Applications & Pathways
A Cogeneration System Based on Solid Oxide and Proton Exchange Membrane Fuel Cells with Hybrid Storage for Off-grid Applications
Jan 2019
Publication
Solid oxide fuel cells (SOFC) have developed to a mature technology able to achieve electrical efficiencies beyond 60%. This makes them particularly suitable for off-grid applications where SOFCs can supply both electricity and heat at high efficiency. Concerns related to lifetime particularly when operated dynamically and the high investment cost are however still the main obstacles toward a widespread adoption of this technology. In this paper we propose a hybrid cogeneration system that attempts to overcome these limitations in which the SOFC mainly provides the baseload of the system. Introducing a purification unit allows the production and storage of pure hydrogen from the SOFC anode off-gas. The hydrogen can be stored and used in a proton exchange membrane fuel cell (PEMFC) during peak demands. The SOFC system is completed with a battery used during periods of high electricity production. We propose the use of a mixed integer-linear optimization framework for the sizing of the different components of the system and particularly for identifying the optimal trade-off between round-trip efficiency and investment cost of the battery-based and hydrogen-based storage systems. The proposed system is applied and optimized to two case studies: an off-grid dwelling and a cruise ship. The results show that if the SOFC is used as the main energy conversion technology of the system the use of hydrogen storage in combination with a PEMFC and a battery is more economically convenient compared to the use of the SOFC in stand-alone mode or of pure battery storage. The results show that the proposed hybrid storage solution makes it possible to reduce the investment cost of the system while maintaining the use of the SOFC as the main energy source of the system.
Influence of Hydrogen on the Performance and Emissions Characteristics of a Spark Ignition Ammonia Direct Injection Engine
Oct 2023
Publication
Because ammonia is easier to store and transport over long distances than hydrogen it is a promising research direction as a potential carrier for hydrogen. However its low ignition and combustion rates pose challenges for running conventional ignition engines solely on ammonia fuel over the entire operational range. In this study we attempted to identify a stable engine combustion zone using a high-pressure direct injection of ammonia fuel into a 2.5 L spark ignition engine and examined the potential for extending the operational range by adding hydrogen. As it is difficult to secure combustion stability in a low-temperature atmosphere the experiment was conducted in a sufficiently-warmed atmosphere (90 ± 2.5 ◦C) and the combustion emission and efficiency results under each operating condition were experimentally compared. At 1500 rpm the addition of 10% hydrogen resulted in a notable 20.26% surge in the maximum torque reaching 263.5 Nm in contrast with the case where only ammonia fuel was used. Furthermore combustion stability was ensured at a torque of 140 Nm by reducing the fuel and air flow rates.
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
Aug 2025
Publication
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries these vehicles offer greater efficiency and zero emissions. However their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency hydrogen consumption battery state-of-charge and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution while the fuzzy logic approach provides greater adaptability to dynamic driving conditions leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management.
Quantum-Inspired MoE-Based Optimal Operation of a Wave Hydrogen Microgrid for Integrated Water, Hydrogen, and Electricity Supply and Trade
Feb 2025
Publication
This research explores the optimal operation of an offshore wave-powered hydrogen system specifically designed to supply electricity and water to a bay in Humboldt California USA and also sell it with hydrogen. The system incorporates a desalination unit to provide the island with fresh water and feed the electrolyzer to produce hydrogen. The optimization process utilizes a mixture of experts in conjunction with the Quantitative Structure-Activity Relationship (QSAR) algorithm traditionally used in drug design to achieve two main objectives: minimizing operational costs and maximizing revenue from the sale of water hydrogen and electricity. Many case studies are examined representing typical electricity demand and wave conditions during typical summer winter spring and fall days. The simulation optimization and results are carried out using MATLAB 2018 and SAM 2024 software applications. The findings demonstrate that the combination of the QSAR algorithm and quantum-inspired MoE results in higher revenue and lower costs compared to other current techniques with hydrogen sales being the primary contributor to increased income.
