Applications & Pathways
The Trajectory of Hybrid and Hydrogen Technologies in North American Heavy Haul Operations
Jul 2021
Publication
The central aim of this paper is to provide an up-to-date snapshot of hybrid and hydrogen technology-related developments and activities in the North American heavy haul railway setting placed in the context of the transportation industry more broadly. An overview of relevant alternative propulsion technologies is provided including a discussion of applicability to the transportation sector in general and heavy haul freight rail specifically. This is followed by a discussion of current developments and research in alternative and blended fuels discussed again in both general and specific settings. Key factors and technical considerations for heavy haul applications are reviewed followed by a discussion of non-technical and human factors that motivate a move toward clean energy in North American Heavy Haul systems. Finally current project activities are described to provide a clear understanding of both the status and trajectory of hybrid and hydrogen technologies in the established context.
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
Jan 2022
Publication
In the context of the great research pulse on clean energy transition distributed energy systems have a key role especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways like modifying the Brayton cycle integrating two or more plants using cleaner fuels. Hence during the last decades the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system and this review aims to discuss the various layout solutions proposed by researchers with particular attention to recent publications highlighting the adopted modeling approaches and methods.
Fuel Flexibility of Solid Oxide Fuel Cells
Aug 2021
Publication
One of the major advantages of SOFCs is their high fuel flexibility. Next to natural gas and hydrogen which are today’s most common fuels for SOFC-systems and cell-/stack-testing respectively various other fuels are applicable as well. In the literature a number of promising results show that available fuels as propane butane ammonia gasoline diesel etc. can be applied. Here the performance of an anode supported cell operated in specialized single cell test benches with different gaseous and liquid fuels and reformates thereof is presented. Fuels as ammonia dissolved urea (AddBlueTM) methane/steam and ethanol/water mixtures can directly be fed to the cell whereas propane and diesel require external reforming. It is shown that in case of a stable fuel supply the cell performance with such fuels is similar to that of appropriate mixtures of H2 N2 CO CO2 and steam if the impact of endothermic reforming or decomposition reactions is considered. Even though a stable fuel cell operation with such fuels is possible in a single cell test bench it should be pointed out that an appropriate fuel processing will be mandatory on the system level.
Comparison of Alternative Marine Fuels
Sep 2019
Publication
The overall ambition of the study has been to assess the commercial and operational viability of alternative marine fuels based on review existing academic and industry literature. The approach assesses how well six alternative fuels perform compared to LNG fuel on a set of 11 key parameters. Conventional fuels are not covered in this study however 2020 compliant fuels (HFO+scrubber and low sulphur fuels are included in the conclusion for comparative purposes.
Risks and Opportunities Associated with Decarbonising Rotterdam’s Industrial Cluster
Jun 2019
Publication
The Port of Rotterdam is an important industrial cluster comprising mainly oil refining chemical production and power generation. In 2016 the port’s industry accounted for 19% of the Netherlands’ total CO2 emissions. The Port of Rotterdam Authority is aware that the cluster is heavily exposed to future decarbonisation policies as most of its activities focus on trading handling converting and using fossil fuels. Based on a study for the Port Authority using a mixture of qualitative and quantitative methods our article explores three pathways whereby the port’s industry can maintain its strong position while significantly reducing its CO2 emissions and related risks by 2050. The pathways differ in terms of the EU’s assumed climate change mitigation ambitions and the key technological choices made by the cluster’s companies. The focus of the paper is on identifying key risks associated with each scenario and ways in which these could be mitigated.
