Applications & Pathways
Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review
Jan 2022
Publication
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size shape increased surface-to-volume ratio and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties such as significantly enhanced toughness mechanical strength and thermal/electrochemical conductivity. As a result of these advantages nanocomposites have been used in a variety of applications including catalysts electrochemical sensors biosensors and energy storage devices among others. This study focuses on the usage of several forms of carbon nanomaterials such as carbon aerogels carbon nanofibers graphene carbon nanotubes and fullerenes in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years notably in the car industry due to their cost-effectiveness eco-friendliness and long-cyclic durability. Further; we discuss the principles reaction mechanisms and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
The Emotional Dimensions of Energy Projects: Anger, Fear, Joy and Pride About the First Hydrogen Fuel Station in the Netherlands
May 2018
Publication
Citizens’ emotional responses to energy technology projects influence the success of the technology’s implementation. Contrary to popular belief these emotions can have a systematic base. Bringing together insights from appraisal theory and from technology acceptance studies this study develops and tests hypotheses regarding antecedents of anger fear joy and pride about a local hydrogen fuel station (HFS). A questionnaire study was conducted among 271 citizens living near the first publicly accessible HFS in the Netherlands around the time of its implementation. The results show that anger is significantly explained by (from stronger to weaker effects) perceived procedural and distributive unfairness and fear by distributive unfairness perceived safety procedural unfairness gender and prior awareness. Joy is significantly explained by perceived environmental outcomes and perceived usefulness and pride by prior awareness perceived risks trust in industry and perceived usefulness. The study concludes that these predictors are understandable practical and moral considerations which can and should be taken into account when developing and executing a project.
Fostering a Blue Economy: Offshore Renewable Energy
Dec 2020
Publication
Offshore renewable energy – including offshore wind and solar power as well as emerging ocean energy technologies – could support sustainable long-term development and drive a vibrant blue economy. For countries and communities around the world offshore renewables can provide reliable stable electricity as well as support water desalination and aquaculture.
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
This report from the International Renewable Energy Agency (IRENA) considers the status and prospects of offshore renewable sources and recommends key actions to accelerate their uptake.
The development of renewable sources and technologies at sea promises to spur new industries and create jobs in line with the global energy transition. Offshore wind towers with either fixed or floating foundations and floating solar photovoltaic (PV) arrays offer clear technological and logistical synergies with the existing offshore oil and gas industry.
Offshore renewables could provide clean power and ensure energy security for small island developing states (SIDS) and many of the least-developed countries (LDCs).
Among other findings:
- The predictability of power generation from ocean energy technologies complements the variable character solar PV and wind.
- Desalination of seawater using renewable energy sources – including solar and wind power but also direct solar and geothermal heat – can further enhance the sustainable blue economy.
- Renewable-based shipping powered with advanced biofuels hydrogen or synthetic fuels as alternatives to oil offer further synergies with offshore renewable energy.
- Islands and coastal territories could adopt renewable-based electric propulsion for short-distance (< 100 km) sea transport.
- Two reports released concurrently examine the potential for offshore renewables:
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Integration of Water Electrolysis for Fossil-free Steel Production
Sep 2020
Publication
This study investigates the integration of water electrolysis technologies in fossil-free steelmaking via the direct reduction of iron ore followed by processing in an electric arc furnace (EAF). Hydrogen (H2) production via low or high temperature electrolysis (LTE and HTE) is considered for the production of carbon-free direct reduced iron (DRI). The introduction of carbon into the DRI reduces the electricity demand of the EAF. Such carburization can be achieved by introducing carbon monoxide (CO) into the direct reduction process. Therefore the production of mixtures of H2 and CO using either a combination of LTE coupled with a reverse water-gas shift reactor (rWGS-LTE) or high-temperature co-electrolysis (HTCE) was also investigated. The results show that HTE has the potential to reduce the specific electricity consumption (SEC) of liquid steel (LS) production by 21% compared to the LTE case. Nevertheless due to the high investment cost of HTE units both routes reach similar LS production costs of approximately 400 €/tonne LS. However if future investment cost targets for HTE units are reached a production cost of 301 €/tonne LS is attainable under the conditions given in this study. For the production of DRI containing carbon a higher SEC is calculated for the LTE-rWGS system compared to HTCE (4.80 vs. 3.07 MWh/tonne LS). Although the use of HTCE or LTE-rWGS leads to similar LS production costs future cost reduction of HTCE could result in a 10% reduction in LS production cost (418 vs. 375 €/tonne LS). We show that the use of HTE either for the production of pure H2 or H2 and CO mixtures may be advantageous compared to the use of LTE in H2 -based steelmaking although results are sensitive to electrolyzer investment costs efficiencies and electricity prices.
Renewable Energy Policies in a Time of Transition: Heating and Cooling
Nov 2020
Publication
Heating and cooling accounts for almost half of global energy consumption. With most of this relying fossil fuels however it contributes heavily to greenhouse gas emissions and air pollution. In parts of the world lacking modern energy access meanwhile inefficient biomass use for cooking also harms people’s health damages the environment and reduces social well-being.
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
The transition to renewable-based energy-efficient heating and cooling could follow several possible pathways depending on energy demand resource availability and the needs and priorities of each country or region. Broad options include electrification with renewable power renewable-based gases (including “green” hydrogen) sustainable bioenergy use and the direct use of solar and geothermal heat.
This report developed jointly by the International Renewable Energy Agency (IRENA) the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21st Century (REN21) outlines the infrastructure and policies needed with each transition pathway. This edition focused on renewable-based heating and cooling follows a broader initial study Renewable Energy Policies in a Time of Transition (IRENA IEA and REN21 2018).
The shift to renewables for heating and cooling requires enabling infrastructure (e.g. gas grids district heating and cooling networks) as well as various combinations of deployment integrating and enabling policies. The policy framework can demonstrate a country’s commitment to the energy transition level the playing field with fossil fuels and create the necessary enabling conditions to attract investments.
