approach is solved iteratively using the linear transformation of the Karush-Kuhn-Tucker (KKT) conditions and the Column-and-Constraint Gener ation (C&CG) algorithm. The results demonstrate that the proposed model significantly enhances the scheduling capability of the system in coping with uncertainty thereby effectively ensuring its flexibility and security
The Development, Current Status and Challenges of Salt Cavern Hydrogen Storage Technology in China
Feb 2025
Publication
This paper provides a systematic visualization of the development current status and challenges of salt cavern hydrogen storage technology based on the relevant literature from the past five years in the Web of Science Core Collection database. Using VOSviewer (version 1.6.20) and CiteSpace software (advanced version 6.3.R3) this study analyzes the field from a knowledge mapping perspective. The findings reveal that global research hotspots are primarily focused on multi-energy collaboration integration of renewable energy systems and exploration of commercialization highlighting the essential role of salt cavern hydrogen storage in driving the energy transition and promoting sustainable development. In China research mainly concentrates on theoretical innovations and technological optimizations to address complex geological conditions. Despite the rapid growth in the number of Chinese publications unresolved challenges remain such as the complexity of layered salt rock and thermodynamic coupling effects during highfrequency injection and extraction as well as issues concerning permeability and microbial activity. Moving forward China’s salt cavern hydrogen storage technology should focus on strengthening engineering practices suited to local geological conditions and enhancing the application of intelligent technologies thereby facilitating the translation of theoretical research into practical applications.
Steam Reforming for Winery Wastewater Treatment: Hydrogen Production and Energy Self-sufficiency Assessment
Jan 2025
Publication
A thermodynamic assessment using Gibbs free energy minimization to explore the potential of winery wastewater steam reforming (WWWSR) as a technique to treat water while simultaneously producing renewable hydrogen was conducted for the first time. This assessment focused on four types of reactors: a conventional reactor (CR) a sorption-enhanced reactor (SER) with CO2 capture a membrane reactor (MR) with H2 removal and a sorption-enhanced membrane reactor (SEMR) that combines features of both the SER and MR. The effects on WWWSR of temperature pressure water content in the feed composition of winery wastewater (WWW) sorbent to feed ratio (SFR) and the split fraction of H2 in the membrane were studied. For the CR SER MR and SEMR the study showed that low pressures and high water content in the reactor inlet resulted in higher hydrogen production. Considering a representative WWW composition with a water content of 75 wt% in the feed it was shown that the CR needed to operate at extremely high temperatures (over 600 ◦C) to maximize H2 yield while producing less hydrogen than its counterparts. In contrast the MR and SER achieved higher hydrogen production at optimal temperatures around 500 ◦C while the SEMR performed even better producing more hydrogen at just 400 ◦C. Moreover the organic composition of the feed stream did not significantly influence the optimal temperature and pressure conditions for maximizing hydrogen production. However wastewater with a higher fraction of sugars generated more hydrogen whereas wastewater with a higher fraction of acetic acid produced less hydrogen via the steam reforming reaction. Notably a novel energy analysis was conducted demonstrating that the energy self-sufficiency of this process changed drastically when different reactor types were considered. Only the MR with a high degree of hydrogen separation in the membrane the SER with optimal quantities of CO2-capturing sorbent and the SEMR can be energetically selfsufficient as they produce enough hydrogen to offset the energy expenditure associated with steam reforming
Impact of Control Strategies on the Degradation of Hybrid Hydrogen-battery Powertrains in Railway Applications
Sep 2025
Publication
Hybrid hydrogen-battery powertrains represent a promising solution for sustainable transport. In these systems a fuel cell converts hydrogen into electricity to power the motors and charge a battery which in turn manages power fluctuations and enables regenerative braking. This study investigates degradation in hybrid powertrain components for the railway sector focusing on optimizing their operation to enhance durability. The analysis applied to a real case study on a non-electrified railway line in northern Italy evaluates different operating strategies by constraining the fuel cell current ramp. The results show that operating the fuel cell with minimal power fluctuations – while relying on the battery to handle power peaks – offers a clear advantage. Specifically reducing the maximum fuel cell current ramp from 1500 A/s (load-following operation) to 1 A/s (near-constant operation) extends fuel cell lifetime by 50.5 % though at the expense of a 25.1 % reduction in battery lifetime.