A Comparison of Low-carbon Gas-turbine Power Generation Cycles
Sep 2025
Publication
This study investigates potential solutions for low-carbon power generation with hydrogen firing and carbon capture. Multi-dimensional system modeling was used to assess the effects on plant performance size and cost. The examined cycles include advanced dry- wet- bottoming- oxyfuel cycles with air-separation units and post-combustion carbon capture with exhaust gas recirculation. The results identify three distinct lowcarbon technology pathways. While conventional combined-cycle plants are suitable for hydrogen retrofits hydrogen firing (both blue and green) results in levelized costs of electricity 50%–300% higher than carbon capture solutions making carbon capture more attractive for long-term energy storage. When carbon capture is applied to conventional combined cycles they become suboptimal compared to alternative solutions. The intercooled-recuperated (ICR) gas turbine cycle integrated with post-combustion carbon capture offers superior performance: over 3% higher efficiency 12% lower capital costs and 70% smaller physical footprint compared to conventional combined cycles with carbon capture. The Allam cycle represents a third pathway achieving 100% CO2 capture with efficiency comparable to combined cycles at 90% capture. Gas separation units emerge as the dominant source of both capital costs and efficiency penalties across all carbon capture configurations representing the key area for future optimization to reduce overall electricity costs.
Electrochemical Devices to Power a Sustainable Energy Transition—An Overview of Green Hydrogen Contribution
Mar 2024
Publication
This work discusses the current scenario and future growth of electrochemical energy devices such as water electrolyzers and fuel cells. It is based on the pivotal role that hydrogen can play as an energy carrier to replace fossil fuels. Moreover it is envisaged that the scaled-up and broader deployment of the technologies can hold the potential to address the challenges associated with intermittent renewable energy generation. From a sustainability perspective this synergy between hydrogen and electricity from renewable sources is particularly attractive: electrolyzers convert the excess energy from renewables into green hydrogen and fuel cells use this hydrogen to convert it back into electricity when it is needed. Although this transition endorses the ambitious goal to supply greener energy for all it also entails increased demand for the materials that are essential for developing such cleaner energy technologies. Herein several economic and environmental issues are highlighted besides a critical overview regarding each technology. The aim is to raise awareness and provide the reader (a non-specialist in the field) with useful resources regarding the challenges that need to be overcome so that a green hydrogen energy transition and a better life can be fully achieved.
The Emerging Role of Artificial Intelligence in Enhancing Energy Efficiency and Reducing GHG Emissions in Transport Systems
Dec 2024
Publication
The global transport sector a significant contributor to energy consumption and greenhouse gas (GHG) emissions requires innovative solutions to meet sustainability goals. Artificial intelligence (AI) has emerged as a transformative technology offering opportunities to enhance energy efficiency and reduce GHG emissions in transport systems. This study provides a comprehensive review of AI’s role in optimizing vehicle energy management traffic flow and alternative fuel technologies such as hydrogen fuel cells and biofuels. It explores AI’s potential to drive advancements in electric and autonomous vehicles shared mobility and smart transportation systems. The economic analysis demonstrates the viability of AI-enhanced transport considering Total Cost of Ownership (TCO) and cost-benefit outcomes. However challenges such as data quality computational demands system integration and ethical concerns must be addressed to fully harness AI’s potential. The study also highlights the policy implications of AI adoption underscoring the need for supportive regulatory frameworks and energy policies that promote innovation while ensuring safety and fairness.
Assessing the Carbon Intensity of e-fuels Production in European Countries: A Temporal Analysis
Nov 2024
Publication
The transport sector heavily relies on the use of fossil fuels which are causing major environmental concerns. Solutions relying on the direct or indirect use of electricity through efuel production are emerging to power the transport sector. To ensure environmental benefits are achieved over this transition an accurate estimation of the impact of the use of electricity is needed. This requires a high temporal resolution to capture the high variability of electricity. This paper presents a previously unseen temporal analysis of the carbon intensity of e-fuels using grid electricity in countries that are members of the European Network of Transmission System Operators (ENTSO-E). It also provides an estimation of the potential load factor for producing low-carbon e-fuels according to the European Union legislative framework. This was achieved by building on top of the existing EcoDynElec tool to develop EcoDynElec_xr a python tool enabling—with an hourly time resolution—the calculation visualisation and analysis of the historical time-series of electricity mixing from the ENTSO-E. The results highlight that in 2023 very few European countries were reaching low carbon intensity for electricity that enables the use of grid electricity for the production of green electrolytic hydrogen. The methodological assumptions consider the consumption of the electricity mix instead of the production mix and the considered time step is of paramount importance and drastically impacts the potential load factor of green hydrogen production. The developed tools are released under an open-source license to ensure transparency result reproducibility and reuse regarding newer data for other territories or for other purposes.
Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System
Jun 2024
Publication
Accelerating the transition to a cleaner global energy system is essential for tackling the climate crisis and green hydrogen energy systems hold significant promise for integrating renewable energy sources. This paper offers a thorough evaluation of green hydrogen’s potential as a groundbreaking alternative to achieve near-zero greenhouse gas (GHG) emissions within a renewable energy framework. The paper explores current technological options and assesses the industry’s present status alongside future challenges. It also includes an economic analysis to gauge the feasibility of integrating green hydrogen providing a critical review of the current and future expectations for the levelized cost of hydrogen (LCOH). Depending on the geographic location and the technology employed the LCOH for green hydrogen can range from as low as EUR 1.12/kg to as high as EUR 16.06/kg. Nonetheless the findings suggest that green hydrogen could play a crucial role in reducing GHG emissions particularly in hard-to-decarbonize sectors. A target LCOH of approximately EUR 1/kg by 2050 seems attainable in some geographies. However there are still significant hurdles to overcome before green hydrogen can become a cost-competitive alternative. Key challenges include the need for further technological advancements and the establishment of hydrogen policies to achieve cost reductions in electrolyzers which are vital for green hydrogen production.
A Survey on Hydrogen Tanks for Sustainable Aviation
Aug 2024
Publication
The aviation industry is facing challenges related to its environmental impact and thus the pressing need to develop aircraft technologies aligned with the society climate goals. Hydrogen is emerging as a potential clean fuel for aviation as it offers several advantages in terms of supply potential and weight specific energy. One of the key factors enabling the use of H2 in aviation is the development of reliable and safe storage technologies to be integrated into aircraft design. This work provides an overview of the technologies currently being investigated or developed for the storage of hydrogen within the aircraft which would enable the use of hydrogen as a sustainable fuel for aviation with emphasis on tanks material and structural aspects. The requirements dictated by the need of integrating the fuel system within existing or ex-novo aircraft architectures are discussed. Both the storage of gaseous and liquid hydrogen are considered and the main challenges related to the presence of either high internal pressures or cryogenic conditions are explored in the background of recent literature. The materials employed for the manufacturing of hydrogen tanks are overviewed. The need to improve the storage tanks efficiency is emphasized and issues such as thermal insulation and hydrogen embrittlement are covered as well as the reference to the main structural health monitoring strategies. Recent projects dealing with the development of onboard tanks for aviation are eventually listed and briefly reviewed. Finally considerations on the tank layout deemed more realistic and achievable in the near future are discussed.
Hydrogen and Fuel Cell Technology: Progress, Challenges, and Future Directions
Sep 2012
Publication
The Department of Energy’s (DOE) hydrogen and fuel cell activities are presented focussing on key targets and progress. Recent results on the cost durability and performance of fuel cells are discussed along with the status of hydrogen-related technologies and cross-cutting activities. DOE has deployed fuel cells in key early markets including backup power and forklifts. Recent analyses show that fuel cell electric vehicles (FCEVs) are among the most promising options to reduce greenhouse gas emissions and petroleum use. Preliminary analysis also indicates that the total cost of ownership of FCEVs will be comparable to other advanced vehicle and fuel options.