Along with highlighting country experiences and best practices the study identifies barriers and highlights policy options for renewable heating and cooling.
Key recommendations include:
- Setting specific targets and developing an integrated long-term plan for the decarbonisation of heating and cooling in all end-uses including buildings industry and cooking and productive uses in areas with limited energy access.
- Creating a level playing field by phasing out fossil-fuel subsidies and introducing other fiscal policies to internalise environmental and socio-economic costs.
- Combining the electrification of heating and cooling with increasingly cost-competitive renewable power generation scaling up solar and wind use and boosting system flexibility via energy storage heat pumps and efficient electric appliances.
- Harnessing existing gas networks to accommodate renewable gases such as biogas and green hydrogen.
- Introducing standards certification and testing policies to promote the sustainable use of biomass combining efficient systems and bioenergy solutions such as pellets briquettes bioethanol or anaerobic digestion.
- Reducing investment risks for geothermal exploration and scaling up direct use of geothermal heat.
- Improving district heating and cooling networks through energy efficiency measures and the integration of low-temperature solar thermal geothermal and other renewable-based heat sources.
- Supporting clean cooking and introducing renewable-based food drying in areas lacking energy access with a combination of financing mechanisms capacity building and quality standards aimed at improving livelihoods and maximising socio-economic benefits.
The Renewable Hydrogen–Methane (RHYME) Transportation Fuel: A Practical First Step in the Realization of the Hydrogen Economy
Feb 2022
Publication
The permanent introduction of green hydrogen into the energy economy would require that a discriminating selection be made of its use in the sectors where its value is optimal in terms of relative cost and life cycle reduction in carbon dioxide emissions. Consequently hydrogen can be used as an energy storage medium when intermittent wind and solar power exceed certain penetration in the grid likely above 40% and in road transportation right away to begin displacing gasoline and diesel fuels. To this end the proposed approach is to utilize current technologies represented by PHEV in light-duty and HEV in heavy-duty vehicles where a high-performance internal combustion engine is used with a fuel comprised of 15–20% green hydrogen and 85–89% green methane depending on vehicle type. This fuel designated as RHYME takes advantage of the best attributes of hydrogen and methane results in lower life cycle carbon dioxide emissions than BEVs or FCEVs and offers a cost-effective and pragmatic approach both locally as well as globally in establishing hydrogen as part of the energy economy over the next ten to thirty years.
A Review of Cleaner Alternative Fuels for Maritime Transportation
Apr 2021
Publication
Environmental regulations have always been an essential component in the natural gas supply chain with recent and greater emphasis on shipping operations. Recently more stringent regulations have been imposed by the International Maritime Organization on global maritime shipping operations. This review explores the challenges and opportunities associated with substituting heavy fuel oils used for maritime transportation with relatively cleaner fuels. First the review considers the feasibility and environmental dimensions of different bunker fuels including liquefied natural gas hydrogen and ammonia. Also the operational viability and optimal conditions for these fuels are examined. Secondly the review considers the entire supply chain with an emphasis on how liquefied natural gas exporters can establish synergies across the supply chain to also deliver the end-product required by customers instead of delivering only liquefied natural gas. Finally measures that can support ship operators to comply with environmental regulations are suggested. The outcomes of this review supports the notion that the demand for alternative fuels will continue to increase as the transportation sector moves towards integrating cleaner fuels to comply with increasing environmental regulations.
Sequential Combustion in Steam Methane Reformers for Hydrogen and Power Production With CCUS in Decarbonized Industrial Clusters
Aug 2020
Publication
In future energy supply systems hydrogen and electricity may be generated in decarbonized industrial clusters using a common infrastructure for natural gas supply electricity grid and transport and geological storage of CO2. The novel contribution of this article consists of using sequential combustion in a steam methane reforming (SMR) hydrogen plant to allow for capital and operating cost reduction by using a single post-combustion carbon capture system for both the hydrogen process and the combined cycle gas turbine (CCGT) power plant plus appropriate integration for this new equipment combination. The concept would be widely applied to any post-combustion CO2 capture process. A newly developed rigorous gPROMs model of two hydrogen production technologies covering a wide range of hydrogen production capacities thermodynamically integrated with commercially available gas turbine engines quantifies the step change in thermal efficiency and hydrogen production efficiency. It includes a generic post-combustion capture technology – a conventional 30%wt MEA process - to quantify the reduction in size of CO2 absorber columns the most capital intensive part of solvent-based capture systems. For a conventional SMR located downstream of an H-class gas turbine engine followed by a three-pressure level HRSG and a capture plant with two absorbers the integrated system produces ca. 696400 Nm3/h of H2 with a net power output of 651 MWe at a net thermal efficiency of 38.9%LHV. This corresponds to 34 MWe of additional power increasing efficiency by 4.9% points and makes one absorber redundant compared to the equivalent non-integrated system producing the same volume of H2. For a dedicated gas heated reformer (GHR) located downstream of an aeroderivative gas turbine engine followed by a two-pressure level HRSG and a capture plant with one absorber the integrated system produces ca. 80750 Nm3/h of H2 with a net power output of 73 MWe and a net thermal efficiency of 54.7%LHV. This corresponds to 13 MWe of additional power output increasing efficiency by 13.5% points and also makes one absorber redundant. The article also presents new insights for the design and operation of reformers integrated with gas turbines and with CO2 capture.
Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas
May 2020
Publication
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source replacing traditional fossil-fuel-based energy systems. In particular the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen economy and aggressive investment in hydrogen refuelling infrastructure is essential to make large-scale adoption of HFCVs possible. In this study we address the problem of effectively designing a hydrogen supply network for refuelling HFCVs in urban areas relatively far from a large hydrogen production site such as a petrochemical complex. In these urban areas where mass supply of hydrogen is not possible hydrogen can be supplied by reforming city gas. In this case building distributed hydrogen production bases that extract large amounts of hydrogen from liquefied petroleum gas (LPG) or compressed natural gas (CNG) and then supply hydrogen to nearby hydrogen stations may be a cost-effective option for establishing a hydrogen refuelling infrastructure in the early stage of the hydrogen economy. Therefore an optimization model is proposed for effectively deciding when and where to build hydrogen production bases and hydrogen refuelling stations in an urban area. Then a case study of the southeastern area of Seoul known as a commercial and residential center is discussed. A variety of scenarios for the design parameters of the hydrogen supply network are analyzed based on the target of the adoption of HFCVs in Seoul by 2030. The proposed optimization model can be effectively used for determining the time and sites for building hydrogen production bases and hydrogen refuelling stations.
Production of Advanced Fuels Through Integration of Biological, Thermo-Chemical and Power to Gas Technologies in a Circular Cascading Bio-Based System
Sep 2020
Publication
In the transition to a climate neutral future the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies together with power to gas (P2G) systems can generate green renewable gas which is essential to reduce the GHG footprint of industry. However each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system enabling a 70% increase in net energy output as compared with a conventional biomethane system. However the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland
Feb 2018
Publication
The Swiss government has signed the Paris Climate Agreement and various measures need to be implemented in order to reach the target of a 50% reduction in CO2 emissions in Switzerland by 2030 compared with the value for 1990. Considering the fact that the production of cement in Switzerland accounts around 2.5 million ton for CO2 emissions of which corresponds to roughly 7% of the country's total CO2 emissions the following article examines how this amount could be put to meaningful use in order to create a new value-added chain through CO2 methanation and thus reduce the consumption and import of fossil fuels in Switzerland. With power-to-gas technology this CO2 along with regenerative hydrogen from photovoltaics can be converted into methane which can then be fed into the existing natural-gas grid. This economic case study shows a cost prediction for conversion of all the CO2 from the cement industry into methane by using the technologies available today in order to replacing fossil methane imports.
Conceptual Propulsion System Design for a Hydrogen-powered Regional Train
Apr 2015
Publication
Many railway vehicles use diesel as their energy source but exhaust emissions and concerns about economical fuel supply demand alternatives. Railway electrification is not cost effective for some routes particularly low-traffic density regional lines. The journey of a regional diesel–electric train is simulated over the British route Birmingham Moor Street to Stratford-upon-Avon and return to establish a benchmark for the conceptual design of a hydrogen-powered and hydrogen-hybrid vehicle. A fuel cell power plant compressed hydrogen at 350 and 700 bar and metal-hydride storage are evaluated. All equipment required for the propulsion can be accommodated within the space of the original diesel– electric train while not compromising passenger-carrying capacity if 700 bar hydrogen tanks are employed. The hydrogen trains are designed to meet the benchmark journey time of 94 min and the operating range of a day without refuelling. An energy consumption reduction of 34% with the hydrogen-powered vehicle and a decrease of 55% with the hydrogen-hybrid train are achieved compared with the original diesel–electric. The well-to-wheel carbon dioxide emissions are lower for the conceptual trains: 55% decrease for the hydrogen-powered and 72% reduction for the hydrogen-hybrid assuming that the hydrogen is produced from natural gas.
Development of a Gaseous and Solid-state Hybrid System for Stationary Hydrogen Energy Storage
Jun 2020
Publication
Hydrogen can serve as a carrier to store renewable energy in large scale. However hydrogen storage still remains a challenge in the current stage. It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials. In the present work a gaseous and solid-state (G-S) hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated. A Ti−Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt% was prepared for the G-S hybrid hydrogen storage system. The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H2 m−3 and stores hydrogen under pressure below 5 MPa. It can readily release enough hydrogen at a temperature as low as −15 °C when the FC system is not fully activated and hot water is not available. The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%−95.9% when it is combined with a FC system. This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
Opportunities and Barriers of Hydrogen–Electric Hybrid Powertrain Vans: A Systematic Literature Review
Oct 2020
Publication
The environmental impact of the road transport sector together with urban freight transport growth has a notable repercussions in global warming health and economy. The need to reduce emissions caused by fossil fuel dependence and to foster the use of renewable energy sources has driven the development of zero-emissions powertrains. These clean transportation technologies are not only necessary to move people but to transport the increasing demand for goods and services that is currently taking place in the larger cities. Full electric battery-powered vans seem to be the best-placed solution to the problem. However despite the progress in driving range and recharge options those and other market barriers remain unsolved and the current market share of battery electric vehicles (BEVs) is not significant. Based on the development of hydrogen fuel cell stacks this work explains an emerging powertrain architecture concept for N1 class type vans that combines a battery-electric configuration with a fuel cell stack powered by hydrogen that works as a range extender (FC-EREV). A literature review is conducted with the aim to shed light on the possibilities of this hybrid light-duty commercial van for metropolitan delivery tasks providing insights into the key factors and issues for sizing the powertrain components and fuel management strategies to meet metropolitan freight fleet needs.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
Role of Hydrogen in a Low-Carbon Electric Power System: A Case Study
Jan 2021
Publication
The European Union set a 2050 decarbonization target in the Paris Agreement to reduce carbon emissions by 90–95% relative to 1990 emission levels. The path toward achieving those deep decarbonization targets can take various shapes but will surely include a portfolio of economy-wide low-carbon energy technologies/options. The growth of the intermittent renewable power sources in the grid mix has helped reduce the carbon footprint of the electric power sector. Under the need for decarbonizing the electric power sector we simulated a low-carbon power system. We investigated the role of hydrogen for future electric power systems under current cost projections. The model optimizes the power generation mix economically for a given carbon constraint. The generation mix consists of intermittent renewable power sources (solar and wind) and dispatchable gas turbine and combined cycle units fuelled by natural gas with carbon capture and sequestration as well as hydrogen. We created several scenarios with battery storage options pumped hydro hydrogen storage and demand-side response (DSR). The results show that energy storage replaces power generation and pumped hydro entirely replaces battery storage under given conditions. The availability of pumped hydro storage and demand-side response reduced the total cost as well as the combination of solar photovoltaic and pumped hydro storage. Demand-side response reduces relatively costly dispatchable power generation reduces annual power generation halves the shadow carbon price and is a viable alternative to energy storage. The carbon constrain defines the generation mix and initializes the integration of hydrogen (H2). Although the model rates power to gas with hydrogen as not economically viable in this power system under the given conditions and assumptions hydrogen is important for hard-to-abate sectors and enables sector coupling in a real energy system. This study discusses the potential for hydrogen beyond this model approach and shows the differences between cost optimization models and real-world feasibility.
