Applications & Pathways
Iron as Recyclable Energy Carrier: Feasibility Study and Kinetic Analysis of Iron Oxide Reduction
Oct 2022
Publication
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution especially for stationary applications could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. Based on equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Based on thermogravimetric experiments using Fe2O3 Fe3O4 and FeO it could be shown that the reduction is a three-step process. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Aug 2022
Publication
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel sparkignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine the crankshaft of the engine was modified to generate different compression ratios of 8.5 9.0 9.4 10.0 and 10.4. The biogas contained 60 and 40% methane (CH4 ) and carbon dioxide (CO2 ) respectively while the hydrogen fractions used to enrich biogas were 10 20 and 30% of the mixture by volume. The ignition timing is fixed at 350 CA◦ . The results indicate that the in-cylinder pressure combustion temperature and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio NOx emissions increase proportionally while CO2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)
Aug 2022
Publication
In order to decarbonize the rail industry the development of innovative locomotives with the ability to use multiple energy sources constituting hybrid powertrains plays a central role in transitioning from conventional diesel trains. In this paper four configurations based on suitable combinations of fuel cells and/or batteries are designed to replace or supplement a diesel/overhead line powertrain on a real passenger train (the Hitachi Blues) tested on an existing regional track the Catanzaro Lido–Reggio Calabria line (Italy) managed by Trenitalia SpA. (Italy). The configurations (namely battery–electrified line full-battery fuel cell–battery–electrified line and fuel cell–battery) are first sized with the intention of completing a round trip then integrated on board with diesel engine replacement in mind and finally occupy a portion of the passenger area within two locomotives. The achieved performance is thoroughly examined in terms of fuel cell efficiency (greater than 47%) hydrogen consumption (less than 72 kg) braking energy recovery (approximately 300 kWh) and battery interval SOC.
Detection of Contaminants in Hydrogen Fuel for Fuel Cell Electrical Vehicles with Sensors—Available Technology, Testing Protocols and Implementation Challenges
Dec 2021
Publication
Europe’s low-carbon energy policy favors a greater use of fuel cells and technologies based on hydrogen used as a fuel. Hydrogen delivered at the hydrogen refueling station must be compliant with requirements stated in different standards. Currently the quality control process is performed by offline analysis of the hydrogen fuel. It is however beneficial to continuously monitor at least some of the contaminants onsite using chemical sensors. For hydrogen quality control with regard to contaminants high sensitivity integration parameters and low cost are the most important requirements. In this study we have reviewed the existing sensor technologies to detect contaminants in hydrogen then discussed the implementation of sensors at a hydrogen refueling stations described the state-of-art in protocols to perform assessment of these sensor technologies and finally identified the gaps and needs in these areas. It was clear that sensors are not yet commercially available for all gaseous contaminants mentioned in ISO14687:2019. The development of standardized testing protocols is required to go hand in hand with the development of chemical sensors for this application following a similar approach to the one undertaken for air sensors.
A Novel Remaining Useful Life Prediction Method for Hydrogen Fuel Cells Based on the Gated Recurrent Unit Neural Network
Jan 2022
Publication
The remaining useful life (RUL) prediction for hydrogen fuel cells is an important part of its prognostics and health management (PHM). Artificial neural networks (ANNs) are proven to be very effective in RUL prediction as they do not need to understand the failure mechanisms behind hydrogen fuel cells. A novel RUL prediction method for hydrogen fuel cells based on the gated recurrent unit ANN is proposed in this paper. Firstly the data were preprocessed to remove outliers and noises. Secondly the performance of different neural networks is compared including the back propagation neural network (BPNN) the long short-term memory (LSTM) network and the gated recurrent unit (GRU) network. According to our proposed method based on GRU the root mean square error was 0.0026 the mean absolute percentage error was 0.0038 and the coefficient of determination was 0.9891 for the data from the challenge datasets provided by FCLAB Research Federation when the prediction starting point was 650 h. Compared with the other RUL prediction methods based on the BPNN and the LSTM our prediction method is better in both prediction accuracy and convergence rate.