Modeling and Optimization of Renewable Hydrogen Systems: A Systematic Methodological Review and Machine Learning Integration
Nov 2024
Publication
The renewable hydrogen economy is recognized as an integral solution for decarbonizing energy sectors. However high costs have hindered widespread deployment. One promising way of reducing the costs is optimization. Optimization generally involves finding the configuration of the renewable generation and hydrogen system components that maximizes return on investment. Previous studies have included many aspects into their optimisations including technical parameters and different costs/socio-economic objective functions however there is no clear best-practice framework for model development. To address these gaps this critical review examines the latest development in renewable hydrogen microgrid models and summarises the best modeling practice. The findings show that advances in machine learning integration are improving solar electricity generation forecasting hydrogen system simulations and load profile development particularly in data-scarce regions. Additionally it is important to account for electrolyzer and fuel cell dynamics rather than utilizing fixed performance values. This review also demonstrates that typical meteorological year datasets are better for modeling solar irradiation than first-principle calculations. The practicability of socio-economic objective functions is also assessed proposing that the more comprehensive Levelized Value Addition (LVA) is best suited for inclusion into models. Best practices for creating load profiles in regions like the Global South are discussed along with an evaluation of AI-based and traditional optimization methods and software tools. Finally a new evidence-based multi-criteria decision-making framework integrated with machine learning insights is proposed to guide decision-makers in selecting optimal solutions based on multiple attributes offering a more comprehensive and adaptive approach to renewable hydrogen system optimization.
Hydrogen as Fuel in the Maritime Sector: From Production to Propulsion
Nov 2024
Publication
The maritime sector plays a crucial role in global trade yet its contribution to greenhouse gas emissions remains significant. The adoption of hydrogen as a clean energy solution is gaining traction to address this. This review paper delves into the opportunities and challenges of integrating hydrogen as a marine fuel. The entire hydrogen supply chain is investigated from production to end use highlighting advancements limitations and potential safety risks. Key findings reveal that while hydrogen offers promise for reducing emissions its widespread adoption requires a well-established production storage and distribution infrastructure. Challenges persist in large-scale storage transportation and bunkering particularly in addressing space limitations and ensuring safety protocols. Propulsion systems such as internal combustion engines gas turbines and fuel cells show po tential for hydrogen adoption yet further research is needed to optimize efficiency and address technical con straints. Safety considerations also appear prominently necessitating comprehensive bunkering operations and hazard management protocols. Addressing knowledge gaps is imperative for successfully integrating hydrogen as a marine fuel. Future research should focus on optimizing storage methods developing efficient propulsion systems and enhancing safety measures to enhance hydrogen utilization in the maritime sector.
Exploring Economic Expansion of Green Hydrogen Production in South Africa
Jan 2025
Publication
Hydrogen is a crucial energy carrier for the Clean Energy Sustainable Development Goals and the just transition to low/zero-carbon energy. As a top CO2-emitting country hydrogen (especially green hydrogen) production in South Africa has gained momentum due to the availability of resources such as solar energy land wind energy platinum group metals (as catalysts for electrolysers) and water. However the demand for green hydrogen in South Africa is insignificant which implies that the majority of the production must be exported. Despite the positive developments there are unclear matters such as dependence on the national electricity grid for green hydrogen production and the cost of transporting it to Asian and European markets. Hence this study aims to explore opportunities for economic expansion for sustainable production transportation storage and utilisation of green hydrogen produced in South Africa. This paper uses a thematic literature review methodology. The key findings are that the available renewable energy sources incentivizing the green economy carbon taxation and increasing the demand for green hydrogen in South Africa and Africa could decrease the cost of hydrogen from 3.54 to 1.40 €/kgH2 and thus stimulate its production usage and export. The appeal of green hydrogen lies in diversifying products to green hydrogen as an energy carrier clean electricity synthetic fuels green ammonia and methanol green fertilizers and green steel production with the principal purpose of significant energy decarbonisation and economic and foreign earnings. These findings are expected to drive the African hydrogen revolution in agreement with the AU 2063 agenda.
