Applications & Pathways
Strategies to Increase Hydrogen Energy Share of a Dual-Fuel Hydrogen–Kerosene Engine for Sustainable General Aviation
Mar 2025
Publication
Reducing CO2 emissions in general aviation is a critical challenge where battery electric and fuel cell technologies face limitations in energy density cost and robustness. As a result hydrogen (H2) dual-fuel combustion is a promising alternative but its practical implementation is constrained by abnormal combustion phenomena such as knocking and pre-ignition which limit the achievable H2 energy share. In response to these challenges this paper focuses on strategies to mitigate these irregular combustion phenomena while effectively increasing the H2 energy share. Experimental evaluations were conducted on an engine test bench using a one-cylinder dual-fuel H2 kerosene (Jet A-1) engine utilizing two strategies including water injection (WI) and rising the air–fuel ratio (AFR) by increasing the boost pressure. Additionally crucial combustion characteristics and emissions are examined and discussed in detail contributing to a comprehensive understanding of the outcomes. The results indicate that these strategies notably increase the maximal possible hydrogen energy share with potential benefits for emissions reduction and efficiency improvement. Finally through the use of 0D/1D simulations this paper offers critical thermodynamic and efficiency loss analyses of the strategies enhancing the understanding of their overall impact.
Effect of Hydrogen Co-Firing with Natural Gas on Thermal Efficiency and CO2 Emissions in Gas Turbine Power Plant
Mar 2025
Publication
The Indonesian government has established an energy transition policy for decarbonization including the target of utilizing hydrogen for power generation through a co-firing scheme. Several studies indicate that hydrogen co-firing in gas-fired power plants can reduce CO2 emissions while improving efficiency. This study develops a simulation model for hydrogen co-firing in an M701F gas turbine at the Cilegon power plant using Aspen HYSYS. The impact of different hydrogen volume fractions (5–30%) on thermal efficiency and CO2 emissions is analyzed under varying operational loads (100% 75% and 50%). The simulation results show an increase in thermal efficiency with each 5% increment in the hydrogen fraction averaging 0.32% at 100% load 0.34% at 75% load and 0.37% at 50% load. The hourly CO2 emission rate decreased by an average of 2.16% across all operational load variations for every 5% increase in the hydrogen fraction. Meanwhile the average reduction in CO2 emission intensity at the 100% 75% and 50% operational loads was 0.017 0.019 and 0.023 kg CO2/kWh respectively.
A Configuration and Scheduling Optimization Method for Integrated Energy Systems Considering Massive Flexible Load Resources
Mar 2025
Publication
Introduction: With the increasing demand for energy utilization efficiency and minimization of environmental carbon emissions in industrial parks optimizing the configuration and scheduling of integrated energy systems has become crucial. This study focuses on integrated energy systems with massive flexible load resources aiming to maximize energy utilization efficiency while reducing environmental impact. Methods: To model the uncertainties in wind and solar power outputs we employed three-parameter Weibull distribution models and Beta distribution models. Flexible loads were categorized into three types to match different electricity consumption patterns. Additionally an enhanced Kepler Optimization Algorithm (EKOA) was proposed incorporating chaos mapping and adaptive learning rate strategies to improve search scope convergence speed and solution efficiency. The effectiveness of the proposed optimization scheduling and configuration methods was validated through a case study of an industrial park located in a coastal area of southeastern China. Results: The results show that using three-parameter Weibull distribution models and Beta distribution models more accurately reflects the variations in actual wind speeds and solar irradiance levels achieving peak shaving and valley filling effects and enhancing renewable energy utilization. The EKOA algorithm significantly reduced curtailment rates of wind and solar power generation while achieving substantial economic benefits. Compared with other operation modes of hydrogen the daily average cost is reduced by 12.92% and external electricity purchases are reduced by an average of 20.2 MW h/day. Discussion: Although our approach shows potential in improving energy utilization efficiency and economic gains this paper only considered hydrogen energy for single-use pathways and did not account for the economic benefits from selling hydrogen in the market. Future research will further incorporate hydrogen demand response mechanisms and optimize the output of integrated energy systems from the perspective of spot markets. These findings provide valuable references for relevant engineering applications.
