Applications & Pathways
Performance and Emission Analysis of Hydrogen Conventional Fuels in PFI SI Engines Using CONVERGE 3.0
Aug 2025
Publication
The availability of conventional fuels such as gasoline and methane which are used in spark-ignition (SI) engines is increasingly limited by the finite nature of fossil fuel reserves. The inefficiencies in combustion are associated with reduced engine effectiveness as incomplete combustion heightens the emissions of harmful pollutants including CO2 and CO while also negatively impacting fuel economy. The objective of this research is to undertake a comparative study of engine performance and emissions for a selection of conventional fuels and hydrogen while considering varying equivalence ratios and operational speeds. To accomplish this an extensive 3-dimensional numerical simulation was carried out using CONVERGE 3.0 simulation software to model a portfueled SI engine with the SI8 Engine Premix SAGE model facilitating the simulations. The performance metrics assessed in this research include cylinder pressure specific heat ratio heat rate thermal efficiency and mean temperature. The emission characteristics are analyzed in cases of NOx CO CO2 and HC emissions. The simulation results are obtained by varying the equivalence ratios of hydrogen (0.4 0.6 and 0.9) at different engine speeds (2000 2500 and 3000 rpm). The engine setup mesh creation boundary conditions turbulence combustion and species transport models were meticulously outlined to ensure accurate simulation results. Hydrogen fuel when operated at an equivalence ratio of 0.4 and an engine speed of 3000 rpm showcases the best overall performance among all tested conditions. It achieves the highest thermal efficiency of 40.94% optimal cylinder pressure and specific heat ratio a favorable mean temperature and the lowest fuel consumption. Additionally this configuration results in zero emissions of CO and HC along with a significant reduction in CO2 emissions due to the absence of carbon in the fuel structure. However due to the high combustion temperatures associated with hydrogen NOx emissions remained present and require further mitigation strategies.
Optimal Design and Dispatch of Hydrogen Systems Inegrated in Combined Heat and Power Plants for Improving Hydrogen Economy through Excess Heat and Electricity Grid Services
Jul 2025
Publication
Renewable hydrogen is a promising energy carrier that facilitates greater renewable energy integration while supporting the decarbonization of the industrial and transportation sectors. This study investigates the optimal design and operation of two hydrogen-based energy systems. The first energy system comprises an electrolyser compressor and hydrogen storage system. It aims to supply hydrogen as a drop-in fuel for a future potential hydrogen fleet. The electrolyser provides excess heat and oxygen for a combined heat and power (CHP) plantand ancillary services to the grid for frequency support. In the second energy system the hydrogen stored in the hydrogen tank is used by a fuel cell or gas turbine to sell electricity to the grid following price signals. The optimisation algorithm developed in this study finds the optimal capacities for the hydrogen production and storage systems and optimizes the hourly dispatch of the electrolyser. The profitability of the first investigated hydrogen-based energy system is closely connected to the hydrogen production cost which fluctuates depending on the average electricity price. The profitability is also affected by the average compensation of the ancillary services and to a lesser extent by the value of excess heat and oxygen produced during the electrolysis. Only 2020 marked out by the lowest average electricity price among the investigated years could lead to a profitable investment for the first studied energy system. The breakeven hydrogen selling price varied between 24.13 SEK/kg in 2020 to 65.63 SEK/kg in 2022 while considering the extra revenues of the grid service compensation and heat and oxygen sale. If only hydrogen sale was considered the breakeven hydrogen selling prices varied between 31.28 SEK/kg in 2020 to 86.08 SEK/kg in 2022. For the second investigated hydrogen-based energy system if the threshold electricity price for activating the hydrogen consumption system is the 90th percentile of the electricity prices every week the profitability is never attained. The fuel cell system leads to lower electrolyser and hydrogen tank capacities to meet the targeted power supply given the higher assumed efficiency as compared to the gas turbine. Nevertheless the fuel cell system shows in all the investigated subcases lower net present values as compared to the gas turbine subcases due to the higher investment and running costs. The fuel cell system shows better performances in terms of net present values than the gas turbine only in an optimistic sub case marked out by higher conversion efficiencies and lower investment and running costs for the fuel cell. The profitability of the second investigated hydrogen-based energy system is guaranteed only at an annual average electricity price above 2.7 SEK/kWh.