Solar Power and Energy Storage for Decarbonization of Land Transport in India
Dec 2021
Publication
By considering the weight penalty of batteries on payload and total vehicle weight this paper shows that almost all forms of land-based transport may be served by battery electric vehicles (BEV) with acceptable cost and driving range. Only long-distance road freight is unsuitable for battery electrification. The paper models the future Indian electricity grid supplied entirely by low-carbon forms of generation to quantify the additional solar PV power required to supply energy for transport. Hydrogen produced by water electrolysis for use as a fuel for road freight provides an inter-seasonal energy store that accommodates variations in renewable energy supply. The advantages and disadvantages are considered of midday electric vehicle charging vs. overnight charging considering the temporal variations in supply of renewable energy and demand for transport services. There appears to be little to choose between these two options in terms of total system costs. The result is an energy scenario for decarbonized surface transport in India based on renewable energy that is possible realistically achievable and affordable in a time frame of year 2050.
Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
Dec 2020
Publication
This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up high efficiency no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs as this determines the cell losses and material characterization of the various cell components. When this is done properly it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment which also needs to be considered in future research activities.
Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator
Jul 2019
Publication
The turbine-combined free-piston engine generator (TCFPEG) is a hybrid machine generating both mechanical work from the gas turbine and electricity from the linear electric generator for battery charging. In the present study the system performance of the designed TCFPEG system is predicted using a validated numerical model. A parametric analysis is undertaken based on the influence of the engine load valve timing the number of linear generators adopted and different fuels on the system performance. It is found that when linear electric generators are connected with the free-piston gas turbine the bottom dead centre the peak piston velocity and engine operation frequency are all reduced. Very minimal difference on the in-cylinder pressure and the compressor pressure is observed while the peak pressure in the bounce chamber is reduced. When coupled with a linear electric generator the system efficiency can be improved to nearly 50% by optimising engine load and the number of the linear generators adopted in the TCFPEG system. The system is able to be operated with different fuels as the piston is not limited by a mechanical system; the output power and system efficiency are highest when hydrogen is used as the fuel.
Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming
Jun 2022
Publication
Fuel cell hybrid electric vehicles have attracted a large amount of attention in recent years owing to their advantages of zero emissions high efficiency and low noise. To improve the fuel economy and system durability of vehicles this paper proposes an energy management strategy optimization method for fuel cell hybrid electric vehicles based on dynamic programming. Rule-based and dynamic-programming-based strategies are developed based on building a fuel cell/battery hybrid system model. The rule-based strategy is improved with a power distribution scheme of dynamic programming strategy to improve the fuel economy of the vehicle. Furthermore a limit on the rate of change of the output power of the fuel cell system is added to the rule-based strategy to avoid large load changes to improve the durability of the fuel cell. The simulation results show that the equivalent 100 km hydrogen consumption of the strategy based on the dynamic programming optimization rules is reduced by 6.46% compared with that before the improvement and by limiting the rate of change of the output power of the fuel cell system the times of large load changes are reduced. Therefore the strategy based on the dynamic programming optimization rules effectively improves the fuel economy and system durability of vehicles.
Fuel Cell Solution for Marine Applications
Sep 2021
Publication
With future regulations on the horizon port authorities and ship owners/operators are looking at alternative propulsion solutions to reduce emission. Fuel cell technology provides an attractive zeroemission solution to generate electric power on board using hydrogen as a fuel. Fuel cell systems are scalable from 200kW to multi-MW providing high efficiency dispatchable clean quiet power generation. Several innovative pilot projects are on the way to demonstrate the marine application of this proven technology. Electrification of propulsion systems is advancing and fuel cell technology provides the opportunity to produce on board large quantity of power with zero-emission using hydrogen as a fuel. We will present the value proposition of having a fuel cell power generator on board of an electric vessel while discussing the safety considerations with the fuel cell module and the onboard fuel storage. We will present some of our current fuel cell marine projects and review some of the product development considerations including system architecture and safety as well as hydrogen supply and on-board fuel storage.