A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants
Jul 2022
Publication
Proton-exchange membrane fuel cells (PEMFCs) are regarded as promising alternatives to internal combustion engines (ICEs) to reduce pollution. Recent research on PEMFCs focuses on achieving higher power densities reducing the refueling time mitigating the final price and decreasing the degradations to facilitate the commercialization of hydrogen mobility. The design of bipolar plates and compression kits in addition to their coating can effectively improve performance increase durability and support water/thermal management. Past reviews usually focused on the specific aspect which can hardly provide readers with a complete picture of the key challenges facing and advances in the long-term performance of PEMFCs. This paper aims to deliver a comprehensive source to review from both experimental analytical and numerical viewpoints design challenges degradation modeling protective coatings for bipolar plates and key operational challenges facing and solutions to the stack to prevent contamination. The significant research gaps in the long-term performance of PEMFCs are identified as (1) improved bipolar-plate design and coating (2) the optimization of the design of sealing and compression kits to reduce mechanical stresses and (3) stack degradation regarding fuel contamination and dynamic operation.
Considering Hydrogen Policies with a Focus on Incentive Compatibility Towards Electricity Grids
Sep 2025
Publication
A lot of countries have recently published updated hydrogen strategies with many of them increasing and renewing their commitment. In parallel corresponding policy mechanisms are increasingly coming into focus with the first ones already having awarded funding contracts to projects and construction being underway. However these policies are usually translated from renewable energy policy without considering the specific risks and uncertainties spillovers and positive externality of operating grid-conducive electrolyzers in electricity grids which are increasingly subjected to electricity supply volatility from renewables. This article details how different aspects of a dedicated hydrogen policy can address the technology’s specific issues from an economic perspective namely funding provision market and technology risk mitigation and the complex relationship with further actors in electricity markets. Results show that compared to renewable energy policy mechanisms need to emphasize the input side more strongly as price risks and intermittency from electricity markets are more prominent than from hydrogen markets. Also it proposes a targeted mechanism to capture the positive externality of mitigating excess electricity in the grid while keeping investment security high. Economic policy should consider such approaches before scaling support and avoiding the design shortcomings experienced with early RE policy.
A Pan-Asian Energy Transition? The New Rationale for Decarbonization Policies in the World’s Largest Energy Exporting Countries: A Case Study of Qatar and Other GCC Countries
Jul 2024
Publication
Climate change has become a major agenda item in international relations and in national energy policy-making circles around the world. This review studies the surprising evolution of the energy policy and more particularly the energy transition currently happening in the Arabian Gulf region which features some of the world’s largest exporters of oil and gas. Qatar Saudi Arabia and other neighboring energy exporters plan to export blue and green hydrogen across Asia as well as towards Europe in the years and decades to come. Although poorly known and understood abroad this recent strategy does not threaten the current exports of oil and gas (still needed for a few decades) but prepares the evolution of their national energy industries toward the future decarbonized energy demand of their main customers in East and South Asia and beyond. The world’s largest exporter of Liquefied Natural Gas Qatar has established industrial policies and projects to upscale CCUS which can enable blue hydrogen production as well as natural carbon sinks domestically via afforestation projects.
Long-Duration Energy Storage: A Critical Enabler for Renewable Integration and Decarbonization
Jan 2025
Publication
This paper focuses on the critical role of long-duration energy storage (LDES) technologies in facilitating renewable energy integration and achieving carbon neutrality. It presents a systematic review of four primary categories: mechanical energy storage chemical energy storage electrochemical energy storage and thermal energy storage. The study begins by analyzing the technical advantages and geographical constraints of pumped hydro energy storage (PHES) and compressed air energy storage (CAES) in high-capacity applications. It then explores the potential of hydrogen and synthetic fuels for long-duration clean energy storage. The section on electrochemical energy storage highlights the high energy density and flexible scalability of lithium-ion batteries and redox flow batteries. Finally the paper evaluates innovative advancements in large-scale thermal energy storage technologies including sensible heat storage latent heat storage and thermochemical heat storage. By comparing the performance metrics application scenarios and development prospects of various energy storage technologies this work provides theoretical support and practical insights for maximizing renewable energy utilization and driving the sustainable transformation of global energy systems.