Optimal Dispatch for Electric-Heat-Gas Coupling Multi-Park Integrated Energy Systems via Nash Bargaining Game
Feb 2025
Publication
To improve the energy utilization rate and realize the low-carbon emission of a park integrated energy system (PIES) this paper proposes an optimal operation strategy for multiple PIESs. Firstly the electrical power cooperative trading framework of multiple PIESs is constructed. Secondly the hydrogen blending mechanism and carbon capture system and power-to-gas system joint operation model are introduced to establish the model of each PIES. Then based on the Nash bargaining game theory a multi-PIES cooperative trading and operation model with electrical power cooperative trading is constructed. Then the alternating direction method of multipliers algorithm is used to solve the two subproblems. Finally case studies analysis based on scene analysis is performed. The results show that the cooperative operation model reduces the total cost of a PIES more effectively compared with independent operation. Meanwhile the efficient utilization and production of hydrogen are the keys to achieve carbon reduction and an efficiency increase in a PIES.
Integrating Sustainability in Aircraft Component Design: Towards a Transition from Eco-Driven to Sustainability-Driven Design
Feb 2025
Publication
Eco-design is an innovative design methodology that focuses on minimizing the environmental footprint of industries including aviation right from the conceptual and development stages. However rising industrial demand calls for a more comprehensive strategy wherein beyond environmental considerations competitiveness becomes a critical factor supported by additional pillars of sustainability such as economic viability circularity and social impact. By incorporating sustainability as a primary design driver at the initial design stages this study suggests a shift from eco-driven to sustainability-driven design approaches for aircraft components. This expanded strategy considers performance and safety goals environmental impact costs social factors and circular economy considerations. To provide the most sustainable design that balances all objectives these aspects are rigorously quantified and optimized during the design process. To efficiently prioritize different variables methods such as multi-criteria decision-making (MCDM) are employed and a sustainability index is developed in this framework to assess the overall sustainability of each design alternative. The most sustainable design configurations are then identified through an optimization process. A typical aircraft component namely a hat-stiffened panel is selected to demonstrate the proposed approach. The study highlights how effectively sustainability considerations can be integrated from the early stages of the design process by exploring diverse material combinations and geometric configurations. The findings indicate that the type of fuel used and the importance given to the sustainability pillars—which are ultimately determined by the particular requirements and goals of the user—have a significant impact on the sustainability outcome. When equal prioritization is given across the diverse dimensions of sustainability the most sustainable option appears to be the full thermoplastic component when kerosene is used. Conversely when hydrogen is considered the full aluminum component emerges as the most sustainable choice. This trend also holds when environmental impact is prioritized over the other aspects of sustainability. However when costs are prioritized the full thermoplastic component is the most sustainable option whether hydrogen or kerosene is used as the fuel in the use phase. This innovative approach enhances the overall sustainability of aircraft components emphasizing the importance and benefits of incorporating a broader range of sustainability factors at the conceptual and initial design phases.
Symmetry-Oriented Design Optimization for Enhancing Fatigue Life of Marine Liquid Hydrogen Storage Tanks Under Asymmetric Sloshing Loads
Sep 2025
Publication
Hydrogen fuel cells are gaining attention as an eco-friendly propulsion system for ships but the structural safety of storage tanks which store hydrogen at high pressure and supply it to the fuel cell is a critical concern. Marine liquid hydrogen storage tanks typically designed as rotationally symmetric structures face challenges when subjected to asymmetric wave-induced sloshing loads that break geometric symmetry and induce localized stress concentrations. This study conducted a fluid–structure interaction (FSI) analysis of a rotationally symmetric liquid hydrogen storage tank for marine applications to evaluate the impact of asymmetric liquid sloshing induced by wave loads on the tank structure and propose symmetry-guided structural improvement measures to ensure fatigue life. Sensitivity analysis using the finite difference method (FDM) revealed the asymmetric influences of design variables on stress distribution: increasing the thickness of triangular mounts (T1) reduced stress 3.57 times more effectively than circular ring thickness (T2) highlighting a critical symmetry-breaking feature in support geometry. This approach enables rapid and effective design modifications without complex optimization simulations. The study demonstrates that restoring structural symmetry through targeted reinforcement is essential to mitigate fatigue failure caused by asymmetric loading.