Hydrogen Scooter Testing and Verification Program
Nov 2012
Publication
Taiwan stands out globally in the manufacture of scooters. If fuel cell technology could be applied to the scooter Taiwan could gain an advantage in the trend for commercial applications for fct. In 2011 The Bureau of Standards Metrology and Inspection proposed this project “the Demonstration of Hydrogen Fuel Cell Scooters.” Thirty rental fuel cell scooters are to run a long distance. Evaluation during everyday use of the cells performance will be made and reported by the riders. All the evaluations will be put into consideration of future adjustments. The project is to map out a practice route in Taipei and set up a control center to follow progress. The data gathered from the practice project will help examine the performance of fuel cell scooters contributing to the creation of legal drafts and future standards. The Taiwan fuel cell industry chain is complete and the industry possesses the ability to produce key components. Thus it is a potential market in Taiwan. A review of fuel cell development conditions in Taiwan shows that the fuel cell scooters is a niche industry owing to the strength of this technology.
Methanol as a Carrier of Hydrogen and Carbon in Fossil-free Production of Direct Reduced Iron
Jul 2020
Publication
Steelmaking is responsible for around 7% of the global emissions of carbon dioxide and new steelmaking processes are necessary to reach international climate targets. As a response to this steelmaking processes based on the direct reduction of iron ore by hydrogen produced via water electrolysis powered by renewable electricity have been suggested. Here we present a novel variant of hydrogen-based steelmaking incorporating methanol as a hydrogen and carbon carrier together with high-temperature co-electrolysis of water and carbon dioxide and biomass oxy-fuel combustion. The energy and mass balances of the process are analyzed. It is found that this methanol-based direct reduction process may potentially offer a number of process-related advantages over a process based on pure hydrogen featuring several process integration options. Notably the electricity and total energy use of the steelmaking process could be reduced by up to 25% and 8% compared to a reference pure hydrogen process respectively. The amount of high-temperature (> 200 °C) heat that must be supplied to the process could also be reduced by up to approximately 34% although the demand for medium-temperature heat is substantially increased. Furthermore the suggested process could allow for the production of high-quality direct reduced iron with appropriate carburization to alleviate downstream processing in an electric arc furnace which is not the case for a process based on pure hydrogen.
Perspectives on Cathodes for Protonic Ceramic Fuel Cells
Jun 2021
Publication
Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility unnecessity of expensive noble metals for the electrocatalyst and no dilution of the fuel electrode due to water formation. Nevertheless the lower operating temperature in comparison to classic solid oxide fuel cells places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors oxide-ionic–electronic conductors triple-conducting oxides and composite electrodes composed of oxides from two of the other categories. Here we review the relatively short history of PCFC cathode research discussing trends highlights and recent progress. Current understanding of reaction mechanisms is also discussed.
Continuous Synthesis of Few-layer MoS2 with Highly Electrocatalytic Hydrogen Evolution
Apr 2020
Publication
As one of the most promising alternative fuels hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2 small Tafel slope (53.6 mV dec-1) and prominent durability which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices it’s suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.
Combustion and Exhaust Emission Characteristics, and In-cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
Feb 2017
Publication
This paper presents a study undertaken on a naturally aspirated direct injection diesel engine investigating the combustion and emission characteristics of CH4-CO2 and CH4-CO2 -H2 mixtures. These aspirated gas mixtures were pilot-ignited by diesel fuel while the engine load was varied between 0 and 7 bar IMEP by only adjusting the flow rate of the aspirated mixtures. The in-cylinder gas composition was also investigated when combusting CH4-CO2 and CH4-CO2-H2 mixtures at different engine loads with in cylinder samples collected using two different sampling arrangements. The results showed a longer ignition delay period and lower peak heat release rates when the proportion of CO2 was increased in the aspirated mixture. Exhaust CO2 emissions were observed to be higher for 60 CH4:40CO2 mixture but lower for the 80CH4:20CO2 mixture as compared to diesel fuel only combustion at all engine loads. Both exhaust and in-cylinder NOx levels were observed to decrease when the proportion of CO2 was increased; NOx levels increased when the proportion of H2 was increased in the aspirated mixture. In-cylinder NOx levels were observed to be higher in the region between the sprays as compared to within the spray core attributable to higher gas temperatures reached post ignition in that region.
Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition
Feb 2019
Publication
Hydrogen is an essential element in the energy transition and can account for 24% of final energy demand and 5.4m jobs by 2050 says the new study by the FCH JU “Hydrogen Roadmap Europe: A sustainable pathway for the European Energy Transition“. Developed with input from 17 leading European industrial actors the study lays out a pathway for the large-scale deployment of hydrogen and fuel cells until 2050 and quantifies the associated socio-economic impacts.<br/>The report makes the case that hydrogen is required to address the challenges ahead. At scale decarbonisation of key segments such as the gas grid transport (particularly as relates to heavy duty vehicles) industrial processes that use high-grade heat and hydrogen as chemical feedstock require the use of hydrogen in large quantities.<br/>In addition the electrification of the economy and the large scale integration of intermittent renewable energy sources require large scale energy storage enabling seasonal storage and the efficient transport of clean energy across regions at low cost. Hydrogen is the only at scale technology capable of addressing all of these challenges.<br/>Importantly there will be important socio-economic and environmental benefits associated with this deployment such as an EUR 820B per year market and a total of 560Mt CO2 abated. The report lays out a roadmap for the ramp-up of market deployment across applications setting specific milestones between now and 2050. It also calls for a coordinated approach from policy makers industry and investors in order to achieve the 2-degree scenario.
Development of a Tangential Neutron Radiography System for Monitoring the Fatigue Cracks in Hydrogen Fuel Tanks
Jun 2016
Publication
Purpose- To present an overview of the research and development carried out in a European funded framework 7 (FP7) project called SafeHPower for the implementation of neutron radiography to inspect fatigue cracks in vehicle and storage hydrogen fuel tanks. Project background– Hydrogen (H2) is the most promising replacement fuel for road transport due to its abundance efficiency low carbon footprint and the absence of harmful emissions. For the mass market of hydrogen to take off the safety issue surrounding the vehicle and storage hydrogen tanks needs to be addressed. The problem is the residual and additional stresses experienced by the tanks during the continuous cyclic loading between ambient and storage pressure which can result in the development of fatigue cracks. Steel tanks used as storage containers at service stations and depots and/or the composite tanks lined with steel are known to suffer from hydrogen embrittlement (HE). Another issue is the explosive nature of hydrogen (when it is present in the 18-59% range) where it is mixed with oxygen which can lead to catastrophic consequences including loss of life. Monitoring systems that currently exist in the market impose visual examination tests pressure tests and hydrostatic tests after the tank installation [1] [2]. Three inspection systems have been developed under this project to provide continuous monitoring solutions. Approach and scope- One of the inspection systems based on the neutron radiography (NR) technology that was developed in different phases with the application of varied strategies has been presented here. Monte Carlo (MCNP) simulation results to design and develop a bespoke collimator have been presented. A limitation of using an inertial electrostatic Deuterium-Tritium (D-T) pulsed neutron generator for fast neutron radiography has been discussed. Radiographs from the hydrogen tank samples obtained using thermal neutrons from a spallation neutron source at ISIS Rutherford laboratory UK have been presented. Furthermore radiograph obtained using thermal neutrons from a portable D-T neutron generator has been presented. In conclusion a proof in principle has been made to show that the defects in the hydrogen fuel tank can be detected using thermal neutron radiography.
Catalytic Transfer Hydrogenolysis as an Efficient Route in Cleavage of Lignin and Model Compounds
Aug 2018
Publication
Cleavage of aromatic ether bonds through hydrogenolysis is one of the most promising routes for depolymerisation and transformation of lignin into value-added chemicals. Instead of using pressurized hydrogen gas as hydrogen source some reductive organic molecules such as methanol ethanol isopropanol as well as formates and formic acid can serve as hydrogen donor is the process called catalytic transfer hydrogenolysis. This is an emerging and promising research field but there are very few reports. In this paper a comprehensive review of the works is presented on catalytic transfer hydrogenolysis of lignin and lignin model compounds aiming to breakdown the aromatic ethers including α-O-4 β-O-4 and 4-O-5 linkages with focus on reaction mechanisms. The works are organised regarding to different hydrogen donors used to gain an in-depth understanding of the special role of various hydrogen donors in this process. Perspectives on current challenges and opportunities of future research to develop catalytic transfer hydrogenolysis as a competitive and unique strategy for lignin valorisation are also provided.
A Review on Synthesis of Methane as a Pathway for Renewable Energy Storage With a Focus on Solid Oxide Electrolytic Cell-Based Processes
Sep 2020
Publication
Environmental issues related to global warming are constantly pushing the fossil fuel-based energy sector toward an efficient and economically viable utilization of renewable energy. However challenges related to renewable energy call for alternative routes of its conversion to fuels and chemicals by an emerging Power-to-X approach. Methane is one such high-valued fuel that can be produced through renewables-powered electrolytic routes. Such routes employ alkaline electrolyzers proton exchange membrane electrolyzers and solid oxide electrolyzers commonly known as solid oxide electrolysis cells (SOECs). SOECs have the potential to utilize the waste heat generated from exothermic methanation reactions to reduce the expensive electrical energy input required for electrolysis. A further advantage of an SOEC lies in its capacity to co-electrolyze both steam and carbon dioxide as opposed to only water and this inherent capability of an SOEC can be harnessed for in situ synthesis of methane within a single reactor. However the concept of in situ methanation in SOECs is still at a nascent stage and requires significant advancements in SOEC materials particularly in developing a cathode electrocatalyst that demonstrates activity toward both steam electrolysis and methanation reactions. Equally important is the appropriate reactor design along with optimization of cell operating conditions (temperature pressure and applied potential). This review elucidates those developments along with research and development opportunities in this space. Also presented here is an efficiency comparison of different routes of synthetic methane production using SOECs in various modes that is as a source of hydrogen syngas and hydrogen/carbon dioxide mixture and for in situ methane synthesis.