Optimal Design for a Hybrid Microgrid-hydrogen Storage Facility in Saudi Arabia
May 2022
Publication
Background: Sustainable development requires access to afordable reliable and efcient energy to lift billions of people out of poverty and improve their standard of living. The development of new and renewable forms of energy that emit less CO2 may not materialize quickly enough or at a price point that allows people to attain the standard of living they desire and deserve. As a result a parallel path to sustainability must be developed that uses both renewable and clean carbon-based methods. Hybrid microgrids are promoted to solve various electrical and energy-related issues that incorporate renewable energy sources such as photovoltaics wind diesel generation or a combination of these sources. Utilizing microgrids in electric power generation has several benefts including clean energy increased grid stability and reduced congestion. Despite these advantages microgrids are not frequently deployed because of economic concerns. To address these fnancial concerns it is necessary to explore the ideal confguration of micro-grids based on the quantity quality and availability of sustainable energy sources used to install the microgrid and the optimal design of microgrid components. These considerations are refected in net present value and levelized energy cost. Methods: HOMER was used to simulate numerous system confgurations and select the most feasible solution according to the net present value levelizied cost of energy and hydrogen operating cost and renewable fraction. HOMER performed a repeated algorithm process to determine the most feasible system configuration and parameters with the least economic costs and highest benefits to achieve a practically feasible system configuration. Results: This article aimed to construct a cost-effective microgrid system for Saudi Arabia’s Yanbu city using five configurations using excess energy to generate hydrogen. The obtained results indicate that the optimal configuration for the specified area is a hybrid photovoltaic/wind/battery/generator/fuel cell/hydrogen electrolyzer microgrid with a net present value and levelized energy cost of $10.6 billion and $0.15/kWh. Conclusion: With solar photovoltaic and wind generation costs declining building electrolyzers in locations with excellent renewable resource conditions such as Saudi Arabia could become a low-cost hydrogen supply option even when accounting for the transmission and distribution costs of transporting hydrogen from renewable resource locations to end-users. The optimum confguration can generate up to 32132 tons of hydrogen per year (tH2/year) and 380824 tons per year of CO2 emissions can be avoided.
Integration of Battery and Hydrogen Energy Storage Systems with Small-scale Hydropower Plants in Off-grid Local Energy Communities
Apr 2024
Publication
The energy transition is pushing towards a considerable diffusion of local energy communities based on renewable energy systems and coupled with energy storage systems or energy vectors to provide independence from fossil fuels and limit carbon emissions. Indeed the variable and intermittent nature of renewables make them inadequate to satisfy the end-users’ electricity demand throughout the whole day; thus the study of energy storage systems considering their seasonal storage behaviour (e.g. energy-power coupling selfdischarge loss and minimum state of charge) is fundamental to guarantee the proper energy coverage. This work aims at identifying the off-grid operation of a local energy community powered by a 220 kW small-scale hydropower plant in the center of Italy using either a battery energy storage system or a hydrogen one with the Calliope framework. Results show that whereas the hydrogen storage system is composed of a 137 kW electrolyser a 41 kW fuel cell and a storage of 5247 kgH2 a battery system storage system would have a capacity of 280 MWh. Even though the battery storage has a better round-trip efficiency its self-discharge loss and minimum state of charge limitation involve a discharging phase with a steeper slope thus requiring considerable economic investments because of the high energy-to-power ratio.
Performance Analysis of a Stand-alone Integrated Solar Hydrogen Energy System for Zero Energy Buildings
Oct 2022
Publication
This study analyzes the optimal sizing design of a stand-alone solar hydrogen hybrid energy system for a house in Afyon Turkey. The house is not connected to the grid and the proposed hybrid system meets all its energy demands; therefore it is considered a zero-energy building. The designed system guarantees uninterrupted and reliable power throughout the year. Since the reliability of the power supply is crucial for the house optimal sizing of the components photovoltaic (PV) panels electrolyzer storage tank and fuel cell stack is critical. Determining the sufficient number of PV panels suitable electrolyzer model and size number of fuel cell stacks and the minimum storage tank volume to use in the proposed system can guarantee an uninterrupted energy supply to the house. In this study a stand-alone hybrid energy system is proposed. The system consists of PV panels a proton exchange membrane (PEM) electrolyzer a storage tank and a PEM fuel cell stack. It can meet the continuous energy demand of the house is sized by using 10 min of averaged solar irradiation and temperature data of the site and consumption data of the house. Present results show that the size of each component in a solar hydrogen hybrid energy system in terms of power depends on the size of each other components to meet the efficiency requirement of the whole system. Choosing the nominal electrolyzer power is critical in such energy systems
The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context
Jan 2023
Publication
The Italian National Recovery and Resilience Plan (NRRP) includes among other measures investments in hydrogen vehicle refuelling stations intending to promote the use of fuel cell electric vehicles (FCEVs) for long-haul freight transport. This paper evaluates the impact that this action could have on CO2 emissions and fuel consumption focusing on a case study of the Campania region. The proposed approach which can also be transferred to other geographical contexts requires the implementation of a freight road transport simulation model; this model is based on the construction of a supply model the estimation of road freight demand and an assignment procedure for computing traffic flows. This study covers the period from 2025 to 2040 according to the forecasts of the NRRP and some assumptions on the action effects; moreover it is assumed that hydrogen is entirely produced from renewable sources (green hydrogen). The key findings from three different scenarios show that savings between 423832 and 778538 tonnes of CO2 and between 144 and 264 million litres of diesel could be obtained.