Integrated Energy Storage and Transmission Solutions: Evaluating hydrogen, Ammonia, and Compressed Air for Offshore Wind Power Delivery
Mar 2025
Publication
This paper introduces a novel dual-purpose transmission system that integrates power transmission and energy storage using hydrogen ammonia and compressed air—an area largely unexplored in the literature. Unlike conventional cable transmission which requires separate storage infrastructure the proposed approach leverages the transmission medium itself as an energy storage solution enhancing system efficiency and reducing costs. By incorporating a defined storage allocation factor this study examines the delivery of offshore-generated power to onshore locations calculating the necessary media flow rates and evaluating the required transportation infrastructure including tunnels and pipelines. A comparative cost-effectiveness analysis is conducted to determine optimal conditions under which storage-integrated transmission outperforms conventional cable transmission. Various transmission powers storage fractions pressures and distances are analysed to assess feasibility and economic viability. The findings indicate that for a 75 % storage allocation factor compressed air can transmit up to 450 MW over 300 km more cost-effectively than cables while hydrogen enables 230 MW transmission beyond 310 km. Ammonia proves to be the most efficient facilitating the transmission of over 2000 MW across distances exceeding 140 km at a lower cost than cables all without requiring onshore storage. Moreover for a 500-km transmission line compressed air hydrogen and ammonia can store the equivalent of 62 58 and 152 h of wind farm output respectively significantly reducing the need for additional onshore storage. This study fills a critical research gap by optimizing offshore wind power delivery through an innovative cost-effective and scalable transmission and storage approach.
Progress on Research and Application of Energy and Power Systems for Inland Waterway Vessels: A Case Study of the Yangtze River in China
Aug 2025
Publication
This study focuses on the power systems of inland waterway vessels in Chinese Yangtze River systematically outlining the low-carbon technology pathways for different power system types. A comparative analysis is conducted on the technical feasibility emission reduction potential and economic viability of LNG methanol ammonia pure electric and hybrid power systems revealing the bottlenecks hindering the large-scale application of each system. Key findings indicate that: (1) LNG and methanol fuels offer significant short-term emission reductions in internal combustion engine power systems yet face constraints from methane slip and insufficient green methanol production capacity respectively; (2) ammonia enables zero-carbon operations but requires breakthroughs in combustion stability and synergistic control of NOX; (3) electric vessels show high decarbonization potential but battery energy density limits their range while PEMFC lifespan constraints and SOFC thermal management deficiencies impede commercialization; (4) hybrid/range-extended power systems with superior energy efficiency and lower retrofitting costs serve as transitional solutions for existing vessels though challenged by inadequate energy management strategies and multi-equipment communication protocol interoperability. A phased transition pathway is proposed: LNG/methanol engines and hybrid systems dominate during 2025–2030; ammonia-powered systems and solid-state batteries scale during 2030–2035; post-2035 operations achieve zero-carbon shipping via green hydrogen/ammonia.
Hydrogen Mole Fraction Distributions Inferred from Inverse-LIF Measurements on High-pressure Hydrogen Injections
Oct 2025
Publication
The mixing of fuel and ambient in a compression-igniting combustion engine is a critical process affecting ignition delay burn duration and cycle efficiency. This study aims to visualize and quantify hydrogen mole fraction distributions resulting from high-pressure (10 MPa) hydrogen injections into an inert pressurized (1 MPa) nitrogen ambient at room temperature. Using inverse planar laser-induced fluorescence in which the ambient rather than the jet is seeded with a fluorescent tracer two different injectors (nozzle hole sizes of 0.55 and 0.65 mm) and two different tracers (toluene and acetone) are compared. It is concluded that a non-intensified CCD camera for fluorescence detection is superior to the use of an intensified one due to the linear behavior on contrast. The two injectors produce similar jets in terms of jet penetration and angle. Jet penetration derived from inverse-LIF measurements agree with Schlieren data on nominally the same jets but the hydrogen mole fractions are generally 2.5-5 percent lower than those obtained by planar Rayleigh scattering. Quasi-steadiness and self-similarity were found for ensemble-averaged mole fraction distributions of both injectors which aligns with theory and highlights the importance of using RANS simulations or time-averaged experiments for future comparisons.