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Sustainable Aviation—Hydrogen Is the Future
Jan 2022
Publication
As the global search for new methods to combat global warming and climate change continues renewable fuels and hydrogen have emerged as saviours for environmentally polluting industries such as aviation. Sustainable aviation is the goal of the aviation industry today. There is increasing interest in achieving carbon-neutral flight to combat global warming. Hydrogen has proven to be a suitable alternative fuel. It is abundant clean and produces no carbon emissions but only water after use which has the potential to cool the environment. This paper traces the historical growth and future of the aviation and aerospace industry. It examines how hydrogen can be used in the air and on the ground to lower the aviation industry’s impact on the environment. In addition while aircraft are an essential part of the aviation industry other support services add to the overall impact on the environment. Hydrogen can be used to fuel the energy needs of these services. However for hydrogen technology to be accepted and implemented other issues such as government policy education and employability must be addressed. Improvement in the performance and emissions of hydrogen as an alternative energy and fuel has grown in the last decade. However other issues such as the storage and cost and the entire value chain require significant work for hydrogen to be implemented. The international community’s alternative renewable energy and hydrogen roadmaps can provide a long-term blueprint for developing the alternative energy industry. This will inform the private and public sectors so that the industry can adjust its plan accordingly.
Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles
Mar 2022
Publication
A proton exchange membrane fuel cell (PEMFC) is known as one of the most promising energy sources for electric vehicles. A hydrogen system is required to provide hydrogen to the stack in time to meet the flow and pressure requirements according to the power requirements. In this study a 1-D model of a hydrogen system including the fuel cell stack was established. Two modes one with and one without a proportion integration differentiation (PID) control strategy were applied to analyze the pressure characteristics and performance of the PEMFC. The results showed that the established model could be well verified with experimental data. The anode pressure fluctuation with a PID control strategy was more stable which reduced the damage to the fuel cell stack caused by sudden changes of anode pressure. In addition the performance of the stack with the PID control mode was slightly improved. There was an inflection point for hydrogen utilization; the hydrogen utilization rate was higher under the mode without PID control when the current density was greater than 0.4 A/cm2 . What is more a hierarchical control strategy was proposed which made the pressure difference between the anode and cathode meet the stack working requirements and more importantly maintained the high hydrogen utilization of the hydrogen system.
Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry
May 2021
Publication
In April 2018 the International Maritime Organisation adopted an ambitious plan to contribute to the global efforts to reduce the Greenhouse Gas emissions as set by the Paris Agreement by targeting a 50% reduction in shipping’s Green House Gas emissions by 2050 benchmarked to 2008 levels. To meet these challenging goals the maritime industry must introduce environmentally friendly fuels with negligible or low SOX NOX and CO2 emissions. Ammonia use in maritime applications is considered promising due to its high energy density low flammability easy storage and low production cost. Moreover ammonia can be used as fuel in a variety of propulsors such as fuel cells and can be produced from renewable sources. As a result ammonia can be used as a versatile marine fuel exploiting the existing infrastructure and having zero SOX and CO2 emissions. However there are several challenges to overcome for ammonia to become a compelling fuel towards the decarbonisation of shipping. Such factors include the selection of the appropriate ammonia-fuelled power generator the selection of the appropriate system safety assessment tool and mitigating measures to address the hazards of ammonia. This paper discusses the state-of-the-art of ammonia fuelled fuel cells for marine applications and presents their potential and challenges.
Effect of Supercharging on Improving Thermal Efficiency and Modifying Combustion Characteristics in Lean-burn Direct-injection Near-zero-emission Hydrogen Engines
Oct 2021
Publication
The authors have proposed a new combustion process called the Plume Ignition Combustion Concept (PCC) in which with an optimal combination of hydrogen injection timing and controlled jet geometry the plume of the hydrogen jet is spark-ignited to accomplish combustion of a rich mixture. This combustion process markedly improves thermal efficiency by reducing cooling loss which is essential for increasing thermal efficiency in a hydrogen engine while maintaining high power. In order to improve thermal efficiency and reduce NOx formation further PCC was applied to a lean-burn regime to burn a leaner mixture globally. In this study the effect of supercharging which was applied to recover the reduced output power due to the leaner mixture on improving thermal efficiency was confirmed along with clarifying the cause.
Recent Developments in High-Performance Nafion Membranes for Hydrogen Fuel Cells Applications
Aug 2021
Publication
As a promising alternative to petroleum fossil energy polymer electrolyte membrane fuel cell has drawn considerable attention due to its low pollution emission high energy density portability and long operation times. Proton exchange membrane (PEM) like Nafion plays an essential role as the core of fuel cell. A good PEM must have satisfactory performance such as high proton conductivity excellent mechanical strength electrochemical stability and suitable for making membrane electrode assemblies (MEA). However performance degradation and high permeability remain the main shortcomings of Nafion. Therefore the development of a new PEM with better performance in some special conditions is greatly desired. In this review we aim to summarize the latest achievements in improving the Nafion performance that works well under elevated temperature or methanol-fueled systems. The methods described in this article can be divided into some categories utilizing hydrophilic inorganic material metal-organic frameworks nanocomposites and ionic liquids. In addition the mechanism of proton conduction in Nafion membranes is discussed. These composite membranes exhibit some desirable characteristics but the development is still at an early stage. In the future revolutionary approaches are needed to accelerate the application of fuel cells and promote the renewal of energy structure.