A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines
Mar 2023
Publication
The shipping industry has reached a higher level of maturity in terms of its knowledge and awareness of decarbonization challenges. Carbon-free or carbon-neutralized green fuel such as green hydrogen green ammonia and green methanol are being widely discussed. However little attention has paid to the green fuel pathway from renewable energy to shipping. This paper therefore provides a review of the production methods for green power (green hydrogen green ammonia and green methanol) and analyzes the potential of green fuel for application to shipping. The review shows that the potential production methods for green hydrogen green ammonia and green methanol for the shipping industry are (1) hydrogen production from seawater electrolysis using green power; (2) ammonia production from green hydrogen + Haber–Bosch process; and (3) methanol production from CO2 using green power. While the future of green fuel is bright in the short term the costs are expected to be higher than conventional fuel. Our recommendations are therefore as follows: improve green power production technology to reduce the production cost; develop electrochemical fuel production technology to increase the efficiency of green fuel production; and explore new technology. Strengthening the research and development of renewable energy and green fuel production technology and expanding fuel production capacity to ensure an adequate supply of low- and zero-emission marine fuel are important factors to achieve carbon reduction in shipping.
The Direct Reduction of Iron Ore with Hydrogen
Aug 2022
Publication
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2 -lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2 -driven reduction was examined and found to exceed 90% with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm and operating temperatures close to 500 ◦C. Towards the future of direct steel ore reduction cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4 ) methanol and ethanol offering an important potential towards production cost yield and environmental CO2 emission reductions.
Solar–Hydrogen Storage System: Architecture and Integration Design of University Energy Management Systems
May 2024
Publication
As a case study on sustainable energy use in educational institutions this study examines the design and integration of a solar–hydrogen storage system within the energy management framework of Kangwon National University’s Samcheok Campus. This paper provides an extensive analysis of the architecture and integrated design of such a system which is necessary given the increasing focus on renewable energy sources and the requirement for effective energy management. This study starts with a survey of the literature on hydrogen storage techniques solar energy storage technologies and current university energy management systems. In order to pinpoint areas in need of improvement and chances for progress it also looks at earlier research on solar–hydrogen storage systems. This study’s methodology describes the system architecture which includes fuel cell integration electrolysis for hydrogen production solar energy harvesting hydrogen storage and an energy management system customized for the needs of the university. This research explores the energy consumption characteristics of the Samcheok Campus of Kangwon National University and provides recommendations for the scalability and scale of the suggested system by designing three architecture systems of microgrids with EMS Optimization for solar–hydrogen hybrid solar–hydrogen and energy storage. To guarantee effective and safe functioning control strategies and safety considerations are also covered. Prototype creation testing and validation are all part of the implementation process which ends with a thorough case study of the solar–hydrogen storage system’s integration into the university’s energy grid. The effectiveness of the system its effect on campus energy consumption patterns its financial sustainability and comparisons with conventional energy management systems are all assessed in the findings and discussion section. Problems that arise during implementation are addressed along with suggested fixes and directions for further research—such as scalability issues and technology developments—are indicated. This study sheds important light on the viability and efficiency of solar–hydrogen storage systems in academic environments particularly with regard to accomplishing sustainable energy objectives.