Multi-Fuel SOFC System Modeling for Ship Propulsion: Comparative Performance Analysis and Feasibility Assessment of Ammonia, Methanol and Hydrogen as Marine Fuels
Oct 2025
Publication
To reduce fossil fuel dependency in shipping adopting alternative fuels and innovative propulsion systems is essential. Solid Oxide Fuel Cells (SOFC) powered by hydrogen carriers represent a promising solution. This study investigates a multi-fuel SOFC system for ocean-going vessels capable of operating with ammonia methanol or hydrogen thus enhancing bunkering flexibility. A thermodynamic model is developed to simulate the performance of a 3 kW small-scale system subsequently scaling up to a 10 MW configuration to meet the power demand of a container ship used as the case study. Results show that methanol is the most efficient fueling option reaching a system efficiency of 58% while ammonia and hydrogen reach slightly lower values of about 55% and 51% respectively due to higher auxiliary power consumption. To assess technical feasibility two installation scenarios are considered for accommodating multiple fuel tanks. The first scenario seeks the optimal fuel share equivalent to the diesel tank’s chemical energy (17.6 GWh) minimizing mass increase. The second scenario optimizes the fuel share within the available tank volume (1646 m3 ) again minimizing mass penalties. In both cases feasibility results have highlighted that changes are needed in terms of cargo reduction equal to 20.3% or alternatively in terms of lower autonomy with an increase in refueling stops. These issues can be mitigated by the benefits of increased bunkering flexibility
Hydrogen-Based Solutions for Enhancing Frequency Stability in Renewable Energy-Integrated Power Systems
Mar 2025
Publication
With the increasing adoption of renewable energy sources such as solar and wind power it is essential to achieve carbon neutrality. However several shortcomings including their intermittence pose significant challenges to the stability of the electrical grid. This study explores hydrogen-based technologies such as fuel cells and water electrolysis systems as an effective solution to improve frequency stability and address the problems of power grid reliability. Using power system analysis programs modeling and simulations performed on IEEE-25 Bus and Jeju Island systems demonstrate the potential of these technologies to mitigate reductions reduce transmission constraints and stabilize frequencies. The results show that hydrogen-based systems are important factors enabling sustainable energy transition.
Market Readiness Analysis: Expected Uptake of Alternative Fuel Heavy-duty Vehicles until 2030 and their Corresponding Infrastructure Needs
Jun 2025
Publication
This report assesses the market readiness of zero-emission heavy-duty vehicles and the required infrastructure to meet the 45% emission reduction targets set by the revised CO2 standards by 2030. Achieving these goals requires the widespread adoption of zero-emission vehicles and a robust recharging and hydrogen refuelling infrastructure Three main aspects are investigated: the market readiness of the vehicles considering both the demand and supply side the corresponding infrastructure requirements and the barriers. Building on the inputs of the stakeholders a ‘study scenario’ is developed. This scenario shows a concrete picture of what the zero-emission heavy-duty vehicle fleet and its infrastructure requirement could look like by 2030. There are however key barriers that need to be overcome such as high total cost of ownership limited electricity grid capacity lengthy permitting processes and uncertainty in hydrogen availability and pricing. Stakeholders also emphasize the importance of policy drivers such as emissions trading systems and tolling and tax reforms to stimulate demand. In conclusion achieving the 2030 targets demands a coordinated approach involving manufacturers operators and policymakers to address infrastructure gaps market barriers and policy incentives ensuring the transition to a zero-emission HDV fleet.
A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft
Jun 2025
Publication
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells which will be studied at three technological levels and batteries also studied for four hybridization factors (X = 0 0.05 0.10 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 ◦C. Taking advantage of this characteristic two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1 which includes a vapor compression system (VCS) and A2 which omits it for a simpler design. The models were developed in MATLAB® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2 due to the exclusion of the VCS outperformed A1 in weight (10–23% reduction) energy consumption and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0) but hybridization negated these benefits significantly increasing emissions in pessimistic scenarios.