Heat Transfer Modeling of Hydrogen-Fueled Spark Ignition Engine
Jan 2025
Publication
Currently green hydrogen generated through renewable energy sources stands out as one of the best substitutes for fossil fuels in mitigating pollutant emissions and consequent global warming. Particularly the utilization of hydrogen in spark ignition engines has undergone extensive study in recent years. Many aspects have been analyzed: the conversion of gasoline engines to hydrogen operation the combustion duration the heat transfer and in general the engine thermal efficiency. Hydrogen combustion is characterized by a smaller quenching distance compared to traditional hydrocarbon fuels such as gasoline or natural gas and this produces a smaller thermal boundary layer and consequently higher heat transfer. This paper presents findings from experimental trials and numerical simulations conducted on a hydrogen-powered CFR (cooperative fuel research) engine focusing specifically on heat transfer with combustion chamber walls. The engine has also been fueled with methane and isooctane (two reference fuels); both the engine compression ratio and the air/fuel ratio have been changed in a wide range in order to compare the three fuels in terms of heat transfer combustion duration and engine thermal efficiency in different operating conditions. A numerical model has been calibrated with experimental data in order to predict the amount of heat transfer under the best thermal efficiency operating conditions. The results show that when operated with hydrogen the best engine efficiency is obtained with a compression ratio of 11.9 and an excess air ratio (λ) of 2.
Optimal Hydrogen Infrastructure Planning for Heat Decarbonisation
Feb 2024
Publication
Energy decarbonisation is essential to achieve Net-Zero emissions goal by 2050. Consequently investments in alternative low-carbon pathways and energy carriers for the heat sector are required. In this study we propose an optimisation framework for the transition of heat sector in Great Britain focusing on hydrogen infrastructure decisions. A spatially-explicit mixed-integer linear programming (MILP) evolution model is developed to minimise the total system’s cost considering investment and operational decisions. The optimisation framework incorporates both long-term planning horizon of 5-year steps from 2035 to 2050 and typical days with hourly resolution. Aiming to alleviate the computational effort of such multiscale model two hierarchical solution approaches are suggested that result in computational time reduction. From the optimisation results it is shown that the installation of gas reforming hydrogen production technologies with CCS and biomass gasification with CCS can provide a cost-effective strategy achieving decarbonisation goal. What-if analysis is conducted to demonstrate further insights for future hydrogen infrastructure investments. Results indicate that as cost is highly dependent on natural gas price Water Electrolysis capacity increases significantly when gas price rises. Moreover the introduction of carbon tax policy can lead to lower CO2 net emissions.
OIES Podcast - Aviation Fuels and the Potential of Hydrogen
Feb 2024
Publication
In the latest OIES podcast from the Hydrogen Programme James Henderson talks to Abdurahman Alsulaiman about his latest paper entitled “Navigating Turbulence: Hydrogen’s Role in the Decarbonisation of the Aviation Sector.” In the podcast we discuss the current balance of fuels in the aviation sector the importance of increasing efficiency of aero-engines and the impact of increasing passenger miles travelled. The podcast then considers different decarbonisation options for the sector focussing on a change of engine technology to allow the use of alternative fuels such as hydrogen or electricity but also looking at the potential for hydrogen to play an important role in the development of Sustainable Aviation Fuels (SAFs) for use with current engine technology. We also look at Low Carbon Aviation Fuels which are essentially existing fuels derived from a significantly decarbonised supply chain and assess whether they have an important role to play as the aviation sector targets a net zero outcome.
The podcast can be found on their website.
The podcast can be found on their website.
Machine Learning Models for the Prediction of Turbulent Combustion Speed for Hydrogen-natural Gas Spark Ignition Engines
May 2024
Publication
The work carried out in this paper focused on “Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines”. The aim of this work is to develop and verify the ability of machine learning models to solve the problem of estimating the turbulent flame speed for a spark-ignition internal combustion engine operating with a hydrogen-natural gas mixture then evaluate the relevance of these models in relation to the usual approaches. The novelty of this work is the possibility of a direct calculation of turbulent combustion speed with a good precision using only machine learning model. The obtained models are also compared to each other by considering in turn as a comparison criterion: the precision of the result calculation time and the ability to assimilate original data (which has not undergone preprocessing). An important particularity of this work is that the input variables of the machine learning models were chosen among the variables directly measurable experimentally based on the opinion of experts in combustion in internal combustion engines and not on the usual approaches to dimensionality reduction on a dataset. The data used for this work was taken from a MINSEL 380 a 380-cc single-cylinder engine. The results show that all the machine learning models obtained are significantly faster than the usual approach and Random Forest (R2: R-squared = 0.9939 and RMSE: Root Mean Square Error = 0.4274) gives the best results. With a forecasting accuracy of over 90 % both approaches can make reasonable predictions for most industrial applications such as designing engine monitoring and control systems firefighting systems simulation and prototyping tools.