Numerical Study on Tri-fuel Combustion: Ignition Properties of Hydrogen-enriched Methane-diesel and Methanol-diesel Mixtures
Jan 2020
Publication
Simultaneous and interactive combustion of three fuels with differing reactivities is investigated by numerical simulations. In the present study conventional dual-fuel (DF) ignition phenomena relevant to DF compression ignition (CI) engines are extended and explored in tri-fuel (TF) context. In the present TF setup a low reactivity fuel (LRF) methane or methanol is perfectly mixed with hydrogen and air to form the primary fuel blend at the lean equivalence ratio of 0.5. Further such primary fuel blends are ignited by a high-reactivity fuel (HRF) here n-dodecane under conditions similar to HRF spray assisted ignition. Here ignition is relevant to the HRF containing parts of the tri-fuel mixtures while flame propagation is assumed to occur in the premixed LRF/ containing end gas regions. The role of hydrogen as TF mixture reactivity modulator is explored. Mixing is characterized by n-dodecane mixture fraction ξ and molar ratio . When x < 0.6 minor changes are observed for the first- and second-stage ignition delay time (IDT) of tri-fuel compared to dual-fuel blends (x = 0). For methane when x > 0.6 first- and second-stage IDT increase by factor 1.4–2. For methanol a respective decrease by factor 1.2–2 is reported. Such contrasting trends for the two LRFs are explained by reaction sensitivity analysis indicating the importance of OH radical production/consumption in the ignition process. Observations on LRF/ end gas laminar flame speed () indicate that increases with x due to the highly diffusive features of . For methane increase with x is more significant than for methanol.
Impacts of Load Profiles on the Optimization of Power Management of a Green Building Employing Fuel Cells
Dec 2018
Publication
This paper discusses the performance improvement of a green building by optimization procedures and the influences of load characteristics on optimization. The green building is equipped with a self-sustained hybrid power system consisting of solar cells wind turbines batteries proton exchange membrane fuel cell (PEMFC) electrolyzer and power electronic devices. We develop a simulation model using the Matlab/SimPowerSystemTM and tune the model parameters based on experimental responses so that we can predict and analyze system responses without conducting extensive experiments. Three performance indexes are then defined to optimize the design of the hybrid system for three typical load profiles: the household the laboratory and the office loads. The results indicate that the total system cost was reduced by 38.9% 40% and 28.6% for the household laboratory and office loads respectively while the system reliability was improved by 4.89% 24.42% and 5.08%. That is the component sizes and power management strategies could greatly improve system cost and reliability while the performance improvement can be greatly influenced by the characteristics of the load profiles. A safety index is applied to evaluate the sustainability of the hybrid power system under extreme weather conditions. We further discuss two methods for improving the system safety: the use of sub-optimal settings or the additional chemical hydride. Adding 20 kg of NaBH4 can provide 63 kWh and increase system safety by 3.33 2.10 and 2.90 days for the household laboratory and office loads respectively. In future the proposed method can be applied to explore the potential benefits when constructing customized hybrid power systems.
Bridging the Maritime-Hydrogen Cost-Gap: Real Options Analysis of Policy Alternatives
May 2022
Publication
Alternative and especially renewable marine fuels are needed to reduce the environmental and climate impacts of the shipping sector. This paper investigates the business case for hydrogen as an alternative fuel in a new-built vessel utilizing fuel cells and liquefied hydrogen. A real option approach is used to model the optimal time and costs for investment as well as the value of deferring an investment as a result of uncertainty. This model is then used to assess the impact of a carbon tax on a ship owner’s investment decision. A low carbon tax results in ship owners deferring investments which then slows the uptake of the technology. We recommend that policymakers set a high carbon tax at an early stage in order to help hydrogen compete with fossil fuels. A clear and timely policy design promotes further investments and accelerates the uptake of new technologies that can fulfill decarbonization targets.
No more items...