Modeling Homogeneous, Stratified, and Diffusion Combustion in Hydrogen SI Engines Using the Wiebe Approach
Jun 2025
Publication
The use of hydrogen as a fuel for piston engines enables environmentally friendly and efficient operation. However several challenges arise in the combustion process limiting the development of hydrogen engines. These challenges include abnormal combustion the high burning velocity of hydrogen-enriched mixtures increased nitrogen oxide emissions and others. A rational organization of hydrogen combustion can partially or fully mitigate these issues through the use of advanced methods such as late direct injection charge stratification dual injection jet-guided operation and others. However mathematical models describing hydrogen combustion for these methods are still under development complicating the optimization and refinement of hydrogen engines. Previously we proposed a mathematical model based on Wiebe functions to describe premixed and diffusion combustion as well as relatively slow combustion in lean-mixture zones behind the flame front and near-wall regions. This study further develops the model by accounting for the combined influence of the mixture composition and engine speed mixture stratification and the effects of injection and ignition parameters on premixed and diffusion combustion. Special attention is given to combustion modeling in an engine with single injection and jet-guided operation.
Experimental Study on the Effects of Injection Pressure and Injection Timing on Combustion and Emissions in a Direct-injection Hydrogen Engine
Oct 2025
Publication
Hydrogen internal combustion engines are pivotal components of the power industry for achieving zero-carbon emissions. However the development of hydrogen engines is still in its infancy and experimental research on their injection strategies lacks systematization. In this study the individual impacts of hydrogen injection pressure (within low-pressure ranges) and injection timing as well as their coupling effects on combustion characteristics engine efficiency and exhaust emissions were experimentally investigated. Results show that under fixed timing an injection pressure of 25–27.5 bar yields the highest and earliest peak in-cylinder pressures whereas at 15 bar the ignition delay increases to 14.7°CA the flame development duration extends to 8.57°CA and the late combustion duration shortens to 41.37°CA; the exhaust gas temperature peaks at 628 K at 20 bar and NOX peaks at 537 ppm at 25 bar. BTE (brake thermal efficiency) exhibits a U-shaped relationship with pressure with the minimum efficiency occurring near 25 bar when timing is held constant; advancing start of injection from 130° BTDC to 170° BTDC reduces both NOX and exhaust gas temperature with the optimal fuel economy at 140° BTDC and a peak in-cylinder pressure that is approximately 7 % higher and occurs 2–3°CA earlier at 130–140° BTDC. In the pressure–timing maps IMEP (indicated mean effective pressure) is maximized at 30 bar and 90° BTDC; BTE reaches 33.5 % at 25 bar and 100° BTDC; NOX attains a minimum at 25 bar and 110° BTDC while the exhaust gas temperature is lowest at 25 bar and 120° BTDC. Injection pressure is the primary lever for regulating fuel economy and emissions while injection timing mainly adjusts combustion phasing and IMEP. The results provide clear guidance for calibrating low-pressure hydrogen injection systems supply benchmark data for model validation and support the development of practical control strategies for hydrogen engines.
Equipment Sizing and Operation Strategy of Photovoltaic-Powered Hydrogen Refueling Station Based on AE-PEM Coupled Hydrogen Production
Mar 2025
Publication
With the global commercialization of hydrogen fuel cell vehicles the number of hydrogen refueling stations is steadily increasing. On-site hydrogen production stations are expected to play a key role in future power systems by absorbing renewable energy and supplying electricity during peak grid loads aiding in peak shaving and load leveling. However renewable energy sources like photovoltaic (PV) systems have highly fluctuating power generation curves making it difficult to provide stable energy for hydrogen production. Traditional stations mainly use alkaline electrolyzers (AE) which are sensitive to power fluctuations leading to operational instability. To address this this paper proposes using capacitors and energy storage batteries to mitigate PV fluctuations and introduces a combined AE and Proton Exchange Membrane (PEM) electrolyzer hydrogen production method. Study cases demonstrate that capacitors and energy storage batteries reduce the variance of PV power output by approximately 0.02. Building on this the hybrid approach leverages the low cost of AE and the rapid response of PEM electrolyzers to better adapt to PV fluctuations and maximize PV absorption. The model is mathematically formulated and the station’s equipment planning and operational strategy are optimized using CPLEX. The results show that compared to pure AE and PEM hydrogen production the combined AE and PEM hydrogen production method reduces the total annual cost of the hydrogen refueling station by 4.3% and 5.9% respectively.
Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control
Jun 2025
Publication
This study investigates the effects of varying hydrogen percentages in fuel blends on combustion dynamics engine performance and emissions. Experimental data and analytical equations were used to evaluate combustion parameters such as equivalent lambda in-cylinder pressure heat release rate and ignition timing. The findings demonstrate that hydrogen blending enhances combustion stability shortens ignition delay and shifts peak heat release to be closer to the top dead center (TDC). These changes improve thermal efficiency and reduce cycle-to-cycle variation. Hydrogen blending also significantly lowers carbon dioxide (CO2) and hydrocarbon (HC) emissions particularly at higher blend levels (H0–H5) while lower blends increase nitrogen oxides (NOx) emissions and risk pre-ignition due to advanced start of combustion (SOC). Engine performance improved with an average hydrogen energy contribution of 12% under a constant load. However the optimal hydrogen blending range is crucial to balancing efficiency gains and emission reductions. These results underline the potential of hydrogen as a cleaner additive fuel and the importance of optimizing blend ratios to harness its benefits effectively.
Macroeconomic and Environmental Impacts of Two Decarbonization Options for the Dutch Steel Industry: Green Relocation Versus Green Hydrogen Imports
Jun 2025
Publication
Decarbonizing the steel industry will require a shift towards renewable energy. However costs and emissions associated with the long-distance transport of renewable energy carriers may incentivize the relocation of steel production closer to renewable energy sources. This “green relocation” would affect regional economic structures and global trade patterns. Nevertheless the macroeconomic and environmental impacts of alternative industry location options remain underexplored. This study compares the impacts on value-added prices and emissions under two options for decarbonizing the Dutch steel industry: importing green hydrogen from Brazil to produce green steel in the Netherlands versus relocating production to Brazil and transporting green steel to the Netherlands. Impacts are analyzed by combining a price and a quantity model within an environmentally extended multiregional input-output (EE-MRIO) framework. Results suggest that the relocation option brings the greatest synergies between climate and economic goals at the global level as it leads to lower production costs smaller price effects and greater emissions reductions. However relocation also results in stronger distributive impacts across global regions. Higher carbon prices would be insufficient to counteract relocation incentives. This calls for policymakers in industrialized countries to systematically consider the possibility of green relocation when designing decarbonization and industrial competitiveness strategies.
Feasibility Assessment and Response Surface Optimisation of a Fuel Cell-integrated Sustainable Wind Farm in Italy
Sep 2025
Publication
This study explores the design and feasibility of a novel fuel cell-powered wind farm for residential electricity hydrogen/oxygen production and cooling/heating via a compression chiller. Wind turbine energy powers Proton Exchange Membrane (PEM) electrolyzers and a compression chiller unit. The proposed system was modeled using EES thermodynamic software and its economic viability was assessed. A case study across seven Italian regions with varying wind potentials evaluated the system’s feasibility in diverse weather conditions. Multi-objective optimization using Response Surface Methodology (RSM) determined the number of wind turbines as optimum number of electrolyzers & fuel cell units. Optimization results indicated that 37 wind turbines 1 fuel cell unit and 2 electrolyzer units yielded an exergy efficiency of 27.98 % and a cost rate of 619.9 $/h. TOPSIS analysis suggested 32 wind turbines 2 electrolyzers and 2 reverse osmosis units as an alternative configuration. Further twelve different scenarios were examined to enhance the distribution of wind farmgenerated electricity among the grid electrolyzers and reverse osmosis systems. revealing that directing 25 % to reverse osmosis 20 % to electrolyzers and 55 % to grid sales was optimal. Performance analysis across seven Italian cities (Turin Bologna Florence Palermo Genoa Milan and Rome) identified Genoa Palermo and Bologna as the most suitable locations due to favorable wind conditions. Implementing the system in Genoa the optimal site could produce 28435 MWh of electricity annually prevent 5801 tons of CO2 emissions (equivalent to 139218 $). Moreover selling this clean electricity to the grid could meet the annual clean electricity needs of approximately 5770 people in Italy
Cooperative Control of Hydrogen-energy Storage Microgrid System Based on Disturbance-rejection Model Predictive Control
Mar 2025
Publication
Model predictive control (MPC) requires high accuracy of the model. However the actual power system has complex dynamic characteristics. There must be unmodeled dynamics in the system modeling process which makes it difficult for MPC to perform the function of optimal control. ESO has the ability to observe and suppress errors combining the both can solve this problem. Thus this paper proposes a coordinated control strategy of hydrogen-energy storage system based on disturbance-rejection model predictive controller. Firstly this paper constructs the state-space model of the system and improves MPC. By connecting ESO and MPC in series this paper designs a matched disturbance-rejection model predictive controller and analyzes the robustness of the research system. Finally this paper verifies the effectiveness and feasibility of the disturbance-rejection model predictive controller under various working conditions. Compared with the method using only MPC the dynamic response time of the system frequency regulation under the proposed strategy in this paper is increased by about 29.9 % and the frequency drop rate is slowed down by 13.5 %. In addition under the AGC command and continuous load disturbance working conditions the maximum frequency deviation of the system under the proposed strategy is reduced by about 54.01 % and 48.96 %. The results clearly show that the proposed strategy in this paper significantly improves the dynamic response ability of the system and reduces the frequency fluctuation of the system after disturbance.