A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel
Jul 2021
Publication
Reversible solid oxide cells (rSOC) enable the efficient cyclic conversion between electrical and chemical energy in the form of fuels and chemicals thereby providing a pathway for longterm and high-capacity energy storage. Amongst the different fuels under investigation hydrogen methane and ammonia have gained immense attention as carbon-neutral energy vectors. Here we have compared the energy efficiency and the energy demand of rSOC based on these three fuels. In the fuel cell mode of operation (energy generation) two different routes have been considered for both methane and ammonia; Routes 1 and 2 involve internal reforming (in the case of methane) or cracking (in the case of ammonia) and external reforming or cracking respectively. The use of hydrogen as fuel provides the highest round-trip efficiency (62.1%) followed by methane by Route 1 (43.4%) ammonia by Route 2 (41.1%) methane by Route 2 (40.4%) and ammonia by Route 1 (39.2%). The lower efficiency of internal ammonia cracking as opposed to its external counterpart can be attributed to the insufficient catalytic activity and stability of the state-of-the-art fuel electrode materials which is a major hindrance to the scale-up of this technology. A preliminary cost estimate showed that the price of hydrogen methane and ammonia produced in SOEC mode would be ~1.91 3.63 and 0.48 $/kg respectively. In SOFC mode the cost of electricity generation using hydrogen internally reformed methane and internally cracked ammonia would be ~52.34 46.30 and 47.11 $/MWh respectively.
A Techno-economic Life Cycle Assessment of H2 Fuelled and Electrified Urban Buses
Sep 2025
Publication
Nowadays several technologies based on powertrain electrification and the exploitation of hydrogen represent valuable options for decarbonizing the on-road public transport sector. The considered alternatives should exhibit an effective benchmark between CO2 reduction potential and production/operational costs. Conducting a comprehensive Total Cost of Ownership (TCO) analysis coupled with a thorough Life Cycle Assessment (LCA) is therefore crucial in shaping the future for cleaner urban mobility. From this perspective this study compares different powertrain configurations for a 12 m urban bus: a conventional diesel Internal Combustion Engine Vehicle (ICEV) a series hybrid diesel two hydrogen-based series hybrid vehicles: a Hydrogen Hybrid Electric Vehicle featuring an H2-ICE (H2-HEV) or a Fuel Cell Electric Vehicle (FCEV) and a Battery Electric Vehicle (BEV). Moreover a sensitivity analysis has been conducted on the carbon footprint for power generation considering also the marginal electricity mix. In addition prospective LCA and TCO elements are introduced by addressing future technological projections for the 2030 horizon. The research reveals that as of today the BEV and hydrogen-fueled vehicles have comparable environmental impacts when the marginal electricity mix is considered. The techno-economic analysis indicates that under current conditions FCEVs and H2-HEVs are not cost-effective for CO₂ reduction unless powered by renewable energy sources. However considering future technological advancements and market evolution FCEVs offer the most promising balance between economic and environmental benefits particularly if hydrogen prices reach €4 per kilogram. If hydrogen-powered vehicles remain a niche market BEVs will be the most viable option for decarbonizing the transport sector in most European countries.