Study on the Flexible Scheduling Strategy of Water–Electricity– Hydrogen Systems in Oceanic Island Groups Enabled by Hydrogen-Powered Ships
Jul 2025
Publication
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First the characteristics of the seawater desalination unit (SDU) proton exchange membrane electrolyzer (PEMEL) and battery system (BS) in consuming surplus renewable energy on resource islands are analyzed. The variable-efficiency operation characteristics of the SDU and PEMEL are established and the effect of battery life loss is also taken into account. Second a spatiotemporal model for the multi-rate hydrogen-powered ship is proposed to incorporate speed adjustment into the system optimization framework for flexible resource transfer among islands. Finally with the goal of minimizing the total cost of the system a flexible water–electricity–hydrogen hybrid resource transfer model is constructed and a certain island group in the South China Sea is used as an example for simulation and analysis. The results show that the proposed scheduling strategy can effectively reduce energy loss promote renewable energy absorption and improve the flexibility of resource transfer.
Risk Assessment of Hydrogen-Powered Aircraft: An Integrated HAZOP and Fuzzy Dynamic Bayesian Network Framework
May 2025
Publication
To advance the hydrogen energy-driven low-altitude aviation sector it is imperative to establish sophisticated risk assessment frameworks tailored for hydrogen-powered aircraft. Such methodologies will deliver fundamental guidelines for the preliminary design phase of onboard hydrogen systems by leveraging rigorous risk quantification and scenario-based analytical models to ensure operational safety and regulatory compliance. In this context this study proposes a comprehensive hazard and operability analysis-fuzzy dynamic Bayesian network (HAZOP-FDBN) framework which quantifies risk without relying on historical data. This framework systematically maps the risk factor relationships identified in HAZOP results into a dynamic Bayesian network (DBN) graphical structure showcasing the risk propagation paths between subsystems. Expert knowledge is processed using a similarity aggregation method to generate fuzzy probabilities which are then integrated into the FDBN model to construct a risk factor relationship network. A case study on low-altitude aircraft hydrogen storage systems demonstrates the framework’s ability to (1) visualize time-dependent failure propagation mechanisms through bidirectional probabilistic reasoning and (2) quantify likelihood distributions of system-level risks triggered by component failures. Results validate the predictive capability of the model in capturing emergent risk patterns arising from subsystem interactions under low-altitude operational constraints thereby providing critical support for safety design optimization in the absence of historical failure data.
Energy Management of Electric–Hydrogen Coupled Integrated Energy System Based on Improved Proximal Policy Optimization Algorithm
Jul 2025
Publication
The electric–hydrogen coupled integrated energy system (EHCS) is a critical pathway for the low-carbon transition of energy systems. However the inherent uncertainties of renewable energy sources present significant challenges to optimal energy management in the EHCS. To address these challenges this paper proposes an energy management method for the EHCS based on an improved proximal policy optimization (IPPO) algorithm. This method aims to overcome the limitations of traditional heuristic algorithms such as low solution accuracy and the inefficiencies of mathematical programming methods. First a mathematical model for the EHCS is established. Then by introducing the Markov decision process (MDP) this mathematical model is transformed into a deep reinforcement learning framework. On this basis the state space and action space of the system are defined and a reward function is designed to guide the agent to learn to the optimal strategy which takes into account the constraints of the system. Finally the efficacy and economic viability of the proposed method are validated through numerical simulation.
Day-Ahead Optimal Scheduling of an Integrated Electricity-Heat-Gas-Cooling-Hydrogen Energy System Considering Stepped Carbon Trading
Apr 2025
Publication
Within the framework of “dual carbon” intending to enhance the use of green energies and minimize the emissions of carbon from energy systems this study suggests a cost-effective low-carbon scheduling model that accounts for stepwise carbon trading for an integrated electricity heat gas cooling and hydrogen energy system. Firstly given the clean and low-carbon attributes of hydrogen energy a refined two-step operational framework for electricity-to-gas conversion is proposed. Building upon this foundation a hydrogen fuel cell is integrated to formulate a multi-energy complementary coupling network. Second a phased carbon trading approach is established to further explore the mechanism’s carbon footprint potential. And then an environmentally conscious and economically viable power dispatch model is developed to minimize total operating costs while maintaining ecological sustainability. This objective optimization framework is effectively implemented and solved using the CPLEX solver. Through a comparative analysis involving multiple case studies the findings demonstrate that integrating electrichydrogen coupling with phased carbon trading effectively enhances wind and solar energy utilization rates. This approach concurrently reduces the system’s carbon emissions by 34.4% and lowers operating costs by 58.6%.