Economic and Environmental Impact Assessment of Renewable Energy Integration: A Review and Future Research Directions
Nov 2024
Publication
This review article critically examines papers on renewable energy integration (REI) with a specific focus on the economic and environmental impact assessments across multiple sectors including agriculture transportation electricity production buildings and biofuel production. A total of 111 articles from the Web of Science Core Collection database were reviewed using a systematic literature review methodology and content analysis techniques. The results indicate that evaluation-type studies particularly those employing optimization and simulation-based methods such as techno-economic analysis (TEA) (28 papers) and lifecycle assessment (LCA) (20 papers) were the most prominent approaches used for economic and environmental analyses. Optimization techniques such as mixed-integer linear programming (6 papers) genetic algorithms (GA) (5 papers) and particle swarm optimization (PSO) (4 papers) were widely applied. The quantitative analysis of impact assessment indicators shows that REI has yielded significant long-term positive results across multiple RE sources sectors and regions. A detailed examination of mathematical models (e.g. optimization techniques) and simulation modeling combined with lifecycle assessment (LCA) will assist future researchers in optimizing energy systems and enhancing sustainability in sectors such as agriculture and water desalination. The conceptual inclusion of circular economy within the research field needs to be more present among researchers and most of the studies focused on technical aspects of RE integration and assessing impacts rather than identifying a systemic change across the sectors. Several future research directions have been identified across sectors offering opportunities to advance the field. Policymakers will find this paper valuable for informed decision-making and the development of robust policy frameworks.
Techno-economic Study of Gas Turbines with Hydrogen, Ammonia, and their Mixture Fuels
Nov 2024
Publication
Ammonia is a versatile energy carrier without carbon emissions that can be used for power generation. In this article a techno-economic analysis has been done to predict the levelized cost of electricity production using gas turbines with clean fuel in Iran. In the technical discussion the analysis of different scenarios of ammonia and hydrogen fuel composition ratio was done and by keeping the turbine inlet temperature to the same gas turbine as the SGT5-2000E turbine the output power in different fuel ratios is around 192.8 to 229.0 MW was variable and reached the maximum value in some proportions. Also in the economic discussion the effects of fuel cost and interest rate parameters were investigated sensitivity analysis was performed on different combined ratios of ammonia and hydrogen in fuel and an economic analysis of the ideal ratio was conducted. The price of ammonia fuel was calculated from 222 $/ton to 2000 $/ton and the levelized cost of electricity production changed from 91.7 $/MWh to 673.4 $/MWh. Additionally an economic comparison was made between the utilization of ammonia-hydrogen and natural gas fuels. This alternative fuel can be a promising way to produce power without carbon emissions and suitable storage for renewables.
Methanol Fuel Production, Utilization, and Techno-economy: A Review
Aug 2025
Publication
Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol is one of the simplest molecules for energy storage and is utilized to generate a wide range of products. Since methanol can be produced from biomass numerous countries could produce and utilize biomethanol. Here we review methanol production processes techno-economy and environmental viability. Lignocellulosic biomass with a high cellulose and hemicellulose content is highly suitable for gasifcation-based biomethanol production. Compared to fossil fuels the combustion of biomethanol reduces nitrogen oxide emissions by up to 80% carbon dioxide emissions by up to 95% and eliminates sulphur oxide emission. The cost and yield of biomethanol largely depend on feedstock characteristics initial investment and plant location. The use of biomethanol as complementary fuel with diesel natural gas and dimethyl ether is benefcial in terms of fuel economy thermal efciency and reduction in greenhouse gas emissions.
Assessment of Hydrogen Storage and Pipelines for Hydrogen Farm
Feb 2025
Publication
This paper presents a thorough initial evaluation of hydrogen gaseous storage and pipeline infrastructure emphasizing health and safety protocols as well as capacity considerations pertinent to industrial applications. As hydrogen increasingly establishes itself as a vital energy vector within the transition towards low-carbon energy systems the formulation of effective storage and transportation solutions becomes imperative. The investigation delves into the applications and technologies associated with hydrogen storage specifically concentrating on compressed hydrogen gas storage elucidating the principles underlying hydrogen compression and the diverse categories of hydrogen storage tanks including pressure vessels specifically designed for gaseous hydrogen containment. Critical factors concerning hydrogen gas pipelines are scrutinized accompanied by a review of appropriate compression apparatus types of compressors and particular pipeline specifications necessary for the transport of both hydrogen and oxygen generated by electrolysers. The significance of health and safety in hydrogen systems is underscored due to the flammable nature and high diffusivity of hydrogen. This paper defines the recommended health and safety protocols for hydrogen storage and pipeline operations alongside exemplary practices for the effective implementation of these protocols across various storage and pipeline configurations. Moreover it investigates the function of oxygen transport pipelines and the applications of oxygen produced from electrolysers considering the interconnected safety standards governing hydrogen and oxygen infrastructure. The conclusions drawn from this study facilitate the advancement of secure and efficient hydrogen storage and pipeline systems thereby furthering the overarching aim of scalable hydrogen energy deployment within both energy and industrial sectors.