Real-Time Energy Management of a Microgrid Using MPC-DDQN-Controlled V2H and H2V Operations with Renewable Energy Integration
Aug 2025
Publication
This paper presents the design and implementation of an Intelligent Home Energy Management System in a smart home. The system is based on an economically decentralized hybrid concept that includes photovoltaic technology a proton exchange membrane fuel cell and a hydrogen refueling station which together provide a reliable secure and clean power supply for smart homes. The proposed design enables power transfer between Vehicle-to-Home (V2H) and Home-to-Vehicle (H2V) systems allowing electric vehicles to function as mobile energy storage devices at the grid level facilitating a more adaptable and autonomous network. Our approach employs Double Deep Q-networks for adaptive control and forecasting. A Multi-Agent System coordinates actions between home appliances energy storage systems electric vehicles and hydrogen power devices to ensure effective and cost-saving energy distribution for users of the smart grid. The design validation is carried out through MATLAB/Simulink-based simulations using meteorological data from Tunis. Ultimately the V2H/H2V system enhances the utilization reliability and cost-effectiveness of residential energy systems compared with other management systems and conventional networks.
Optimal Control of an Over-actuated Spark-Ignited Hydrogen Engine
Jun 2025
Publication
The spark-ignited (SI) hydrogen combustion engine has the potential to noticeably reduce greenhouse gas emissions from passenger cars. To prevent nitrogen oxide emissions and to increase fuel efficiency and power output complex air paths and operating strategies are utilized. This makes the engine control problem more complex challenging the conventional engine calibration process. This work combines and extends the state-of-the-art in real-time combustion engine modeling and optimal control presenting a novel control concept for the efficient operation of a hydrogen combustion engine. The extensive experimental validation with a 1.5 l three-cylinder hydrogen SI engine and a dynamically operated engine test bench with emission and in-cylinder pressure measurements provides a comprehensible comparison to conventional engine control. The results demonstrate that the proposed optimal control decreased the load tracking errors by a factor of up to 2.8 and increased the engine efficiency during lean operation by up to 10 percent while decreasing the calibration effort compared to conventional engine control.
A Fuzzy Multi-Criteria Framework for Sustainability Assessment of Wind–Hydrogen Energy Projects: Method and Case Application
Oct 2025
Publication
This study develops a comprehensive framework for assessing the sustainability performance of wind power systems integrated with hydrogen storage (WPCHS). Unlike previous works that mainly emphasized economic or environmental indicators our approach incorporates a balanced set of economic environmental and social criteria supported by expert evaluation. To address the uncertainty in human judgment we introduce an interval-valued fuzzy TOPSIS model that provides a more realistic representation of expert assessments. A case study in Manjil Iran demonstrates the application of the model highlighting that project A4 outperforms other alternatives. The findings show that both economic factors (e.g. levelized cost of energy) and social aspects (e.g. poverty alleviation) strongly influence project rankings. Compared with earlier studies in Europe and the Middle East this work contributes by extending the evaluation scope beyond financial and environmental metrics to include social sustainability thereby enhancing decision-making relevance for policymakers and investors.
No more items...