Economic Optima for Buffers in Direct Reduction Steelmaking Under Increasing Shares of Renewable Hydrogen
Oct 2021
Publication
While current climate targets demand substantial reductions in greenhouse gas (GHG) emissions the potentials to further reduce carbon dioxide emissions in traditional primary steel-making are limited. One possible solution that is receiving increasing attention is the direct reduction (DR) technology operated either with renewable hydrogen (H2) from electrolysis or with conventional natural gas (NG). DR technology makes it possible to decouple steel and hydrogen production by temporarily using overcapacities to produce and store intermediary products during periods of low renewable electricity prices or by switching between H2 and NG. This paper aims to explore the impact of this decoupling on overall costs and the corresponding dimensioning of production and storage capacities. An optimization model is developed to determine the least-cost operation based on perfect-foresight. This model can determine the minimum costs for optimal production and storage capacities under various assumptions considering fluctuating H2 and NG prices and increasing H2 shares. The model is applied to a case study for Germany and covers the current situation the medium term until 2030 and the long term until 2050. Under the assumptions made the role of using direct reduced iron (DRI) storage as a buffer seems less relevant. DRI mainly serves as long-term storage for several weeks similar to usual balancing storage capacities. Storing H2 on the contrary is used for short-term fluctuations and could balance H2 demand in the hourly range until 2050. From an economic perspective DRI production using NG tends to be cheaper than using H2 in the short term and potential savings from the flexible operation with storages are small at first. However in the long term until 2050 NG and H2 could achieve similar total costs if buffers are used. Otherwise temporarily occurring electricity price spikes imply substantial increases in total costs if high shares of H2 need to be achieved.
Challenges and Outlines of Steelmaking toward the Year 2030 and Beyond—Indian Perspective
Oct 2021
Publication
In FY-20 India’s steel production was 109 MT and it is the second-largest steel producer on the planet after China. India’s per capita consumption of steel was around 75 kg which has risen from 59 kg in FY-14. Despite the increase in consumption it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore direct reduced iron (DRI) and scrap. To achieve the level of 250 MT steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling increasing pulverized coal injection and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2 -lean iron production technologies are discussed. In addition the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.
Advanced Hydrogen Production through Methane Cracking: A Review
Jul 2015
Publication
Hydrogen is widely produced and used for our day-to-day needs. It has also the potential to be used as fuel for industry or can be used as an energy carrier for stationary power. Hydrogen can be produced by different processes like from fossil fuels (Steam methane reforming coal gasification cracking of natural gas); renewable resources (electrolysis wind etc.); nuclear energy (thermochemical water splitting). In this paper few processes have been discussed briefly. Cracking of methane has been given special emphasis in this review for production of hydrogen. There are mainly two types of cracking non-catalytic and catalytic. Catalytic cracking of methane is governed mainly by finding a suitable catalyst; its generation deactivation activation and filament formation for the adsorption of carbon particles (deposited on metal surface); study of metallic support which helps in finding active sites of the catalyst for the reaction to proceed easily. Non-catalytic cracking of methane is mainly based on thermal cracking. Moreover several thermal cracking processes with their reactor configurations have been discussed.
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
Jul 2025
Publication
This article presents the development integration and experimental validation of a modular microgrid for sustainable hydrogen production addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment with scalability to other applications. Centered on a six-compartment skid it integrates photovoltaic generation battery storage and a liquefied petroleum gas generator to emulate typical cogeneration conditions together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility demonstrating stable hydrogen production efficient energy management and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts.
Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication
Nov 2021
Publication
Hydrogen has received tremendous global attention as an energy carrier and an energy storage system. Hydrogen carrier introduces a power to hydrogen (P2H) and power to hydrogen to power (P2H2P) facility to store the excess energy in renewable energy storage systems with the facts of large-scale storage capacity transportability and multiple utilities. This work examines the techno-economic feasibility of hybrid solar photovoltaic (PV)/hydrogen/fuel cell-powered cellular base stations for developing green mobile communication to decrease environmental degradation and mitigate fossil-fuel crises. Extensive simulation is carried out using a hybrid optimization model for electric renewables (HOMER) optimization tool to evaluate the optimal size energy production total production cost per unit energy production cost and emission of carbon footprints subject to different relevant system parameters. In addition the throughput and energy efficiency performance of the wireless network is critically evaluated with the help of MATLAB-based Monte-Carlo simulations taking multipath fading system bandwidth transmission power and inter-cell interference (ICI) into consideration. Results show that a more stable and reliable green solution for the telecommunications sector will be the macro cellular basis stations driven by the recommended hybrid supply system. The hybrid supply system has around 17% surplus electricity and 48.1 h backup capacity that increases the system reliability by maintaining a better quality of service (QoS). To end the outcomes of the suggested system are compared with the other supply scheme and the previously published research work for justifying the validity of the proposed system.
Methodologies for Representing the Road Transport Sector in Energy System Models
Dec 2013
Publication
Energy system models are often used to assess the potential role of hydrogen and electric powertrains for reducing transport CO2 emissions in the future. In this paper we review how different energy system models have represented both vehicles and fuel infrastructure in the past and we provide guidelines for their representation in the future. In particular we identify three key modelling decisions: the degree of car market segmentation the imposition of market share constraints and the use of lumpy investments to represent infrastructure. We examine each of these decisions in a case study using the UK MARKAL model. While disaggregating the car market principally affects only the transition rate to the optimum mix of technologies market share constraints can greatly change the optimum mix so should be chosen carefully. In contrast modelling infrastructure using lumpy investments has little impact on the model results. We identify the development of new methodologies to represent the impact of behavioural change on transport demand as a key challenge for improving energy system models in the future.