Designing an Optimized Fueling Infrastructure for a Hydrogen Railway System
Jun 2025
Publication
Hydrogen use is increasing in transportation including within the railway sector. In collaboration with a governmental institution in the Netherlands we study how to design an efficient hydrogen fueling infrastructure for a railway system. The problem involves selecting yards in a network for hydrogen fueling assigning trains to these yards locating hydrogen storage and fueling stations and connecting them via pipelines. This key planning phase must avoid oversizing costly fueling infrastructure while accounting for track availability at yards and costs due to fueling operations. We formulate this novel problem which has the structure of a nested facility location problem as a mixed-integer linear program to minimize total annualized investment and operational costs. Due to the complexity of real-sized instances we propose a matheuristic that estimates the infrastructural costs for each yard and train assignment by combining a constructive algorithm with a set covering model. It then solves a single-stage facility location problem to select yards and assign trains followed by a yard-level improvement phase. Numerical experiments on a real Dutch case show that our approach delivers high-quality solutions quickly and offer insights into the optimal infrastructure design depending on the discretization of yard areas number of trains and other parameters.
Stratified Hydrogen Combustion with Various Mixing Processes
Aug 2025
Publication
Hydrogen is recognized as a key alternative fuel for mitigating greenhouse-gas emissions owing to its high fuel efficiency and carbon-free combustion. In the stratified charge combustion (SCC) mode ensuring optimal air-fuel mixing in the combustion chamber is crucial because the local equivalence ratio has a dominant influence on combustion characteristics. Therefore this study aims to build a detailed understanding of stratified hydrogen combustion under various local equivalence ratios. Laser-induced breakdown spectroscopy (LIBS) was used to measure the local equivalence ratios in hydrogen jets at different mixture-formation times (MFTs) and laserignition points (LIPs). The results showed that shorter MFTs induced highly stratified mixtures with elevated local equivalence ratios exceeding 2.0 enhancing the laminar flame speed and maximizing the conversion of chemical energy into pressure gain resulting in a representative total heat release over three times higher compared to longer MFTs. Furthermore ignition near the injector tip produced leaner mixtures with equivalence ratios around 0.3 whereas downstream LIPs generated peak local equivalence ratios around 2.0 facilitating rapid flame propagation and increased heat release by 25 %.
Renewable Microgrids with PEMFC, Electrolyzers, Heat Pumps, Hydrogen and Heat Storages in Scenario-based Day-ahead Electrical Market
Jun 2025
Publication
Microgrids enable the integration of renewable energy sources; however managing electricity from intermittent wind and solar power remains a significant challenge. This study investigates two storage strategies for managing surplus renewable electricity in an IEEE 84-Bus microgrid with wind turbines and photovoltaic units. The first option involves producing hydrogen via electrolyzers which is stored for later electricity generation through fuel cells. The second option involves converting surplus electricity into heat using heat pumps which is then stored in thermal energy storage systems to efficiently meet the microgrid's thermal load requirements. A scenariobased day-ahead scheduling model is proposed to optimize the microgrid's electrical and thermal load management while considering uncertainties in market prices wind speeds and solar irradiance. The resulting large-scale optimization challenge is effectively tackled using the self-adaptive charge system search algorithm. The results indicate that for the optimal utilization of excess renewable electricity heat generation via heat pumps is more cost-effective than hydrogen production primarily due to the inefficiencies in hydrogen conversion and the ability of heat pumps to produce several units of heat for each unit of electricity consumed. Moreover heat pumps prove to be more economical than natural gas combustion in boilers for meeting the thermal demands across a wide range of gas prices. These findings highlight the economic benefits of integrating heat pumps and thermal energy storage systems into renewable energy microgrids.
Renewables Pull and Strategic Push - What Drives Hydrogen-based Steel Relocation
May 2025
Publication
Hydrogen-based steelmaking using green hydrogen can achieve above 95 % CO2 emission reductions. Low-cost renewable electricity is a prerequisite and research has found that access to renewable energy resources could pull energy-intensive industry to new locations the “renewables pull”-effect. However previous studies on hydrogen-based steel differ on key assumptions and analyse a wide range of energy costs (10–105 EUR/MWh) making conclusions hard to compare. In this paper we assess techno-economic and strategic drivers for and against such a pull-effect by calculating the levelized cost of green hydrogen-based steel across five archetypical new value chain configurations. We find that the strength of the pull-effect is sensitive to assumptions and that the cost of hydrogen-based steel vary across geographies and value chain configurations to a similar degree as conventional steel. Other geographically varying factors such as labour costs can be as important for relocation and introducing globally varying cost of capital moderates the effect. The renewables pull effect can enable faster access to low-cost renewables and export of green iron ore is an important option to consider. However it is not clear how strong a driver the pull-effect will actually be compared to other factors and polices implemented for strategic reasons. A modest “strategic push“ implemented through various subsidies such as lowering the cost of hydrogen or capital will reduce the pull-effect. In addition focusing on the renewables pull effect as enabling condition risk slowing innovation and upscaling by 2030 in line with climate goals which is currently initiated in higher cost regions.