A Study on the Promoting Role of Renewable Hydrogen in the Transformation of Petroleum Refining Pathways
Jun 2024
Publication
The refining industry is shifting from decarbonization to hydrogenation for processing heavy fractions to reduce pollution and improve efficiency. However the carbon footprint of hydrogen production presents significant environmental challenges. This study couples refinery linear programming models with life cycle assessment to evaluate from a long-term perspective the role of low-carbon hydrogen in promoting sustainable and profitable hydrogenation refining practices. Eight hydrogen-production pathways were examined including those based on fossil fuels and renewable energy providing hydrogen for three representative refineries adopting hydrogenation decarbonization and co-processing routes. Learning curves were used to predict future hydrogen cost trends. Currently hydrogenation refineries using fossil fuels benefit from significant cost advantages in hydrogen production demonstrating optimal economic performance. However in the long term with increasing carbon taxes hydrogenation routes will be affected by the high carbon emissions associated with fossil-based hydrogen losing economic advantages compared to decarbonization pathways. With increasing installed capacity and technological advancements low-carbon hydrogen is anticipated to reach cost parity with fossil-based hydrogen before 2060. Coupling renewable hydrogen is expected to yield the most significant economic advantages for hydrogenation refineries in the long term. Renewable hydrogen drives the transition of refining processing routes from a decarbonization-oriented approach to a hydrogenation-oriented paradigm resulting in cleaner refining processes and enhanced competitiveness under emission-reduction pressures.
Techno-economic Feasibility of Integrating Hybrid-battery Hydrogen Energy Storage in Academic Buildings
Apr 2024
Publication
Green hydrogen production and storage are vital in mitigating carbon emissions and sustainable transition. However the high investment cost and management requirements are the bottleneck of utilizing hybrid hydrogen-based systems in microgrids. Given the necessity of cost-effective and optimal design of these systems the present study examines techno-economic feasibility of integrating hybrid hydrogen-based systems into an outdoor test facility. With this perspective several solar-driven hybrid scenarios are introduced at two energy storage levels namely the battery and hydrogen energy storage systems including the high-pressure gaseous hydrogen and metal hydride storage tanks. Dynamic simulations are carried out to address subtle interactions in components of the hybrid system by establishing a TRNSYS model coupled to a Fortran code simulating the metal hydride storage system. The OpenStudio-EnergyPlus plugin is used to simulate the building load validate against experimental data according to the measured data and monitored operating conditions. Aimed at enabling efficient integration of energy storage systems a techno-enviro-economic optimization algorithm is developed to simultaneously minimize the levelized cost of the electricity and maximize the CO2 mitigation in each proposed hybrid scenario. The results indicate that integrating the gaseous hydrogen and metal hydride storages into the photovoltaic-alone scenario enhances 22.6% and 14.4% of the annual renewable factor. Accordingly the inclusion of battery system to these hybrid scenarios gives a 30.4% and 20.3 % boost to the renewable factor value respectively. Although the inclusion of battery energy storage into the hybrid systems increases the renewable factor the results imply that it reduces the hydrogen production rate via electrolysis. The optimized values of the levelized cost of electricity and CO2 emission for different scenarios vary in the range of 0.376–0.789 $/kWh and 6.57–9.75 ton respectively. The multi-criteria optimizations improve the levelized cost of electricity and CO2 emission by up to 46.2% and 11.3% with respect to their preliminary design.
Global Demand for Green Hydrogen-based Steel: Insights from 28 Scenarios
Jul 2024
Publication
Growing expectations are being placed on green hydrogen-based steel for decarbonising the global steel industry. However the scale of the expected demand is dispersed across numerous case studies resulting in a fragmented picture. This study examines 28 existing scenarios to provide a cohesive view of future global demand. In the short term the demand for green hydrogen-based steel is expected to be limited constituting 2% of current total steel production by 2030. However a transformation phase is expected around 2040 marked by accelerated growth. By 2050 global demand is projected to reach 660 Mt (with an interquartile range of 368–1000 Mt) equivalent to 35% (19%–53%) of current total steel production. To meet such growing demand green hydrogen supply and electrolyser capacity will need to increase to more than 1000 times current levels by 2050. These trends highlight both short-term limitations and long-term potential. Decarbonisation efforts will therefore require immediate emission reductions with already scalable options while simultaneously building the enabling infrastructure for green hydrogen-based steelmaking to ensure long-term impacts.
No more items...