Deep Reinforcement Learning Based Optimal Operation of Low-Carbon Island Microgrid with High Renewables and Hybrid Hydrogen–Energy Storage System
Jan 2025
Publication
Hybrid hydrogen–energy storage systems play a significant role in the operation of islands microgrid with high renewable energy penetration: maintaining balance between the power supply and load demand. However improper operation leads to undesirable costs and increases risks to voltage stability. Here multi-time-scale scheduling is developed to reduce power costs and improve the operation performance of an island microgrid by integrating deep reinforcement learning with discrete wavelet transform to decompose and mitigate power fluctuations. Specifically in the day-ahead stage hydrogen production and the hydrogen blending ratio in gas turbines are optimized to minimize operational costs while satisfying the load demands of the island. In the first intraday stage rolling adjustments are implemented to smooth renewable energy fluctuations and increase system stability by adjusting lithium battery and hydrogen production equipment operations. In the second intraday stage real-time adjustments are applied to refine the first-stage plan and to compensate for real-time power imbalances. To verify the proposed multi-stage scheduling framework real-world island data from Shanghai China are utilized in the case studies. The numerical simulation results demonstrate that the proposed innovative optimal operation strategy can simultaneously reduce both the costs and emissions of island microgrids.
Repurposing Natural Gas Pipelines for Hydrogen: Limits and Options from a Case Study in Germany
Jul 2024
Publication
We investigate the challenges and options for repurposing existing natural gas pipelines for hydrogen transportation. Challenges of re-purposing are mainly related to safety and due to the risk of hydrogen embrittlement of pipeline steels and the smaller molecular size of the gas. From an economic perspective the lower volumetric energy density of hydrogen compared to natural gas is a challenge. We investigate three pipeline repurposing options in depth: a) no modification to the pipeline but enhanced maintenance b) use of gaseous inhibitors and c) the pipe-in-pipe approach. The levelized costs of transportation of these options are compared for the case of the German Norddeutsche Erdgasleitung (NEL) pipeline. We find a similar cost range for all three options. This indicates that other criteria such as the sunk costs public acceptance and consumer requirements are likely to shape the decision making for gas pipeline repurposing.
Economic Feasibility of Hydrogen Generation Using HTR-PM Technology in Saudi Arabia
Feb 2025
Publication
The global push for clean hydrogen production has identified nuclear energy particularly high-temperature gas-cooled reactors (HTGRs) as a promising solution due to their ability to provide high-temperature heat. This study conducted a techno-economic analysis of hydrogen production in Saudi Arabia using the pebble bed modular reactor (HTRPM) focusing on two methods: high-temperature steam electrolysis (HTSE) and the sulfur– iodine (SI) thermochemical cycle. The Hydrogen Economic Evaluation Program (HEEP) was used to assess the economic viability of both methods considering key production factors such as the discount rate nuclear power plant (NPP) capital cost and hydrogen plant efficiency. The results show that the SI cycle achieves a lower levelized cost of hydrogen (LCOH) at USD 1.22/kg H2 compared to HTSE at USD 1.47/kg H2 primarily due to higher thermal efficiency. Nonetheless HTSE offers simpler system integration. Sensitivity analysis reveals that variations in the discount rate and NPP capital costs significantly impact both production methods while hydrogen plant efficiency is crucial in determining overall economics. The findings contribute to the broader discourse on sustainable hydrogen production technologies by highlighting the potential of nuclear-driven methods to meet global decarbonization goals. The paper concludes that the HTR-PM offers a viable pathway for large-scale hydrogen production in Saudi Arabia aligning with the Vision 2030 objectives.