Explosions of Hydrogen Storages and the Safety Considerations in Hydrogen-Powered Railway Applications—A Review
Nov 2024
Publication
As one of the most promising clean energy sources hydrogen power has gradually emerged as a viable alternative to traditional energy sources. However hydrogen safety remains a significant concern due to the potential for explosions and the associated risks. This review systematically examines hydrogen explosions with a focus on high-pressure and low-temperature storage transportation and usage processes mostly based on the published papers from 2020. The fundamental principles of hydrogen explosions classifications and analysis methods including experimental testing and numerical simulations are explored. Key factors influencing hydrogen explosions are also discussed. The safety issues of hydrogen power on railway applications are focused and finally recommendations are provided for the safe application of hydrogen power in railway transportation particularly for long-distance travel and heavy-duty freight trains with an emphasis on storage safety considerations.
Research on the Diaphragm Movement Characteristics and Cavity Profile Optimization of a Dual-Stage Diaphragm Compressor for Hydrogen Refueling Applications
Jul 2025
Publication
The large-scale utilization of hydrogen energy is currently hindered by challenges in lowcost production storage and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly an experimental platform was established to test the gas mass flowrate and fluid pressures under various preset conditions. Secondly a simulation path integrating the finite element method simulation theoretical stress model and movement model was developed and experimentally validated to analyze the diaphragm stress distribution and deformation characteristics. Finally comparative optimization analyses were conducted on different types of diaphragm cavity profiles. The results indicated that the driving pressure differences at the top dead center position reached 85.58 kPa for the first-stage diaphragm and 75.49 kPa for the second-stage diaphragm. Under experimental conditions of 1.6 MPa suction pressure 8 MPa second-stage discharge pressure and 200 rpm rotational speed the first-stage and second-stage diaphragms reached the maximum center deflections of 4.14 mm and 2.53 mm respectively at the bottom dead center position. Moreover the cavity profile optimization analysis indicated that the double-arc profile (DAP) achieved better cavity volume and diaphragm stress characteristics. The first-stage diaphragm within the optimized DAP-type cavity exhibited 173.95 MPa maximum principal stress with a swept volume of 0.001129 m3 whereas the second-stage optimized configuration reached 172.57 MPa stress with a swept volume of 0.0003835 m3 . This research offers valuable insights for enhancing the reliability and performance of diaphragm compressors.
Optimisation of Green Hydrogen Production for Hard-to-abate Industries: An Italian Case Study Considering National Incentives
Mar 2025
Publication
Green hydrogen has emerged as a promising energy vector for the decarbonisation of heavy industry. The EU and national governments have recently introduced incentives to address the high costs of green hydrogen production and accelerate the economic development of hydrogen. This study investigates the local production of green hydrogen to decarbonise the high-temperature process heat demand of a heavy industry located in Italy. The hydrogen generation is powered by PV electricity and from the electric grid. We have optimised the sizes of the energy system components including battery storage and hydrogen tanks. The Levelised Cost of Hydrogen (LCOH) was found to be 7.7 EUR/kg in the unincentivised base scenario but this amount significantly reduced to 3.3 EUR/kg when incentives on hydrogen production in abandoned industrial areas were considered. Thanks to such incentives the greenhouse gas emissions decreased by as much as 85 % with respect to the non-incentivised base case. Our results show that the effect of the incentives on the design and economics of the system is comparable with the expected reductions in equipment costs over the next decade. Importantly our findings reveal a linear relationship between Capital Costs and LCOH thereby enabling precise cost estimations to be made for the considered location without any further simulations. A side effect of the size optimisation in the presence of incentives is an increase of the plant footprint. However the limited availability of land could lead to non-optimal configurations with important impacts on emission intensity and LCOH.
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
Jul 2025
Publication
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances technical challenges research hotspots and future development directions of ejector applications in rail transit aiming to address gaps in existing reviews. (1) In waste heat recovery exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems the throttle valve is replaced with an ejector leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions scarcity of application data for global warming potential refrigerants insufficient stability of hydrogen recycling under wide power output ranges and thermodynamic irreversibility causing turbulence loss. To address these issues future efforts should focus on developing dynamic intelligent control technology based on machine learning designing adjustable nozzles and other structural innovations optimizing multi-system efficiency through hybrid architectures and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency thereby supporting the green transformation and energy conservation objectives of rail transit.