Hydrogen-Powered Aviation—Design of a Hybrid-Electric Regional Aircraft for Entry into Service in 2040
Mar 2023
Publication
Over the past few years the rapid growth of air traffic and the associated increase in emissions have created a need for sustainable aviation. Motivated by these challenges this paper explores how a 50-passenger regional aircraft can be hybridized to fly with the lowest possible emissions in 2040. In particular the use of liquid hydrogen in this aircraft is an innovative power source that promises to reduce CO2 and NOx emissions to zero. Combined with a fuel-cell system the energy obtained from the liquid hydrogen can be used efficiently. To realize a feasible concept in the near future considering the aspects of performance and security the system must be hybridized. In terms of maximized aircraft sustainability this paper analyses the flight phases and ground phases resulting in an aircraft design with a significant reduction in operating costs. Promising technologies such as a wingtip propeller and electric green taxiing are discussed in this paper and their potential impacts on the future of aviation are highlighted. In essence the hybridization of regional aircraft is promising and feasible by 2040; however more research is needed in the areas of fuel-cell technology thermal management and hydrogen production and storage.
Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities
Jul 2021
Publication
This paper shows the results of an in-depth techno-economic analysis of the public transport sector in a small to midsize city and its surrounding area. Public battery-electric and hydrogen fuel cell buses are comparatively evaluated by means of a total cost of ownership (TCO) model building on historical data and a projection of market prices. Additionally a structural analysis of the public transport system of a specific city is performed assessing best fitting bus lines for the use of electric or hydrogen busses which is supported by a brief acceptance evaluation of the local citizens. The TCO results for electric buses show a strong cost decrease until the year 2030 reaching 23.5% lower TCOs compared to the conventional diesel bus. The optimal electric bus charging system will be the opportunity (pantograph) charging infrastructure. However the opportunity charging method is applicable under the assumption that several buses share the same station and there is a “hotspot” where as many as possible bus lines converge. In the case of electric buses for the year 2020 the parameter which influenced the most on the TCO was the battery cost opposite to the year 2030 in where the bus body cost and fuel cost parameters are the ones that dominate the TCO due to the learning rate of the batteries. For H2 buses finding a hotspot is not crucial because they have a similar range to the diesel ones as well as a similar refueling time. H2 buses until 2030 still have 15.4% higher TCO than the diesel bus system. Considering the benefits of a hypothetical scaling-up effect of hydrogen infrastructures in the region the hydrogen cost could drop to 5 €/kg. In this case the overall TCO of the hydrogen solution would drop to a slightly lower TCO than the diesel solution in 2030. Therefore hydrogen buses can be competitive in small to midsize cities even with limited routes. For hydrogen buses the bus body and fuel cost make up a large part of the TCO. Reducing the fuel cost will be an important aspect to reduce the total TCO of the hydrogen bus.
Economic Evaluation of Low-carbon Steelmaking via Coupling of Electrolysis and Direct Reduction
Oct 2021
Publication
The transition from fossil-based primary steel production to a low-emission alternative has gained increasing attention in recent years. Various schemes including Carbon Capture and Utilization (CCU) and Carbon Direct Avoidance (CDA) via hydrogen-based as well as electrochemical routes have been proposed. With multiple technical analyses being available and technical feasibility being proven by first pilot plants pathways towards commercial market entry are of increasing interest. While multiple publications on the economic feasibility of CCU are available data on CDA approaches is scarce. In this work an economic model for the quantification of production cost as well as CO2 emission mitigation cost is presented. The approach is characterized by a seamless integration with a flowsheet-based process model of a direct reduction-based crude steel production plant detailed in a previous work and allows for the investigation of multiple economic aspects. Firstly the gradual transition from the natural gas-based state-of-the-art direct reduction towards a fossil-free hydrogen-based reduction is analyzed. Furthermore a comparison between the more mature technology of low-temperature electrolysis and a potentially more efficient solid oxide electrolysis (SOEL) is given highlighting the potential of SOEL technology. The conducted forecast to 2050 shows that SOEL-based CDA offers lower production cost when technological maturity is reached. Based on the results of the economic assessment possible legislative support mechanisms are studied showing that legislative actions are necessary to allow for market entry as well as for sustainable and economically feasible operation of fossil-free direct reduction plants.