Everything About Hydrogen Podcast: Toyota's global hydrogen ambitions
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Craig Scott the Group Manager for Toyota North America a global automotive giant and a recognised pioneer in the field of fuel cell mobility. On the show we get into the story of Toyota’s roll out of fuel cell mobility solutions in North America the challenges and opportunities that fuel cell vehicles can offer in the hydrogen market and the challenges around infrastructure. Importantly we also dive into the scaling up work that Toyota is undertaking and some of its plans for next steps on the mission to become the world’s leader in fuel cell mobility solutions. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Highway to the Hydrogen Zone
May 2020
Publication
On this weeks episode the team discuss hydrogen for aviation with ZeroAvia. Val launched ZeroAvia to provide a genuinely zero emission flight proposition with two aircraft currently undergoing trials in California and the UK. The company is due to complete a 300 mile flight of its six seater aircraft from the Orkney islands to the Scottish mainland this summer 2020 with plans for twenty seat planes flying regional routes as early as 20205. On the show we discuss why Val set up ZeroAvia how the proposition stacks up against conventional alternatives infrastructure and plans for the future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany
Jul 2017
Publication
“Linking the power and transport sectors—Part 1” describes the general principle of “sector coupling” (SC) develops a working definition intended of the concept to be of utility to the international scientific community contains a literature review that provides an overview of relevant scientific papers on this topic and conducts a rudimentary analysis of the linking of the power and transport sectors on a worldwide EU and German level. The aim of this follow-on paper is to outline an approach to the modelling of SC. Therefore a study of Germany as a case study was conducted. This study assumes a high share of renewable energy sources (RES) contributing to the grid and significant proportion of fuel cell vehicles (FCVs) in the year 2050 along with a dedicated hydrogen pipeline grid to meet hydrogen demand. To construct a model of this nature the model environment “METIS” (models for energy transformation and integration systems) we developed will be described in more detail in this paper. Within this framework a detailed model of the power and transport sector in Germany will be presented in this paper and the rationale behind its assumptions described. Furthermore an intensive result analysis for the power surplus utilization of electrolysis hydrogen pipeline and economic considerations has been conducted to show the potential outcomes of modelling SC. It is hoped that this will serve as a basis for researchers to apply this framework in future to models and analysis with an international focus.
Everything About Hydrogen Podcast: Masters of Scale: The World of SOFC & SOE Technologies
Oct 2020
Publication
On this week's episode the EAH team catches up with Mark Selby Chief Technology Officer at Ceres Power to dive into the world of solid oxide fuel cell (SOFC) and solid oxide electrolyzer (SOE) technologies. Ceres Power specializes in the design of SOFCs for applications in a diverse range of energy intensive sectors. Mark takes the time in this episode to walk the team through the details advantages and challenges of deploying SOFCs and low-carbon hydrogen solutions more broadly and discusses how consumer and customer awareness of these technologies varies widely across international markets. We cover a lot of ground this week so be sure not to miss out on our conversation with Mark!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Flying Hy!
Feb 2021
Publication
Decarbonizing aviation is a big challenge. It is one of the most carbon intensive business sectors in the modern world and change comes slowly to the aviation industry. Hydrogen and fuel cell technologies offer a pathway to decarbonize regional flights in the not-so-distant future and big names are looking at potential solutions for long-haul flights in the longer term. But even if we build the aircraft that can use hydrogen as a fuel how do we get the fuel to them in a timely reliable and cost-efficient way?
The podcast can be found on their website
The podcast can be found on their website
Assessment and Recommendations for a Fossil Free Future for Track Work Machinery
Oct 2021
Publication
Current railway track work machinery is mainly operated with diesel fuel. As a result track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results together with a calculation tool show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between enhancements in battery technology are necessary and desirable for the coming years.
New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization
Oct 2021
Publication
The achievement of a carbon-free emissions economy is one of the main goals to reduce climate change and its negative effects. Scientists and technological improvements have followed this trend improving efficiency and reducing carbon and other compounds that foment climate change. Since the main contributor of these emissions is transportation detaching this sector from fossil fuels is a necessary step towards an environmentally friendly future. Therefore an evaluation of alternative fuels will be needed to find a suitable replacement for traditional fossil-based fuels. In this scenario hydrogen appears as a possible solution. However the existence of the drawbacks associated with the application of H2 -ICE redirects the solution to dual-fuel strategies which consist of mixing different fuels to reduce negative aspects of their separate use while enhancing the benefits. In this work a new combustion modelling approach based on machine learning (ML) modeling is proposed for predicting the burning rate of different mixtures of methane (CH4 ) and hydrogen (H2). Laminar flame speed calculations have been performed to train the ML model finding a faster way to obtain good results in comparison with actual models applied to SI engines in the virtual engine model framework.
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Boosting Carbon Efficiency of the Biomass to Liquid Process with Hydrogen from Power: The Effect of H2/CO Ratio to the Fischer-Tropsch Reactors on the Production and Power Consumption
Jun 2019
Publication
Carbon efficiency of a biomass to liquid process can be increased from ca. 30 to more than 90% by adding hydrogen generated from renewable power. The main reason is that in order to increase the H2/CO ratio after gasification to the value required for Fischer-Tropsch (FT) synthesis the water gas shift reaction step can be avoided; instead a reversed water gas shift reactor is introduced to convert produced CO2 to CO. Process simulations are done for a 46 t/h FT biofuel production unit. Previous results are confirmed and it is shown how the process can be further improved. The effect of changing the H2/CO ratio to the Fischer-Tropsch synthesis reactors is studied with the use of three different kinetic models. Keeping the CO conversion in the reactors constant at 55% the volume of the reactors decreases with increasing H2/CO ratio because the reaction rates increase with the partial pressure of hydrogen. Concurrently the production of C5+ products and the consumption of hydrogen increases. However the power required per extra produced liter fuel also increases pointing at optimum conditions at a H2/CO feed ratio significantly lower than 2. The trends are the same for all three kinetic models although one of the models is less sensitive to the hydrogen partial pressure. Finally excess renewable energy can be transformed to FT syncrude with an efficiency of 0.8–0.88 on energy basis.
Reduction of Maritime GHG Emissions and the Potential Role of E-fuels
Nov 2021
Publication
Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel E-LNG or E-Methanol. We evaluate emissions energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.