Hydrogen Energy Horizon: Balancing Opportunities and Challenges
Jun 2023
Publication
The future of energy is of global concern with hydrogen emerging as a potential solution for sustainable energy development. This paper provides a comprehensive analysis of the current hydrogen energy landscape its potential role in a decarbonized future and the hurdles that need to be overcome for its wider implementation. The first elucidates the opportunities hydrogen energy presents including its potential for decarbonizing various sectors in addition addresses the challenges that stand in the way of hydrogen energy large-scale adoption. The obtained results provide a comprehensive overview of the hydrogen energy horizon emphasizing the need to balance opportunities and challenges for its successful integration into the global energy landscape. It highlights the importance of continued research development and collaboration across sectors to realize the full potential of hydrogen as a sustainable and low-carbon energy carrier.
Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution
Sep 2023
Publication
Large-scale hydrogen (H2 ) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water which is essential for electrolysis since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes such as competitive chloride evolution anodic oxygen evolution and cathodic hydrogen evolution that govern seawater electrocatalytic reactions. In this review advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed including transition metal doping with phosphorus the nanosheet structure of phosphides and structural engineering approaches. Application progress catalytic process efficiency opportunities and problems related to transition metal phosphides are also highlighted in detail. Collectively this review is a comprehensive summary of the topic focusing on the challenges and opportunities.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
Hydrogen Impact on Transmission Pipeline Risk: Probabilistic Analysis of Failure Cases
Jan 2025
Publication
Transmission pipelines are the safest and most economical solution for long-distance hydrogen delivery. However safety and reliability issues such as hydrogen’s impact on material properties including fracture toughness and fatigue crack growth could restrict pipeline development. This impact may also increase the risk of several pipeline failure causes including excavation damage corrosion earth movement material failures and other hydrogen damage mechanisms. While many quantitative risk assessment (QRA) studies exist for natural gas pipelines limited work focuses on hydrogen pipelines; the influence of hydrogen must be considered. This work presents a systematic causal model for hydrogen pipeline failures that incorporates multiple failure causes quantifying hydrogen influence on pipeline failures and analyzing how changes in hydrogen effects or operating conditions impact multiple failure causes. According to the results (1) hydrogen has a relatively minor impact on corrosion-related failure; (2) hydrogen greatly affects crack damage (the failure probability can increase by over 1000 times); (3) excavation damage is nearly independent of hydrogen’s effects; (4) earth movement damage shows increased susceptibility (the failure probability can increase by over 10 times). The hydrogen effects change the relative susceptibility of pipelines to these failure causes therefore to implement tailored safety measures under varying operating conditions.
Intermediate Temperature Solid Oxide Fuel Cell/Electrolyzer Towards Future Large-scale Production
Apr 2020
Publication
This paper reports on the experimental data analysis and numerical results carried out by algorithms in order to meet the provisions of Industry 4.0 in the field of research of Solid Oxide Fuel Cell/Electrolyzer. A performance mapping of the analyzed SOFC/SOE systems is developed in order to enhance system efficiency when it is fed by biofuels. The analyses concern the main operative parameters such as pressure temperature fuel compositions and other main system parameters such as fuel and oxidant utilization factors and the recirculation of anode exhaust stream gas.
Innovations in Clean Energy Technologies: A Comprehensive Exploration of Research at the Clean Energy Technologies Research Institute, University of Regina
Nov 2024
Publication
The Clean Energy Technology Research Institute (CETRI) at the University of Regina Canada serves as a collaborative hub where a dynamic team of researchers industry leaders innovators and educators come together to tackle the urgent challenges of climate change and the advancement of clean energy technologies. Specializing in low-carbon and carbon-free clean energy research CETRI adopts a unique approach that encompasses feasibility studies bench-scale and pilot-plant testing and pre-commercial demonstrations all consolidated under one roof. This holistic model distinguishes CETRI fostering a diverse and inclusive environment for technical scientific and hands-on learning experiences. With a CAD 3.3 million pre-commercial carbon capture demonstration plant capable of capturing 1 tonne of CO2 per day and a feed-flexible hydrogen demonstration pilot plant producing 6 kg of hydrogen daily CETRI emerges as a pivotal force in advancing innovative reliable and cost-competitive clean energy solutions essential for a safe prolific and sustainable world. This paper provides a comprehensive overview of the diverse and impactful research carried out in the center spanning various areas including decarbonization zeroemission hydrogen technologies carbon (CO2 ) capture utilization and storage the conversion of waste into renewable fuels and chemicals and emerging technologies such as small modular nuclear reactors and microgrids.
No more items...