Comparative Analysis of Hydrogen-Ammonia Blends and Jet Fuels in Gas Turbine Combustors Using Well-stirred Reactor Models
Jun 2025
Publication
This study compares hydrogen ammonia-hydrogen fuel blends and Jet-A2 fuel in gas turbine combustors using a well-stirred reactor model and validated MATLAB library H2ools to assess flame temperature pollutant generation combustion stability and thermal efficiency. The aim is to address a significant deficiency in existing research which frequently lacks standardized turbine-related comparisons among new zero-carbon fuels. Quantitative data indicate that pure hydrogen attains the maximum adiabatic flame temperature (2552 Kelvin) laminar flame speed (7.73 meters per second) and heat generation (9.02 × 1010 watts per cubic meter) while also demonstrating increased nitrogen oxide emissions (up to 6400 parts per million). Jet-A2 exhibits reduced flame temperatures (2429 Kelvin) and minimal nitrogen oxide emissions (1308 parts per million) whereas a 50% ammonia-hydrogen blend yields the maximum nitrogen oxide output (7022 parts per million) attributable to the nitrogen content in ammonia. Hydrogen generates the minimal nitrogen oxide emissions per unit of energy output—approximately 0.1 grams per kilowatt-hour at a residence time of five milliseconds. This study integrates reactor-level study with a high-fidelity modeling tool providing insights for combustor design fuel selection and emissions control strategies in low-carbon aircraft and power systems.
Sustainability Assessment of Alternative Energy Fuels for Aircrafts—A Life Cycle Analysis Approach
Nov 2024
Publication
Aviation is of crucial importance for the transportation sector and fundamental for the economy as it facilitates trade and private travel. Nonetheless this sector is responsible for a great amount of global carbon dioxide emissions exceeding 920 million tonnes annually. Alternative energy fuels (AEFs) can be considered as a promising solution to tackle this issue with the potential to lower greenhouse gas emissions and reduce reliance on fossil fuels in the aviation industry. A life cycle analysis is performed considering an aircraft running on conventional jet fuel and various alternative fuels (biojet methanol and DME) including hydrogen and ammonia. The comparative assessment investigates different fuel production pathways including the following: JETA-1 and biojet fuels via hydrotreated esters and fatty acids (HEFAs) as well as hydrogen and ammonia employing water electrolysis using wind and solar photovoltaic collectors. The outputs of the assessment are quantified in terms of carbon dioxide equivalent emissions acidification eutrophication eco-toxicity human toxicity and carcinogens. The life cycle phases included the following: (i) the construction maintenance and disposal of airports; (ii) the operation and maintenance of aircrafts; and (iii) the production transportation and utilisation of aviation fuel in aircrafts. The results suggest that hydrogen is a more environmentally benign alternative compared to JETA-1 biojet fuel methanol DME and ammonia.
A Life Cycle Assessment Framework for Evaluating the Climate Impact of Hydrogen-Based Passenger Vehicle Technologies Toward Sustainable Mobility
Sep 2025
Publication
Hydrogen-based mobility solutions could offer viable technology for sustainable transportation. Current research often examines single pathways leaving broader comparisons unexplored. This comparative life cycle assessment (LCA) evaluates which vehicle type achieves the best environmental performance when using hydrogen from grey blue and green production pathways the three dominant carbon-intensity variants currently deployed. This study examines seven distinct vehicle configurations that rely on hydrogen-derived energy sources across various propulsion systems: a hydrogen fuel cell electric vehicle (H2FCEV) hydrogen internal combustion engine vehicle (H2ICEV) methanol flexible fuel vehicle (MeOH FFV) ethanol flexible vehicle (EtOH FFV) Fischer-Tropsch (FT) diesel internal combustion vehicle (FTD ICEV) and renewable compressed natural gas vehicle (RNGV). Via both grey and blue hydrogen production H2 FCEVs are the best options from the viewpoint of GWP but surprisingly in the green category FT-fueled vehicles take over both first and second place as they produce nearly half the lifetime carbon emissions of purely hydrogen-fueled vehicles. RNGV also emerges as a promising alternative offering optimal engine properties in a system similar to H2ICEVs enabling parallel development and technological upgrades. These findings not only highlight viable low-carbon pathways but also provide clear guidance for future targeted detailed applied research.
No more items...