A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle
May 2022
Publication
The development of hydrogen energy is an effective solution to the energy and environmental crisis. Hydrogen fuel cells and energy storage cells as hybrid power have broad application prospects in the field of vehicle power. Energy management strategies are key technologies for fuel cell hybrid systems. The traditional optimization strategy is generally based on optimization under the global operating conditions. The purpose of this project is to develop a power allocation optimization method based on real-time load forecasting for fuel cell/lithium battery hybrid electric vehicles which does not depend on specific working conditions or causal control methods. This paper presents an energy-management algorithm based on real-time load forecasting using GRU neural networks to predict load requirements in the short time domain and then the local optimization problem for each predictive domain is solved using a method based on Pontryagin’s minimum principle (PMP). The algorithm adopts the idea of model prediction control (MPC) to transform the global optimization problem into a series of local optimization problems. The simulation results show that the proposed strategy can achieve a good fuel-saving control effect. Compared with the rule-based strategy and equivalent hydrogen consumption strategy (ECMS) the fuel consumption is lower under two typical urban conditions. In the 1800 s driving cycle under WTCL conditions the fuel consumption under the MPC-PMP strategy is 22.4% lower than that based on the ECMS strategy and 10.3% lower than the rules-based strategy. Under CTLT conditions the fuel consumption of the MPC-PMP strategy is 13.12% lower than that of the rule-based strategy and 3.01% lower than the ECMS strategy.
Thermodynamic and Ecological Preselection of Synthetic Fuel Intermediates from Biogas at Farm Sites
Jan 2020
Publication
Background: Synthetic fuels based on renewable hydrogen and CO2 are a currently highly discussed piece of the puzzle to defossilize the transport sector. In this regard CO2 can play a positive role in shaping a sustainable future. Large potentials are available as a product of biogas production however occurring in small scales and in thin spatial distributions. This work aims to evaluate suitable synthetic fuel products to be produced at farm sites.<br/>Methods: A thermodynamic analysis to assess the energetic efficiency of synthesis pathways and a qualitative assessment of product handling issues is carried out.<br/>Results: Regarding the technical and safety-related advantages in storage liquid products are the superior option for fuel production at decentralized sites. Due to the economy of scale multi-stage synthesis processes lose economic performance with rising complexity. A method was shown which covers a principle sketch of all necessary reaction separation steps and all compression and heat exchanger units. The figures showed that methanol and butanol are the most suitable candidates in contrast to OME3-5 for implementation in existing transportation and fuel systems. These results were underpin by a Gibbs energy analysis.<br/>Conclusions: As long as safety regulations are met and the farm can guarantee safe storage and transport farm-site production for all intermediates can be realized technically. Ultimately this work points out that the process must be kept as simple as possible favoring methanol production at farm site and its further processing to more complicated fuels in large units for several fuel pathways.
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The Other Hydrogen Vehicle?
Oct 2019
Publication
For this episode we speak to Amanda Lyne the Managing Director of ULEMCo and the Chair of the UK Hydrogen and Fuel Cell Association (UKHFCA). Below are a few links to some of the content discussed on the show and some further background reading.
The podcast can be found on their website
The podcast can be found on their website
Climate Change Impacts of E-fuels for Aviation in Europe Under Present-day Conditions and Future Policy Scenarios
Jan 2023
Publication
‘E-fuels’ or ‘synthetic fuels’ are hydrocarbon fuels synthesized from hydrogen (H2) and carbon dioxide (CO2) where H2 can be produced via electrolysis of water or steam reforming of natural gas and CO2 is captured from the combustion of a fossil or biogenic source or directly from the atmosphere. E-fuels are drop-in substitutes for fossil fuels but their climate change mitigation benefits are largely unclear. This study evaluates the climate change impacts of e-fuels for aviation by combining different sources of CO2 and H2 up to 2050 under two contrasting policy scenarios. The analysis includes different climate metrics and the effects of near-term climate forcers which are particularly relevant for the aviation sector. Results are produced for European average conditions and for Poland and Norway two countries with high and low emission intensity from their electricity production mix. E-fuels can either have higher or lower climate change impacts than fossil fuels depending on multiple factors such as in order of importance the electricity mix the origin of CO2 the technology for H2 production and the electrolyzer efficiency. The climate benefits are generally higher for e-fuels produced from CO2 of biogenic origin while e-fuels produced from CO2 from direct air capture or fossil fuel combustion require countries with clean electricity to outperform fossil fuels. Synthetic fuels produced from H2 derived from natural gas have higher impacts than fossil fuels even when coupled with carbon capture and storage if CO2 is sourced from fossil fuels or the atmosphere. Climate change impacts of e-fuels improve in the future and they can all achieve considerable climate change mitigation in 2050 relative to fossil jet fuel provided that strict climate policy measures are implemented to decarbonize the electricity sector. Under reduced policy efforts future climate impacts in 2050 of e-fuels from atmospheric or fossil CO2 are still higher than those of fossil jet fuels with an average European electricity mix. This study shows the conditions to maximize the climate change mitigation benefits of e-fuels which essentially depend on progressive decarbonization of the electricity sector and on reduced use of CO2 sourced from fossil fuels.
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive
Jun 2022
Publication
Hydrogen has been attracting attention as a fuel in the transportation sector to achieve carbon neutrality. Hydrogen storage in liquid form is preferred in locomotives ships drones and aircraft because these require high power but have limited space. However liquid hydrogen must be in a cryogenic state wherein thermal insulation is a core problem. Inner materials including glass bubbles multi-layer insulation (MLI) high vacuum and vapor-cooled shields are used for thermal insulation. An analytic study is preferred and proceeds liquid hydrogen tanks due to safety regulations in each country. This study reviewed the relevant literature for thermodynamic modeling. The literature was divided into static dynamic and systematic studies. In summary the authors summarized the following future research needs: The optimal design of the structure including suspension baffle and insulation system can be studied to minimize the boil-off gas (BOG). A dynamic study of the pressure mass flow and vaporizer can be completed. The change of the components arrangement from the conventional diesel–electric locomotive is necessary.
No more items...