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically the materials commonly employed to manufacture fuel cells stacks and hydrogen storage systems are considered emphasizing the strengths and weaknesses of the selected strategies together with assessing the solutions to current problems. Moreover as a sought-after parallelism a comparison is also proposed and discussed between traditional diesel or gasoline cars battery-powered electric cars and fuel cell electric cars thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market.
Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications
Nov 2022
Publication
Transportation is one of the largest sources of CO2 emissions accounting for more than 20% of worldwide emissions. However it is one of the areas where decarbonization presents the greatest hurdles owing to its capillarity and the benefits that are associated with the use of fossil fuels in terms of energy density storage and transportation. In order to accomplish comprehensive decarbonization in the transport sector it will be required to encourage a genuine transition to low-carbon fuels and the widespread deployment of the necessary infrastructures to allow for a large-scale innovation. Renewable hydrogen shows potential for sustainable transportation applications whether in fuel cell electric vehicles (FCEVs) such as automobiles trucks and trains or as a raw material for ship and airplane synthetic fuels. The present paper aims to present how hydrogen-fuel cell hybrid powertrains for road vehicles work in terms of conceptual layouts and operating strategies. A comprehensive overview of real and current applications is presented concerning existing prototypes and commercially available vehicles with a focus on the main key performance indicators such as efficiency mileage and energy consumption.
Analysis and Design of Fuel Cell Systems for Aviation
Feb 2018
Publication
In this paper the design of fuel cells for the main energy supply of passenger transportation aircraft is discussed. Using a physical model of a fuel cell general design considerations are derived. Considering different possible design objectives the trade-off between power density and efficiency is discussed. A universal cost–benefit curve is derived to aid the design process. A weight factor wP is introduced which allows incorporating technical (e.g. system mass and efficiency) as well as non-technical design objectives (e.g. operating cost emission goals social acceptance or technology affinity political factors). The optimal fuel cell design is not determined by the characteristics of the fuel cell alone but also by the characteristics of the other system components. The fuel cell needs to be designed in the context of the whole energy system. This is demonstrated by combining the fuel cell model with simple and detailed design models of a liquid hydrogen tank. The presented methodology and models allows assessing the potential of fuel cell systems for mass reduction of future passenger aircraft.
A Review on CO2 Mitigation in the Iron and Steel Industry through Power to X Processes
Feb 2021
Publication
In this paper we present the first systematic review of Power to X processes applied to the iron and steel industry. These processes convert renewable electricity into valuable chemicals through an electrolysis stage that produces the final product or a necessary intermediate. We have classified them in five categories (Power to Iron Power to Hydrogen Power to Syngas Power to Methane and Power to Methanol) to compare the results of the different studies published so far gathering specific energy consumption electrolysis power capacity CO2 emissions and technology readiness level. We also present for the first time novel concepts that integrate oxy-fuel ironmaking and Power to Gas. Lastly we round the review off with a summary of the most important research projects on the topic including relevant data on the largest pilot facilities (2–6 MW).
Hydrogen-powered Aviation in Germany: A Macroeconomic Perspective and Methodological Approach of Fuel Supply Chain Integration into an Economy-wide Dataset
Oct 2022
Publication
The hydrogen (H2) momentum affects the aviation sector. However a macroeconomic consideration is currently missing. To address this research gap the paper derives a methodology for evaluating macroeconomic effects of H2 in aviation and applies this approach to Germany. Three goals are addressed: (1) Construction of a German macroeconomic database. (2) Translation of H2 supply chains to the system of national accounts. (3) Implementation of H2-powered aviation into the macroeconomic data framework. The article presents an economy-wide database for analyzing H2-powered aviation. Subsequently the paper highlights three H2 supply pathways provides an exemplary techno-economic cost break-down for ten H2 components and translates them into the data framework. Eight relevant macroeconomic sectors for H2-powered aviation are identified and quantified. Overall the paper contributes on a suitable foundation to apply the macroeconomic dataset to and conduct macroeconomic analyses on H2-powered aviation. Finally the article highlights further research potential on job effects related to future H2 demand.
No more items...